Memoirs on Differential Equations and Mathematical Physics

Volume 86, 2022, 15–30

Mohamed Bouabdallah, Omar Chakrone, Mohammed Chehabi

INFINITELY MANY SOLUTIONS FOR A SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION WITH *p*-LAPLACIAN OPERATOR Abstract. In this paper, by using the critical point theory, specially the fountain theorem given in [18], we prove the existence of infinitely many solutions for a second order impulsive differential equation governed by the one-dimensional p-Laplacian operator. Finally, an example is presented to illustrate our main result.

2010 Mathematics Subject Classification. 35R12, 35J20, 35J60.

Key words and phrases. *p*-Laplacian operator, Impulsive differential equations, Critical point theory, Fountain theorem.

რეზიუმე. ნაშრომში, კრიტიკული წერტილის თეორიის გამოყენებით, განსაკუთრებით [18]-ში მოცემული შადრევნების თეორემით, ვამტკიცებთ უსასრულოდ ბევრი ამონახსნის არსებობას მეორე რიგის იმპულსური დიფერენციალური განტოლებისთვის, რომელიც მართავს ერთგანზომილებიან *p*-ლაპლასიურ ოპერატორს. ნაშრომის ბოლოში მთავარი შედეგის საილუსტრაციოდ მოყვანილია მაგალითი.

1 Introduction

We consider the problem

$$-(\rho(t)\Phi_p(u'(t)))' + s(t)\Phi_p(u(t)) = f(t, u(t)), \quad t \neq t_i, \text{ a.e. } t \in [0, T], -\Delta_p(\rho(t_i)\Phi_p(u'(t_i))) = I_i(u(t_i)), \quad i = 1, 2, \dots, l, u(0) = u(T) = 0,$$
(1.1)

where $f: [0,T] \times \mathbb{R} \to \mathbb{R}$ is continuous, $\Phi_p(x) = |x|^{p-2}x, p > 1$ and $\rho, s \in L^{\infty}([0,T])$ with

$$\underset{t \in [0,T]}{\operatorname{ess inf}} \rho(t) > 0, \quad \underset{t \in [0,T]}{\operatorname{ess inf}} s(t) > 0, \quad < \rho(0), \quad \rho(T) < +\infty, \quad t_0 = 0 < t_1 < t_2 < \dots < t_l < t_{l+1} = T,$$

are given points and the functions $I_i : \mathbb{R} \to \mathbb{R}$, i = 1, 2, ..., l, are continuous. The operator Δ_p is defined as

$$\Delta_p(\rho(t_i)\Phi_p(u'(t_i))) = \rho(t_i^+)\Phi_p(u'(t_i^+)) - \rho(t_i^-)\Phi_p(u'(t_i^-)),$$

where $u'(t_i^+)$ and $u'(t_i^-)$ denote the right and left limits of u'(t) at $t = t_i$, respectively.

Differential equations with impulsive effects arising from the real world describe the dynamics of processes in which sudden, discontinuous jumps occur. We refer to some recent works on the theory of impulsive differential equations that have been developed by a large number of mathematicians [4, 7, 9, 10, 12, 16, 17]. There are many approaches to study the existence of solutions of impulsive differential equations such as fixed point theory [8], topological degree theory [13], comparison method [15], and so on. On the other hand, many researchers have used variational methods to study the existence of solutions for boundary value problems [1-3, 5, 6, 11, 14]. However, to the best of our knowledge, there are few papers dealing with the existence of infinitely many solutions for impulsive boundary value problems. Recently, in [14], the authors considered the following problem:

$$-u''(t) + g(t)u(t) = f(t, u(t)), \quad t \neq t_j, \quad \text{a.e.} \quad t \in [0, T],$$

$$\Delta(u'(t_j)) = I_j(u(t_j)), \quad j = 1, 2, \dots, p,$$

$$u(0) = u(T) = 0.$$
(1.2)

They obtained the existence of infinitely many solutions for (1.2) in both cases, superlinear and asymptotically linear, by using the fountain theorems without using the Ambrosetti–Rabinowitz condition in the superlinear case which is given as follows, that is, there exist $\eta > 2$ and K > 0 such that

$$0 < \eta F(t, u) \le f(t, u)u, \quad |u| \ge K \text{ for all } t \in [0, T],$$
 (1.3)

where F is a primitive of f with respect to the second variable, that is, $F(t, u) = \int_{a}^{b} f(t, x) dx$.

However, there are the functions which are superlinear, but do not satisfy condition (1.3). For example,

$$f(t,u) = |\sin(t)| \left(2u \ln(1+|u|) + \frac{|u|u}{1+|u|} \right) \text{ for } t \in [0,T] \text{ and } u \in \mathbb{R} \setminus \{0\}.$$
(1.4)

Inspired by the above-mentioned works, in the present paper we study the existence of infinitely many solutions for problem (1.1), when the nonlinearity f(t, u) and I_i (i = 1, 2, ..., l) satisfy some sub-critical conditions.

The remainder of this paper is organized as follows. In Section 2, we present preliminaries and main results. In Section 3, we give an example that satisfies the assumptions of our main result.

2 Variational setting and main results

Here and in what follows, X denotes the Sobolev space $W_0^{1,p}([0,T])$ endowed with the norm

$$||u|| = \left(\int_{0}^{1} \left(\rho(t)|u'(t)|^{p} + s(t)|u(t)|^{p}\right) \mathrm{d}t\right)^{\frac{1}{p}},$$
(2.1)

which is equivalent to the usual one. As usual, for $1 , we define the norms in <math>L^p([0,T])$ and C([0,T]), respectively, by

$$||u||_p = \left(\int_0^T |u(t)|^p \, \mathrm{d}t\right)^{\frac{1}{p}} \text{ and } ||u||_{\infty} = \max_{t \in [0,T]} |u(t)|.$$

Lemma 2.1 ([1]). For $u \in W_0^{1,p}([0,T])$, we have $||u||_{\infty} \leq M ||u||$, where

$$M = 2^{\frac{1}{q}} \max\left\{\frac{1}{T^{\frac{1}{p}}(\operatorname*{ess\,inf}_{t\in[0,T]}s(t))^{\frac{1}{p}}}, \frac{T^{\frac{1}{q}}}{(\operatorname*{ess\,inf}_{t\in[0,T]}\rho(t))^{\frac{1}{p}}}\right\}, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Proof. For $u \in W_0^{1,p}([0,T])$, it follows from the mean value theorem that

$$u(\zeta) = \frac{1}{T} \int_{0}^{T} u(\tau) \,\mathrm{d}\tau$$

for some $\zeta \in [0,T]$. Hence, for $t \in [0,T]$, using Hölder's inequality with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\begin{split} |u(t)| &= \left| u(\zeta) + \int_{\zeta}^{t} u'(\tau) \,\mathrm{d}\tau \right| \\ &\leq \int_{0}^{T} |u(\tau)| \,\mathrm{d}\tau + \int_{0}^{T} |u'(\tau)| \,\mathrm{d}\tau \leq T^{-\frac{1}{p}} \bigg(\int_{0}^{T} |u(\tau)|^{p} \,\mathrm{d}\tau \bigg)^{\frac{1}{p}} + T^{\frac{1}{q}} \bigg(\int_{0}^{T} |u'(\tau)|^{p} \,\mathrm{d}\tau \bigg)^{\frac{1}{p}} \\ &\leq \frac{1}{T^{\frac{1}{p}} (\operatorname*{ess\,inf} s(t))^{\frac{1}{p}}} \left(\int_{0}^{T} s(\tau) |u(\tau)|^{p} \,\mathrm{d}\tau \bigg)^{\frac{1}{p}} + \frac{T^{\frac{1}{q}}}{(\operatorname*{ess\,inf} \rho(t))^{\frac{1}{p}}} \left(\int_{0}^{T} \rho(\tau) |u'(\tau)|^{p} \,\mathrm{d}\tau \bigg)^{\frac{1}{p}} \right. \\ &\leq 2^{\frac{1}{q}} \max \left\{ \frac{1}{T^{\frac{1}{p}} (\operatorname*{ess\,inf} s(t))^{\frac{1}{p}}}, \frac{T^{\frac{1}{q}}}{(\operatorname*{ess\,inf} \rho(t))^{\frac{1}{p}}} \right\} \|u\|, \end{split}$$

which completes the proof.

Now, we introduce the following concept for the solution of problem (1.1).

Definition 2.1. We say that a function $u \in W_0^{1,p}([0,T])$ is a weak solution of problem (1.1) if the identity

$$\int_{0}^{T} \rho(t) |u'(t)|^{p-2} u'(t) v'(t) \, \mathrm{d}t + \int_{0}^{T} s(t) |u(t)|^{p-2} u(t) v(t) \, \mathrm{d}t + \sum_{i=1}^{l} I_i(u(t_i)) v(t_i) = \int_{0}^{T} f(t, u(t)) v(t) \, \mathrm{d}t$$

holds for any $v \in W_0^{1,p}([0,T])$.

Definition 2.2. A function $u \in \{u \in W_0^{1,p}([0,T]) : \rho |u'|^{p-2}u' \in W^{1,\infty}([0,T] \setminus \{t_1, t_2, \ldots, t_l\})\}$ is a classical solution of problem (1.1) if u satisfies the equation a.e. on $[0,T] \setminus \{t_1, t_2, \ldots, t_l\}$, the limits $u'(t_i^+), u'(t_i^-), i = 1, 2, \ldots, l$, exist and satisfy the impulsive condition

$$-\Delta_p(\rho(t_i)\Phi_p(u'(t_i))) = \rho(t_i^-)\Phi_p(u'(t_i^-)) - \rho(t_i^+)\Phi_p(u'(t_i^+)) = I_i(u(t_i)),$$

and the boundary conditions u(0) = u(T) = 0 holds.

Next, we begin describing the variational formulation of our problem. Consider the energy functional $J: W_0^{1,p}([0,T]) \to \mathbb{R}$ associated to (1.1) as follows

$$J(u) = \frac{1}{p} \int_{0}^{T} \left(\rho(t)|u'(t)|^{p} + s(t)|u(t)|^{p}\right) dt + \sum_{i=1}^{l} \int_{0}^{u(t_{i})} I_{i}(x) dx - \int_{0}^{T} F(t, u(t)) dt$$
$$= \frac{1}{p} ||u||^{p} + \sum_{i=1}^{l} \int_{0}^{u(t_{i})} I_{i}(x) dx - \int_{0}^{T} F(t, u(t)) dt.$$
(2.2)

Since f and I_i (i = 1, 2, ..., l) are continuous, we deduce that J is of the class $C^1(W_0^{1,p}([0,T]),\mathbb{R})$ and its derivative is given by

$$\langle J'(u), v \rangle = \int_{0}^{T} \rho(t) |u'(t)|^{p-2} u'(t) v'(t) dt + \int_{0}^{T} s(t) |u(t)|^{p-2} u(t) v(t) dt + \sum_{i=1}^{l} I_{i}(u(t_{i})) v(t_{i}) - \int_{0}^{T} f(t, u(t)) v(t) dt$$
(2.3)

for all $u, v \in W_0^{1,p}([0,T])$. Then it is clear that the critical points of J are weak solutions of problem (1.1).

Lemma 2.2. If $u \in W_0^{1,p}([0,T])$ is a weak solution of problem (1.1), then u is a classical solution of problem (1.1).

Proof. The proof is similar to that of Lemma 1 in [2].

To prove our main results, we need the following variant fountain theorem introduced in [18] to handle our problem. Let X be a Banach space with the norm $\|\cdot\|$ and $X = \overline{\bigoplus_{j \in \mathbb{N}} X_j}$ with dim $X_j < +\infty$

for any $j \in \mathbb{N}$. Set

$$Y_k = \bigoplus_{j=1}^k X_j, \quad Z_k = \overline{\bigoplus_{j=k}^\infty X_j} \text{ and } B_k = \left\{ u \in Y_k : \|u\| \le \rho_k \right\}.$$

Consider the C^1 -functional $J_{\lambda} : X \to \mathbb{R}$ defined by

$$J_{\lambda}(u) = A(u) - \lambda B(u), \ \lambda \in [1, 2],$$

where

$$A(u) = \frac{1}{p} \|u\|^p + \sum_{i=1}^l \int_0^{u(t_i)} I_i(x) \, \mathrm{d}x \text{ and } B(u) = \int_0^T F(t, u(t)) \, \mathrm{d}t$$

For convenience, we list the following assumptions:

 (H_1) $I_i(u)$ (i = 1, 2, ..., l) are odd about u and satisfy $I_i(u)u \ge 0$ for all $u \in \mathbb{R}$.

(H₂) For any $i \in \{1, 2, ..., l\}$, there exist the positive constants a_i, b_i and $\gamma_i \in [0, p-1]$ such that

$$|I_i(u)| \leq a_i + b_i |u|^{\gamma_i}$$
 for $u \in \mathbb{R}$.

(H₃) There exist the constants $\theta_1 > 0$, $\theta_2 > 0$, and $\nu > p$ such that

$$|f(t,u)| \le \theta_1 |u|^{p-1} + \theta_2 |u|^{\nu-1}$$
 for all $(t,u) \in [0,T] \times \mathbb{R}$.

 (H_4) F(t,0) = 0 and $F(t,u) \ge 0, \forall (t,u) \in [0,T] \times \mathbb{R}$ and

$$\lim_{|u|\to+\infty}\frac{F(t,u)}{|u|^p}+\infty \text{ uniformly for } t\in[0,T].$$

 $(H_5) \ F(t,-u) = F(t,u), \, \forall \, (t,u) \in [0,T] \times \mathbb{R}.$

 (H_6) There exist $\theta_1 \ge 1, \theta_2 \ge 1$ such that

$$\theta_1 \mathcal{G}(u(t_i)) \ge \mathcal{G}(\tau u(t_i)), \ \forall i \in \{1, 2, \dots, l\}, \ \tau \in [0, 1] \text{ and } \forall u \in \mathbb{R},$$

and

$$\theta_2 \mathcal{F}(t, u) \ge \mathcal{F}(t, \tau u), \ \forall (t, u) \in [0, T] \times \mathbb{R} \text{ and } \tau \in [0, 1],$$

where

$$\mathcal{G}(u(t_i)) = pG(u(t_i)) - I_i(u(t_i))u(t_i), \quad G(u(t_i)) = \int_0^{u(t_i)} I_i(x) \, \mathrm{d}x$$

and

$$\mathcal{F}(t, u) = f(t, u)u - pF(t, u).$$

Theorem 2.1. Assume that $(H_1)-(H_6)$ are satisfied. Then problem (1.1) possesses infinitely many high energy solutions $\{u_k\} \subset W_0^{1,p}([0,T]) \setminus \{0\}$ satisfying

$$\frac{1}{p} \int_{0}^{T} \left(\rho(t) |u_{k}'(t)|^{p} + s(t) |u_{k}(t)|^{p}\right) \mathrm{d}t + \sum_{i=1}^{l} \int_{0}^{u_{k}(t_{i})} I_{i}(x) \,\mathrm{d}x - \int_{0}^{T} F(t, u_{k}(t)) \,\mathrm{d}t \longrightarrow +\infty \quad as \ k \to +\infty.$$

To prove our main result, we will show that J_{λ} satisfies the assumptions of the following variant fountain theorem.

Theorem 2.2 ([18]). Assume that the functional J_{λ} defined above satisfies

(A₁) J_{λ} maps bounded sets into bounded sets uniformly for $\lambda \in [1,2]$, and $J_{\lambda}(-u) = J_{\lambda}(u)$ for all $(\lambda, u) \in [1,2] \times X$;

(A₂)
$$B(u) \ge 0$$
 for all $u \in X$, $A(u) \to +\infty$ or $B(u) \to +\infty$ as $||u|| \to +\infty$;

or

- (A₃) $B(u) \leq 0$ for all $u \in X$, $B(u) \to -\infty$ as $||u|| \to +\infty$;
- (A_4) there exist $\rho_k > r_k > 0$ such that

$$b_k(\lambda) = \inf_{u \in Z_k, \ \|u\| = r_k} J_\lambda(u) > a_k(\lambda) = \max_{u \in Y_k, \ \|u\| = \rho_k} J_\lambda(u), \ \forall \lambda \in [1, 2].$$

Then

$$b_k(\lambda) \le c_k(\lambda) = \inf_{\gamma \in \Gamma_k} \max_{u \in B_k} J_\lambda(\gamma(u)), \ \forall \lambda \in [1, 2],$$

where

$$\Gamma_{k} = \big\{ \gamma \in C(B_{k}, X) : \ \gamma \ is \ odd, \ \gamma_{|_{\partial B_{k}}} = id \equiv \ identity \big\}.$$

Moreover, for almost every $\lambda \in [1, 2]$, there exists a sequence $\{u_{n,k}(\lambda)\}_{n \in \mathbb{N}}$ such that

$$\sup_{n} \|u_{n,k}(\lambda)\| < +\infty, \quad J_{\lambda}'(u_{n,k}(\lambda)) \to 0 \text{ and } J_{\lambda}(u_{n,k}(\lambda)) \to c_k(\lambda) \text{ as } n \to +\infty.$$

Proof of Theorem 2.1. By (H_3) , there exist positive numbers θ_3 and θ_4 such that

$$|F(t,u)| \le \theta_3 |u|^p + \theta_4 |u|^{\nu}.$$
(2.4)

Combining (2.4), (H_2) and Lemma 2.1, it is easily seen that J_{λ} maps bounded sets into bounded sets uniformly for $\lambda \in [1,2]$. By (H_1) and (H_5) , $J_{\lambda}(-u) = J_{\lambda}(u)$ for all $(\lambda, u) \in [1,2] \times X$. Thus condition (A_1) holds. Assumption (H_4) means that $B(u) \ge 0$. Condition (A_2) holds for the fact that $A(u) \ge \frac{1}{p} ||u||^p \to +\infty$ as $||u|| \to +\infty$ and $B(u) \ge 0$. Next, to show assumption (A_4) , we first show the following useful lemmas.

Lemma 2.3. Let

$$\alpha_r(k) = \sup_{u \in Z_k, \, \|u\| = 1} \|u\|_r$$

with $r \geq p$. Then

$$\alpha_r(k) \to 0 \text{ as } k \to +\infty.$$

Proof. We aim to prove that $\alpha_r(k) \to 0$ as $k \to +\infty$. The function $\alpha_r(k)$ is decreasing with respect to k, then there exists $\alpha_r \ge 0$ for all $r \ge p$ such that $\alpha_p(k) \to \alpha_p$ and $\alpha_r(k) \to \alpha_r$ as $k \to +\infty$. For any $k \ge 0$, there exists $u_k \in Z_k$ such that

$$||u_k|| = 1$$
 and $||u_k||_p \ge \frac{\alpha_p(k)}{2}$.

By the fact that X is a reflexive space, we can assume that $u_k \rightharpoonup u$ in X. Let $\{e_j^*\}_{j \in \mathbb{N}}$ be the family of the dual space of X and for any $e_n^* \in \{e_j^*\}_{j \in \mathbb{N}}$, we have

$$\langle e_n^*, u_k \rangle = 0$$
 for $k > n$.

Therefore,

$$0 = \langle e_n^*, u_k \rangle \to \langle e_n^*, u \rangle$$
 as $k \to +\infty$

for any $e_n^* \in \{e_j^*\}_{j \in \mathbb{N}}$, which implies that u = 0, then $u_k \to 0$ in X, $u_k \to 0$ in $L^p([0,T])$ and therefore $u_k \to 0$ in C([0,T]) which implies that $\alpha_p = 0$. Similarly, we prove that $\alpha_r = 0$ for all $r \ge p$. \Box

Lemma 2.4. There exists $r_k > 0$ such that

$$b_k(\lambda) = \inf_{u \in Z_k, \ \|u\| = r_k} J_\lambda(u) > 0, \ \forall \lambda \in [1, 2].$$

Proof. For any $u \in Z_k$ and $\lambda \in [1, 2]$, by (2.4) and (H₁) and the above definition of $\alpha_r(k)$, we have

$$J_{\lambda}(u) = \frac{1}{p} \|u\|^{p} + \sum_{i=1}^{l} \int_{0}^{u(t_{i})} I_{i}(x) \, \mathrm{d}x - \lambda \int_{0}^{T} F(t, u(t)) \, \mathrm{d}t$$

$$\geq \frac{1}{p} \|u\|^{p} - 2\theta_{3} \|u\|_{p}^{p} - 2\theta_{4} \|u\|_{\nu}^{\nu} \geq \frac{1}{p} \|u\|^{p} - 2\theta_{3} \alpha_{p}^{p}(k) \|u\|^{p} - 2\theta_{4} \alpha_{\nu}^{\nu}(k) \|u\|^{\nu}$$

Choose

$$r_k = \frac{1}{\alpha_p(k) + \alpha_\nu(k)} \,.$$

Then $r_k \to +\infty$ as $k \to +\infty$. Hence for $u \in Z_k$ with $||u|| = r_k$, we obtain

$$J_{\lambda}(u) \ge \frac{1}{p} \|u\|^p - 2\theta_3 \frac{\alpha_p^p(k)}{(\alpha_p(k) + \alpha_\nu(k))^p} - 2\theta_4 \frac{\alpha_\nu^\nu(k)}{(\alpha_p(k) + \alpha_\nu(k))^\nu} \ge \frac{1}{p} r_k^p - 2\theta_3 - 2\theta_4 > 0.$$

Therefore,

$$b_k(\lambda) = \inf_{u \in Z_k, \|u\| = r_k} J_\lambda(u) > 0, \ \forall \lambda \in [1, 2].$$

Lemma 2.5. There exists ρ_k large enough and $\rho_k > r_k$ such that

$$a_k(\lambda) = \max_{u \in Y_k, \|u\| = \rho_k} J_{\lambda}(u) < 0, \ \forall \lambda \in [1, 2].$$

Proof. First, we claim that for any $u \in Y_k$, there exists $\epsilon_1 > 0$ such that

$$\max\left\{t \in [0,T] : |u(t)| \ge \epsilon_1 ||u||\right\} \ge \epsilon_1, \quad \forall u \in Y_k \setminus \{0\}.$$

$$(2.5)$$

Proof of claim. We argue by the contradiction and suppose that for any positive integer n there exists $u_n \in Y_k \setminus \{0\}$ such that

meas
$$\left\{ t \in [0,T] : |u_n(t)| \ge \frac{1}{n} ||u_n|| \right\} < \frac{1}{n}, \ \forall n \in \mathbb{N}.$$

Set $v_n(t) = \frac{u_n(t)}{\|u_n\|} \in Y_k \setminus \{0\}$. Then $\|v_n\| = 1$ and

$$\max\left\{t \in [0,T]: |v_n(t)| \ge \frac{1}{n}\right\} < \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$
(2.6)

Since dim $Y_k < +\infty$, it follows from the unit sphere of Y_k that there exists a subsequence denoted by $\{v_n\}$ such that v_n converges to some v in Y_k . Therefore, we have ||v|| = 1. By the fact that all norms are equivalent on Y_k , we deduce that $v_n \to v$ in $L^p([0,T])$, i.e.,

$$\int_{0}^{T} |v_n(t) - v(t)|^p \, \mathrm{d}t \to 0 \quad \text{as} \quad n \to +\infty.$$
(2.7)

Thus there exist $\xi_1, \xi_2 > 0$ such that

$$\max\left\{t \in [0,T]: |v(t)| \ge \xi_1\right\} \ge \xi_2.$$
(2.8)

In fact, if not, for all positive integers n, we have

$$\max\left\{t \in [0,T]: |v(t)| \ge \frac{1}{n}\right\} = 0, \text{ i.e., } \max\left\{t \in [0,T]: |v(t)| < \frac{1}{n}\right\} = T.$$

It implies that

$$0 < \int\limits_0^T |v(t)|^p \,\mathrm{d} t < \frac{1}{n^p} \,T \to 0 \ \text{ as } \ n \to +\infty.$$

Hence v = 0, which contradicts that ||v|| = 1. Therefore, (2.8) holds.

Now let

$$\Omega_0 = \max\left\{t \in [0,T] : |v(t)| \ge \xi_1\right\}, \quad \Omega_n = \left\{t \in [0,T] : |v(t)| < \frac{1}{n}\right\} \text{ and } \Omega_n^c = [0,T] \setminus \Omega_n.$$

By (2.6) and (2.8), we have

$$\operatorname{meas}(\Omega_0 \cap \Omega_n) = \operatorname{meas}\left(\Omega_0 \setminus (\Omega_n^c \cap \Omega_0)\right) \ge \operatorname{meas}(\Omega_0) - \operatorname{meas}(\Omega_n^c \cap \Omega_0) \ge \xi_2 - \frac{1}{n}$$

for all positive integers n. Let n be large enough such that $\xi_2 - \frac{1}{n} \ge \frac{1}{2}\xi_2$ and $\xi_1 - \frac{1}{n} \ge \frac{1}{2}\xi_1$.

Then we have

$$|v_n(t) - v(t)|^p \ge \left(\xi_1 - \frac{1}{n}\right)^p \ge \frac{1}{2^p} \xi_1^p, \quad \forall t \in \Omega_0 \cap \Omega_n$$

Also,

$$\int_{0}^{T} |v_n(t) - v(t)|^p \, \mathrm{d}t \ge \int_{\Omega_0 \cap \Omega_n} |v_n - v|^p \, \mathrm{d}t \ge \frac{1}{2^p} \xi_1^p \operatorname{meas}(\Omega_0 \cap \Omega_n) \ge \frac{1}{2^p} \xi_1^p \Big(\xi_2 - \frac{1}{n}\Big) \ge \frac{1}{2^{p+1}} \xi_1^p \xi_2$$

for all large n, which is a contradiction to (2.7). Therefore, (2.5) holds.

Now, using the fact that Y_k is finite-dimensional and the claim, we can find $\epsilon_k > 0$ such that

$$\max\left\{t \in [0,T]: |u(t)| \ge \epsilon_k ||u||\right\} \ge \epsilon_k, \quad \forall u \in Y_k \setminus \{0\}.$$

$$(2.9)$$

By (H_4) , for any $k \in \mathbb{N}$, there exists $R_k > 0$ such that

$$F(t,u) \ge \frac{|u|^p}{\epsilon_k^{p+1}}$$
 uniformly for $t \in [0,T]$ and $|u| \ge R_k$.

Set

$$\Omega_{u}^{k} = \left\{ t \in [0, T] : |u(t)| \ge \epsilon_{k} ||u|| \right\}$$

and let us observe that, by (2.9), $\operatorname{meas}(\Omega_u^k) \ge \epsilon_k$ for any $u \in Y_k \setminus \{0\}$. Then for any $u \in Y_k$ with $||u|| \ge \frac{R_k}{\epsilon_k}$, it follows from (H_2) , (H_4) , (2.5) and Lemma 2.1 that

$$J_{\lambda}(u) = \frac{1}{p} \|u\|^{p} + \sum_{i=1}^{l} \int_{0}^{u(t_{i})} I_{i}(x) \, dx - \lambda \int_{0}^{T} F(t, u(t)) \, dt$$

$$\leq \frac{1}{p} \|u\|^{p} + \sum_{i=1}^{l} \left(a_{i}M\|u\| + b_{i}M^{\gamma_{i}+1}\|u\|^{\gamma_{i}+1}\right) - \int_{\Omega_{u}^{k}} F(t, u(t)) \, dt$$

$$\leq \frac{1}{p} \|u\|^{p} + \sum_{i=1}^{l} \left(a_{i}M\|u\| + b_{i}M^{\gamma_{i}+1}\|u\|^{\gamma_{i}+1}\right) - \frac{\|u\|^{p}}{\epsilon_{k}^{p+1}} \epsilon_{k}^{p} \operatorname{meas}(\Omega_{u}^{k})$$

$$\leq \frac{1}{p} \|u\|^{p} + \sum_{i=1}^{l} \left(a_{i}M\|u\| + b_{i}M^{\gamma_{i}+1}\|u\|^{\gamma_{i}+1}\right) - \|u\|^{p}$$

$$= -\frac{(p-1)}{p} \|u\|^{p} + \sum_{i=1}^{l} \left(a_{i}M\|u\| + b_{i}M^{\gamma_{i}+1}\|u\|^{\gamma_{i}+1}\right)$$

for all $u \in Y_k$. Since $\gamma_i , choosing <math>\rho_k$ large enough such that

$$\rho_k > \max\left\{r_k, \frac{R_k}{\epsilon_k}\right\} \text{ for all } k > k_1.$$

it follows that

$$a_k(\lambda) = \max_{u \in Y_k, \|u\| = \rho_k} J_\lambda(u) < 0, \ \forall k > k_1.$$

Since all assumptions of Theorem 2.2 hold, for $\lambda \in [1, 2]$, there exists a sequence $\{u_{n,k}(\lambda)\}_{n=1}^{\infty}$ such that

$$\sup_{n} \|u_{n,k}(\lambda)\| < +\infty, \quad J_{\lambda}'(u_{n,k}(\lambda)) \to 0 \text{ and } J_{\lambda}(u_{n,k}(\lambda)) \to c_k(\lambda) \text{ as } n \to +\infty,$$

where

$$c_k(\lambda) = \inf_{\gamma \in \Gamma_k} \max_{u \in B_k} J_{\lambda}(\gamma(u)).$$

From the proof of Lemma 2.4, we deduce that for any $k > k_1$ and $\lambda \in [1, 2]$,

$$c_k(\lambda) \ge b_k(\lambda) \ge \frac{1}{p} r_k^p - 2\theta_3 - 2\theta_4 = \overline{b}_k \to +\infty \text{ as } k \to +\infty,$$

and

$$c_k(\lambda) \le \max_{u \in B_k} J_1(u) = \overline{c}_k.$$

Thus

$$\overline{b}_k \leq c_k(\lambda) \leq \overline{c}_k$$
 for all $\lambda \in [1, 2]$.

As a consequence, for any $k \ge k_1$, we can choose $\lambda_m \to 1$, $m \to +\infty$, and get the corresponding sequences satisfying

$$\sup_{n} \|u_{n,k}(\lambda_m)\| < +\infty, \quad J'_{\lambda_m}(u_{n,k}(\lambda_m)) \to 0 \text{ and } J_{\lambda_m}(u_{n,k}(\lambda_m)) \to c_k(\lambda_m) \text{ as } n \to +\infty.$$

Now, we prove that for any $k \geq k_1$, $\{u_{n,k}(\lambda_m)\}_{n \in \mathbb{N}}$ admits a strongly convergent subsequence and that such subsequence is bounded.

Lemma 2.6. For each λ_m given above, the sequence $\{u_{n,k}(\lambda_m)\}_{n\in\mathbb{N}}$ has a strong convergent subsequence.

Proof. The fact that $\sup_{n} ||u_{n,k}(\lambda_m)|| < +\infty$ implies that $\{u_{n,k}(\lambda_m)\}_{n \in \mathbb{N}}$ is bounded in X. Since X is a reflexive Banach space, passing to a subsequence, if necessary, we may assume that there is a $u^k(\lambda_m) \in X$ such that

$$u_{n,k}(\lambda_m) \rightarrow u_k(\lambda_m)$$
 in X as $n \rightarrow +\infty$,
 $u_{n,k}(\lambda_m) \rightarrow u_k(\lambda_m)$ in $L^p([0,T])$ as $n \rightarrow +\infty$

and

$$\{u_{n,k}(\lambda_m)\}_{n\in\mathbb{N}}$$
 converges uniformly to $u_k(\lambda_m)$ on $[0,T]$

Thus we have

$$\sum_{i=1}^{l} \left(I_i(u_{n,k}(\lambda_m)(t_i)) - I_i(u_k(\lambda_m)(t_i)) \right) \left(u_{n,k}(\lambda_m)(t_i) - u_k(\lambda_m)(t_i) \right) \longrightarrow 0 \text{ as } n \to +\infty, \quad (2.10)$$
$$\int_{0}^{T} \left(f(t, u_{n,k}(\lambda_m)) - f(t, u_k(\lambda_m)) \right) \left(u_{n,k}(\lambda_m) - u_k(\lambda_m) \right) dt \longrightarrow 0 \text{ as } n \to +\infty. \quad (2.11)$$

Notice that

$$\left\langle J_{\lambda_m}'(u_{n,k}(\lambda_m)) - J_{\lambda_m}'(u_k(\lambda_m)), u_{n,k}(\lambda_m) - u_k(\lambda_m) \right\rangle$$

$$= \int_0^T \rho(t) \left(\Phi_p(u_{n,k}'(\lambda_m)) - \Phi_p(u_k'(\lambda_m)) \right) \left(u_{n,k}'(\lambda_m) - u_k'(\lambda_m) \right) dt$$

$$+ \int_0^T s(t) \left(\Phi_p(u_{n,k}(\lambda_m)) - \Phi_p(u_k(\lambda_m)) \right) \left(u_{n,k}(\lambda_m) - u_k(\lambda_m) \right) dt$$

$$+ \sum_{i=1}^l \left(I_i(u_{n,k}(\lambda_m)(t_i)) - I_i(u_k(\lambda_m)(t_i)) \right) \left(u_{n,k}(\lambda_m)(t_i) - u_k(\lambda_m)(t_i) \right)$$

$$- \lambda_m \int_0^T \left(f(t, u_{n,k}(\lambda_m)) - f(t, u_k(\lambda_m)) \right) \left(u_{n,k}(\lambda_m) - u_k(\lambda_m) \right) dt.$$

$$(2.12)$$

Recalling the following inequalities, for any $x, y \in \mathbb{R}$, there exist $c_p, d_p > 0$ such that

$$\langle |x|^{p-2}x - |y|^{p-2}y, x-y \rangle \ge c_p |x-y|^p \text{ if } p \ge 2$$
 (2.13)

and

$$\langle |x|^{p-2}x - |y|^{p-2}y, x - y \rangle \ge d_p \frac{|x-y|^2}{(|x|+|y|)^{2-p}}$$
 if $1 (2.14)$

Then if $p \ge 2$, there exists $c_p > 0$ such that

$$\int_{0}^{T} \rho(t) \left(\Phi_{p}(u_{n,k}'(\lambda_{m})) - \Phi_{p}(u_{k}'(\lambda_{m})) \right) \left(u_{n,k}'(\lambda_{m}) - u_{k}'(\lambda_{m}) \right) dt
+ \int_{0}^{T} s(t) \left(\Phi_{p}(u_{n,k}(\lambda_{m})) - \Phi_{p}(u_{k}(\lambda_{m})) \right) \left(u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m}) \right) dt
\geq c_{p} \int_{0}^{T} \left(\rho(t) |u_{n,k}'(\lambda_{m}) - u_{k}'(\lambda_{m})|^{p} + s(t) |u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m})|^{p} \right) dt
= c_{p} ||u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m})|^{p}.$$
(2.15)

Since

$$\lim_{n \to +\infty} J'_{\lambda_m}(u_{n,k}(\lambda_m)) = 0$$

and $u_{n,k}(\lambda_m)$ converges weakly to $u_k(\lambda_m)$, one has

$$\lim_{n \to +\infty} \left\langle J'_{\lambda_m}(u_{n,k}(\lambda_m)) - J'_{\lambda_m}(u_k(\lambda_m)), u_{n,k}(\lambda_m) - u_k(\lambda_m) \right\rangle = 0.$$
(2.16)

By (2.10)–(2.12), (2.15) and (2.16), we have

$$\begin{split} c_p \|u_{n,k}(\lambda_m) - u_k(\lambda_m)\|^p &\leq \left\langle J'_{\lambda_m}(u_{n,k}(\lambda_m)) - J'_{\lambda_m}(u_k(\lambda_m)), u_{n,k}(\lambda_m) - u_k(\lambda_m) \right\rangle \\ &- \sum_{i=1}^l \left(I_i(u_{n,k}(\lambda_m)(t_i)) - I_i(u_k(\lambda_m)(t_i)) \right) \left(u_{n,k}(\lambda_m)(t_i) - u_k(\lambda_m)(t_i) \right) \\ &+ \lambda_m \int_0^T \left(f(t, u_{n,k}(\lambda_m)) - f(t, u_k(\lambda_m)) \right) \left(u_{n,k}(\lambda_m) - u_k(\lambda_m) \right) \mathrm{d}t \longrightarrow 0 \text{ as } n \to +\infty. \end{split}$$

Then

$$||u_{n,k}(\lambda_m) - u_k(\lambda_m)|| \to 0 \text{ as } n \to +\infty.$$

If $1 , by (2.14), there exists <math>d_p > 0$ such that

$$\int_{0}^{T} \rho(t) \left(\Phi_{p}(u_{n,k}'(\lambda_{m})) - \Phi_{p}(u_{k}'(\lambda_{m})) \right) \left(u_{n,k}'(\lambda_{m}) - u_{k}'(\lambda_{m}) \right) dt
+ \int_{0}^{T} s(t) \left(\Phi_{p}(u_{n,k}(\lambda_{m})) - \Phi_{p}(u_{k}(\lambda_{m})) \right) \left(u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m}) \right) dt
\geq d_{p} \int_{0}^{T} \left(\frac{\rho(t) |u_{n,k}'(\lambda_{m}) - u_{k}'(\lambda_{m})|^{2}}{(|u_{n,k}'(\lambda_{m})| + |u_{k}'(\lambda_{m})|)^{2-p}} + \frac{s(t) |u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m})|^{2}}{(|u_{n,k}(\lambda_{m})| + |u_{k}(\lambda_{m})|)^{2-p}} \right) dt.$$
(2.17)

Furthermore, by the Hölder inequality, one has

$$\int_{0}^{T} \rho(t) |u'_{n,k}(\lambda_m) - u'_{k}(\lambda_m)|^{p} dt$$

$$\leq \int_{0}^{T} \left(\frac{\rho(t) |u'_{n,k}(\lambda_m) - u'_{k}(\lambda_m)|^{2}}{(|u'_{n,k}(\lambda_m)| + |u'_{k}(\lambda_m)|)^{2-p}} dt \right)^{\frac{p}{2}} \left(\int_{0}^{T} \rho(t) \left(|u'_{n,k}(\lambda_m)| + |u'_{k}(\lambda_m)| \right)^{p} dt \right)^{\frac{2-p}{p}}$$

$$\leq 2^{\frac{(p-1)(2-p)}{2}} \int_{0}^{T} \left(\frac{\rho(t)|u'_{n,k}(\lambda_m) - u'_k(\lambda_m)|^2}{(|u'_{n,k}(\lambda_m)| + |u'_k(\lambda_m)|)^{2-p}} \,\mathrm{d}t \right)^{\frac{p}{2}} \left(\int_{0}^{T} \rho(t)(|u'_{n,k}(\lambda_m)|^p + |u'_k(\lambda_m)|^p) \,\mathrm{d}t \right)^{\frac{2-p}{p}} \\ \leq 2^{\frac{(p-1)(2-p)}{2}} \int_{0}^{T} \left(\frac{\rho(t)|u'_{n,k}(\lambda_m) - u'_k(\lambda_m)|^2}{(|u'_{n,k}(\lambda_m)| + |u'_k(\lambda_m)|)^{2-p}} \,\mathrm{d}t \right)^{\frac{p}{2}} \left(\|u_{n,k}(\lambda_m)\| + \|u_k(\lambda_m)\| \right)^{\frac{(2-p)p}{2}}.$$
(2.18)

Similarly,

$$\int_{0}^{T} s(t) \left| u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m}) \right|^{p} dt \\
\leq 2^{\frac{(p-1)(2-p)}{2}} \int_{0}^{T} \left(\frac{\rho(t) |u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m})|^{2}}{(|u_{n,k}(\lambda_{m})| + |u_{k}(\lambda_{m})|)^{2-p}} dt \right)^{\frac{p}{2}} \left(\left\| u_{n,k}(\lambda_{m}) \right\| + \left\| u_{k}(\lambda_{m}) \right\| \right)^{\frac{(2-p)p}{2}}. \quad (2.19)$$

So, by (2.17)–(2.19), it follows that

$$\int_{0}^{T} \rho(t) \left(\Phi_{p}(u_{n,k}'(\lambda_{m})) - \Phi_{p}(u_{k}'(\lambda_{m})) \right) (u_{n,k}'(\lambda_{m}) - u_{k}'(\lambda_{m})) dt
+ \int_{0}^{T} s(t) \left(\Phi_{p}(u_{n,k}(\lambda_{m})) - \Phi_{p}(u_{k}(\lambda_{m})) \right) \left(u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m}) \right) dt
\geq \frac{2^{\frac{(p-1)(p-2)}{2}} d_{p}}{(\|u_{n,k}(\lambda_{m})\| + \|u_{k}(\lambda_{m})\|)^{2-p}} \left[\left(\int_{0}^{T} \rho(t) |u_{n,k}'(\lambda_{m}) - u_{k}'(\lambda_{m})|^{p} dt \right)^{\frac{2}{p}} \right]
+ \left(\int_{0}^{T} s(t) |u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m})|^{p} dt \right)^{\frac{2}{p}} \right]
\geq \frac{2^{p-2} d_{p}}{(\|u_{n,k}(\lambda_{m})\| + \|u_{k}(\lambda_{m})\|)^{2-p}} \|u_{n,k}(\lambda_{m}) - u_{k}(\lambda_{m})\|^{2},$$
(2.20)

which implies by (2.10), (2.11), (2.12) and (2.16) that

$$\begin{aligned} \frac{2^{p-2}d_p}{(\|u_{n,k}(\lambda_m)\| + \|u_k(\lambda_m)\|)^{2-p}} \|u_{n,k}(\lambda_m) - u_k(\lambda_m)\|^2 \\ &\leq \left\langle J'_{\lambda_m}(u_{n,k}(\lambda_m)) - J'_{\lambda_m}(u_k(\lambda_m)), u_{n,k}(\lambda_m) - u_k(\lambda_m)\right\rangle \\ &\quad -\sum_{i=1}^l \left(I_i(u_{n,k}(\lambda_m)(t_i)) - I_i(u_k(\lambda_m)(t_i))\right) \left(u_{n,k}(\lambda_m)(t_i) - u_k(\lambda_m)(t_i) \right) \\ &\quad + \lambda_m \int_0^T \left(f(t, u_{n,k}(\lambda_m)) - f(t, u_k(\lambda_m))\right) \left(u_{n,k}(\lambda_m) - u_k(\lambda_m) \right) dt \longrightarrow 0 \text{ as } n \to +\infty. \end{aligned}$$

Then

$$||u_{n,k}(\lambda_m) - u_k(\lambda_m)|| \to 0 \text{ as } n \to +\infty.$$

Therefore, in all cases, $\{u_{n,k}(\lambda_m)\}_{n\in\mathbb{N}}$ converges strongly to $u_k(\lambda_m)$ in X for all $m\in\mathbb{N}$ and $k\geq k_1$. As a consequence, we obtain

$$J_{\lambda_m}'(u_k(\lambda_m)) = 0, \quad J_{\lambda_m}(u_k(\lambda_m)) \in [\overline{b}_k, \overline{c}_k], \quad \forall m \in \mathbb{N} \text{ and } k \ge k_1.$$
(2.21)

The lemma is proved.

Lemma 2.7. For any $k \ge k_1$, the sequence $\{u_k(\lambda_m)\}_{m\in\mathbb{N}}$ is bounded.

Proof. For simplicity, we set $u_k(\lambda_m) = u_m$. We suppose by contradiction that

$$||u_m|| \to +\infty \text{ as } m \to +\infty.$$
 (2.22)

Let $z_m = \frac{u_m}{\|u_m\|}$ for any $m \in \mathbb{N}$, $\{z_m\}_{m \in \mathbb{N}}$ be bounded and $\|z_m\| = 1$. Then there exists a subsequence of z_m denoted again by z_m such that

$$z_m \rightharpoonup z \text{ in } X \text{ as } m \rightarrow +\infty,$$
 (2.23)

$$z_m \to z \text{ in } L^p([0,T]) \text{ as } m \to +\infty,$$

$$(2.24)$$

$$\{z_m\}_{m\in\mathbb{N}}$$
 converges uniformly to z on $[0,T]$. (2.25)

Now we distinguish two cases.

Case z = 0. We can say that for any $m \in \mathbb{N}$, there exists $t_m \in [0, 1]$ such that

$$J_{\lambda_m}(t_m u_m) = \max_{t \in [0,1]} J_{\lambda_m}(t u_m).$$
(2.26)

By (2.22), we can choose $r_j = (2jp)^{\frac{1}{p}} z_m$ such that

$$0 < \frac{r_j}{\|u_m\|} < 1, \tag{2.27}$$

with m large enough. By (2.25), $F(\cdot, 0) = 0$ and the continuity of F, we have

$$F(t, r_j z_m) \to F(t, r_j z) = 0$$
 as $m \to +\infty$ for any $j \in \mathbb{N}$ and uniformly for $t \in [0, T]$. (2.28)

By (H_3) , (H_4) , Lemma 2.1, (2.25), (2.28) and by applying the dominated convergence theorem, we deduce that

$$F(t, r_j z_m) \to 0 \text{ in } L^1([0, T]) \text{ as } m \to +\infty \text{ for any } j \in \mathbb{N}.$$
 (2.29)

Then by (2.26), (2.27) and (2.29), we have

$$J_{\lambda_m}(t_m u_m) \ge J_{\lambda_m}(r_j z_m) = \frac{1}{p} \|r_j z_m\|^p + \sum_{i=1}^l G(r_j z_m(t_i) - \lambda_m \int_0^T F(t, r_j z_m(t)) \, \mathrm{d}t \ge 2j - j = j,$$

provided n is large enough, for any $j \in \mathbb{N}$. Therefore,

$$J_{\lambda_m}(t_m u_m) \to +\infty \quad \text{as} \quad m \to +\infty.$$
 (2.30)

Since $J_{\lambda_m}(0) = 0$ and $J_{\lambda_m}(t_m u_m) \in [\overline{b}_k, \overline{c}_k]$, we deduce that $t_m \in]0, 1[$ for m large enough.

From (2.26), we have

$$\left\langle J_{\lambda_m}'(t_m u_m), t_m u_m \right\rangle = t_m \left. \frac{d}{dt} \right|_{t=t_m} J_{\lambda_m}(t u_m) = 0.$$
(2.31)

Let $\theta = \max\{\theta_1, \theta_2\}$ and taking into account (H_6) and (2.31), we have

$$\frac{p}{\theta} J_{\lambda_m}(t_m u_m) = \frac{1}{\theta} \left(p J_{\lambda_m}(t_m u_m) - \left\langle J'_{\lambda_m}(t_m u_m), t_m u_m \right\rangle \right)$$
$$= \frac{1}{\theta} \sum_{i=1}^l \left(p G(t_m u_m(t_i)) - I_i(t_m u_m(t_i)) t_m u_m(t_i) \right)$$
$$+ \frac{\lambda_m}{\theta} \int_0^T \left(f(t, t_m u_m(t)) t_m u_m(t) - p F(t, t_m u_m(t)) \right) dt$$

$$= \frac{1}{\theta} \sum_{i=1}^{l} \mathcal{G}(t_m u_m(t_i)) + \frac{\lambda_m}{\theta} \int_0^T \mathcal{F}(t, t_m u_m(t)) dt$$
$$\leq \frac{1}{\theta} \sum_{i=1}^{l} \theta_1 \mathcal{G}(u_m(t_i)) + \frac{\lambda_m}{\theta} \int_0^T \theta_2 \mathcal{F}(t, u_m(t)) dt$$
$$\leq \sum_{i=1}^{l} \mathcal{G}(u_m(t_i)) + \lambda_m \int_0^T \mathcal{F}(t, u_m(t)) dt$$
$$= p J_{\lambda_m}(u_m) - \langle J'_{\lambda_m}(u_m), u_m \rangle = p J_{\lambda_m}(u_m)$$

which contradicts (2.21) and (2.30).

Case $z \neq 0$. Let $\Omega = \{t \in [0,T] : z(t) \neq 0\}$, then meas $(\Omega) > 0$. By using (2.22) and $z \neq 0$, we obtain $|z_m(t)| \to +\infty$ uniformly on $t \in \Omega$ as $m \to +\infty$. (2.32)

Notice that

$$\frac{1}{p} - \frac{J_{\lambda_m}(u_m)}{\|u_m\|^p} = \lambda_m \int_0^T \frac{F(t, u_m(t))}{\|u_m\|^p} dt - \sum_{i=1}^l \frac{G(u_m(t_i))}{\|u_m\|^p}$$
$$\geq \lambda_m \int_\Omega |z_m(t)|^p \frac{F(t, u_m(t))}{|u_m(t)|^p} dt - \sum_{i=1}^l \frac{G(u_m(t_i))}{\|u_m\|^p}.$$

Putting together (H_4) , (H_2) and applying Fatou's Lemma, we deduce that

$$\int_{\Omega} |z_m(t)|^p \frac{F(t, u_m(t))}{|u_m(t)|^p} dt \longrightarrow +\infty \quad \text{as} \quad m \to +\infty$$
(2.34)

and

$$\begin{split} \left| \sum_{i=1}^{l} \frac{G(u_m(t_i))}{\|u_m\|^p} \right| &\leq \sum_{i=1}^{l} \frac{a_i |u_m(t_i)|}{\|u_m\|^p} + \sum_{i=1}^{l} \frac{b_i |u_m(t_i)|^{\gamma_i+1}}{(\gamma_i+1) \|u_m\|^p} \\ &\leq \sum_{i=1}^{l} \frac{a_i M \|u_m\|}{\|u_m\|^p} + \sum_{i=1}^{l} \frac{b_i M^{\gamma_i+1} \|u_m\|^{\gamma_i+1}}{(\gamma_i+1) \|u_m\|^p} \\ &= \sum_{i=1}^{l} \frac{a_i M}{\|u_m\|^{p-1}} + \sum_{i=1}^{l} \frac{b_i M^{\gamma_i+1}}{(\gamma_i+1) \|u_m\|^{p-\gamma_i-1}} \,. \end{split}$$

Since p > 1 and $p > \gamma_i + 1$ for all $i \in \{1, 2, \dots, l\}$, we have

$$\sum_{i=1}^{l} \frac{a_i M}{\|u_m\|^{p-1}} + \sum_{i=1}^{l} \frac{b_i M^{\gamma_i+1}}{(\gamma_i+1)\|u_m\|^{p-\gamma_i-1}} \longrightarrow 0 \text{ as } m \to +\infty$$

which implies that

$$\sum_{i=1}^{l} \frac{G(u_m(t_i))}{\|u_m\|^p} \longrightarrow 0 \text{ as } m \to +\infty.$$
(2.35)

Then, by (2.21), (2.33), (2.34) and (2.35), we obtain $\frac{1}{p} \ge +\infty$, which is a contradiction. Thus we have proved that the sequence $\{u_m\}_{m\in\mathbb{N}}$ is bounded in X.

Therefore, $\{u_k(\lambda_m)\}_{m\in\mathbb{N}}$ is bounded in X for all $k \geq k_1$. Also, as a similar argument of the proof of Lemma 2.6, we can show that $u_k(\lambda_m) \to u_k$ in X as $m \to +\infty$ for all $k \ge k_1$. Then u_k is a critical point of $J = J_1$ with $J(u_k) \in [\overline{b}_k, \overline{c}_k]$ for all $k \ge k_1$. According to $b_k \to +\infty$ as $k \to +\infty$, we know that problem (1.1) has infinitely many nontrivial high energy solutions.

3 Example

In this section, an example is given to illustrate our result.

Consider the following problem:

$$-((t+3)|u'(t)|^{5}u'(t))' + (t^{2}+5t+1)|u(t)|^{5}u(t) = (t^{9}+6)|u|^{5}u\ln(1+|u|), \ t \neq t_{1}, \ \text{a.e.} \ t \in [0,T],$$

$$-\Delta_{7}((t_{1}+3)|u'(t_{1})|^{5}u'(t_{1})) = u^{5}(t_{1}), \qquad (3.1)$$

$$u(0) = u(T) = 0.$$

we have chosen p = 7, $I_1(u) = u^5(t_1)$ and

$$f(t, u) = (t^9 + 6)|u|^5 u \ln(1 + |u|)$$
 for all $(t, u) \in [0, T] \times \mathbb{R}$

We remark that all assumptions $(H_1)-(H_6)$ are satisfied. Therefore, by Theorem 2.1, problem (3.1) has infinitely many nontrivial high energy solutions.

References

- L. Bai and B. Dai, Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory. *Math. Comput. Modelling* 53 (2011), no. 9-10, 1844– 1855.
- [2] L. Bai and B. Dai, Three solutions for a p-Laplacian boundary value problem with impulsive effects. Appl. Math. Comput. 217 (2011), no. 24, 9895–9904.
- [3] I. Bogun, Existence of weak solutions for impulsive p-Laplacian problem with superlinear impulses. Nonlinear Anal. Real World Appl. 13 (2012), no. 6, 2701–2707.
- [4] S. Castillo, M. Pinto, R. Torres, Asymptotic formulae for solutions to impulsive differential equations with piecewise constant argument of generalized type. *Electron. J. Differential Equations* 2019, Paper No. 40, 22 pp.
- [5] P. Chen and X. Tang, Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems. Appl. Math. Comput. 218 (2012), no. 24, 11775–11789.
- [6] B. Dai and D. Zhang, The existence and multiplicity of solutions for second-order impulsive differential equations on the half-line. *Results Math.* 63 (2013), no. 1-2, 135–149.
- [7] T. Faria and J. J. Oliveira, A note on stability of impulsive scalar delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 69, 14 pp.
- [8] M. Feng, B. Du and W. Ge, Impulsive boundary value problems with integral boundary conditions and one-dimensional *p*-Laplacian. *Nonlinear Anal.* **70** (2009), no. 9, 3119–3126.
- [9] T. Kalaimani, T. Raja, V. Sadhasivam and S. H. Saker, Oscillation of impulsive neutral partial differential equations with distributed deviating arguments. *Bull. Math. Soc. Sci. Math. Roumanie* (N.S.) 61(109) (2018), no. 1, 51–68.
- [10] V. Kumar, M. Malik and A. Debbouche, Total controllability of neutral fractional differential equation with non-instantaneous impulsive effects. J. Comput. Appl. Math. 383 (2021), Paper No. 113158, 18 pp.
- [11] Z. Liu, H. Chen and T. Zhou, Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem. *Comput. Math. Appl.* **61** (2011), no. 6, 1687– 1699.
- [12] M. Pavlačková and V. Taddei, Bounding function approach for impulsive Dirichlet problems with upper-Carathéodory right-hand side. *Electron. J. Differential Equations* **2019**, Paper No. 12, 18 pp.
- [13] D. Qian and X. Li, Periodic solutions for ordinary differential equations with sublinear impulsive effects. J. Math. Anal. Appl. 303 (2005), no. 1, 288–303.

- [14] J. Sun and H. Chen, Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems. *Nonlinear Anal. Real World Appl.* 11 (2010), no. 5, 4062–4071.
- [15] L. Wang and X. Fu, A new comparison principle for impulsive differential systems with variable impulsive perturbations and stability theory. *Comput. Math. Appl.* 54 (2007), no. 5, 730–736.
- [16] D. Yang, J. Wang and D. O'Regan, A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order. Appl. Math. Comput. 321 (2018), 654–671.
- [17] A. F. Yeniçerioğlu, Stability of linear impulsive neutral delay differential equations with constant coefficients. J. Math. Anal. Appl. 479 (2019), no. 2, 2196–2213.
- [18] W. Zou, Variant fountain theorems and their applications. Manuscripta Math. 104 (2001), no. 3, 343–358.

(Received 20.05.2021; accepted 30.11.2021)

Authors' addresses:

Mohamed Bouabdallah

Department of Mathematics and Computer, Faculty of Science, University Mohammed 1st, Oujda, Morocco.

E-mail: bouabdallah.mohamed@ump.ac.ma

Omar Chakrone

Department of Mathematics and Computer, Faculty of Science, University Mohammed 1st, Oujda, Morocco.

E-mail: chakrone@yahoo.fr

Mohammed Chehabi

Department of Mathematics and Computer, Faculty of Science, University Mohammed 1st, Oujda, Morocco.

E-mail: chehb_md@yahoo.fr