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ON THE HYERS-ULAM STABILITY OF
DELAY DIFFERENTIAL EQUATIONS



Abstract. In this paper, we consider the stability problem of delay differential equations in the sense
of Hyers-Ulam and Hyers-Ulam-Rassias. By using a well known fixed point alternative on generalized
complete metric spaces, we obtain some new stability criteria. Our results extend and improve the
results described in literature since their proofs are based on fewer and weaker assumptions than the
recent results dealing with this problem. Some illustrative examples are also given to compare these
results and visualize the improvement.
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1 Introduction

In 1940, Ulam [30] posed the following stability problem of functional equations: Given a group
G and a metric group (Ge,p). Given € > 0, does there exist § > 0 such that if f : Gy — Go
satisfies p(f(zy), f(x)f(y)) < ¢ for all z,y € Gy, then a homomorphism h : G; — G5 exists with
p(f(z),h(z)) < ke for all z € G; and some k > 07 Roughly speaking, Ulam raised the question:
suppose one has a function f(t) which is close to solve an equation. Is there an exact solution (to
same equation) h(t) which is close to f(¢t)? If the answer is affirmative, the equation h(zy) = h(x)h(y)
is called stable in the Ulam sense. One year later, Hyers [13] gave an answer to this problem for
linear functional equations on Banach spaces: Let G1, G5 be real Banach spaces and € > 0. Then for
each mapping f : G; — Gq satistying || f(z +y) — f(z) — f(y)|| < € for all x,y € G4, there exists
a unique additive mapping g : G1 — G2 such that ||f(x) — h(z)|| < € holds for all x € G;. After
this affirmative answer of Hyers, a new notion of stability of functional equations founded, which
is today called the Hyers—Ulam stability, and is one of the central topics in mathematical analysis
(see, e.g., [7,8,12,22]). In 1978, Rassias [25], by considering the constant ¢ as a variable in Ulam’s
problem, made an important generalization, which is known as Hyers-Ulam-Rassias stability (see,
e.g., [2,14,23,24]).

The stability problem of differential equations in the Hyers—Ulam sense was initiated by the papers
of Obloza [18,19]. Later, Alsina and Ger [1] proved that assuming I is an open interval of reals, for
every differentiable mapping y : I — R satisfying

|y (z) —y(x)| < e for all z € I and for a given € > 0,

there exists a solution yq of the differential equation

such that
ly(x) — yo(x)| < 3¢ for all z € I.

This result was later extended by Takahasi, Miura and Miyajima in [27] to the equation
y'(z) = Ay(x)

in Banach spaces, and in [16,17] to higher order linear differential equations with constant coefficients.
Recently, Jung [15] proved the Hyers—Ulam stability as well as the Hyers—Ulam—Rassias stability
of the equation

y/ = f(tvy)

which extends the above-mentioned results to a nonlinear case. Jung’s technique has been modified
by Tung and Biger [29] also for functional equations in the form

y'(t) = F(tyt), y(t — 7)), (L.1)

where F : R?> — R is a bounded and continuous function and 7 > 0 is a real constant. After
these pioneering works, a large number of papers devoted to this subject have been published (see,
e.g., [3-6,10,11,20,21,26,28] and the references therein).

In this paper, we will extend and improve these result by proving the stability results for delay
differential equations in the form of (1.1) with weaker assumptions.

2 Preliminaries

For some € > 0, ¥ € Cltg — 7, to] and tg, T € R with T > tg, assume that for any continuous function
f:[to — 7, T] — R he following is satisfied:

|f/(t)7F(taf(t)7f(tiT))| <eg, te [thT]a
[F(t) =) <e, t € [to — 7 to].
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If there exists a continuous function fy : [to — 7,7] — R satisfying

fo(t) = F(t, fo(t), fo(t — 7)), t€[to,T],
fo(t):\l’(t), te [to—T,to]

and
|f(t) = fo(D)| < K(g), t€to—TT],

where K (e) is an expression of € only, we say that equation (1.1) has the Hyers—Ulam stability. If the
above statement is also true when we replace € and K (g) by ¢ and ®, where ¢, ® € C[tg—7,T] are the
functions not depending on f and fy explicitly, then we say that equation (1.1) has the Hyers—Ulam—
Rassias stability. These definitons may be applied to different classes of differential equations (we
refer to Jung [15], Tung and Biger [29] and the references cited therein for more detailed definitions
of Hyers—Ulam stability and Hyers-Ulam—Rassias stability).

We will use the following fixed point result on generalized complete metric spaces as the main tool
in our proofs, for the proof of this result we refer to [9].

Theorem 2.1. Let (X,d) be a generalized complete metric space. Assume that T : X — X is a
strictly contractive operator with the Lipschitz constant L < 1. If there is a nonnegative integer k such
that d(T* 12, T*z) < oo for some x € X, then the following are true:

(a) the sequence {T™x} converges to a fized point x* of T;
(b) x* is the unique fized point of T in

X*={yeX: dT"z,y) < oo};

(c) ify e X*, then
1

< —— .
dy,2") < 7—7 d(Ty,y)

3 Main results

Throughout this section, we define I := [ty — 7, T] for the given real numbers to, T and 7 with T > t,.
Further, we define the set S as

S = {f : I — R fis continuous and f(t) = ¥(¢) for t € [ty — T, to]}, (3.1)
where U : [tg — 7,t9] — R is a continuous function. In our proofs, we will need a completeness of the
space (S, d) which is given in the following result (see [5]).

Lemma 3.1 (see [5]). Define the function d: S x S — [0, 00] with

d(f,g) := inf{C € [0,00] : f(t) — g(t)]e"ME—t) < C@(t), t € I}, (3.2)

where M > 0 is a given constant and ® : I — (0,00) is a given continuous function. Then (S,d) is a
generalized complete metric space.

We are now ready to study the stability of differential equation (1.1) in the Hyers—Ulam sense.

Theorem 3.1. Suppose that the continuous function F' : I x R x R — R satisfies the Lipschitz
condition

|F(t,z1,351) — F(t,z2,y2)| < Li|z1 — 22| + La2|y1 — yo| (3.3)

for all (t,z1,y1), (t,z2,y2) € I X R X R and some L1, La > 0. Suppose also that U : [to — T,t0] — R is
a continuous function. If a continuous function y : I — R satisfies

{|y'<t> — F(t,y(t),y(t — 1) <&, te€[to,T],

ly(t) — U(t)| <e, £ e [ty — 7 tol, (3.4)
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then there exists a unique continuous function yg : I — R such that

Yo(t) = F(t,y0(t), yo(t — 7)), tE€ [to,T], (3.5)
yo(t) = W(t), t € [to — 7, to] '
and .
OB TOIES

for allt € I and any number L with L > L1 + Lo.

Proof. For the set S defined by (3.1) we introduce the function d : S x S — [0, o] as follows:
d(f,g) = inf{C € [0,00] : |f(t) — g(t)fe L) < O, Vi e I}.

Note that (.9, d) is a generalized complete metric space in view of Lemma 3.1. Now, let us define the
mapping A : S — S by

U(t), for t € [to — T, t0],
t

y(to) + /F(s,y(s),y(s —171))ds, for t € [to,T].

to

(Ay)(t) == (3.6)

For any y € S, it is clear that Ay is continuous and any fixed point of A solves the differential
equation (1.1).
Now we will show that A is strictly contractive on S. For any f,g € .5,
Cry € {Celto,o0]: 15(t) - g(t)le =) < C, e e T}

and t € [to, T, we have

(AF)(E) - (Ag)(t |—\ / J(s— 7)) — F(s,9(s). g(s — 7))] ds

/|F f(s=71))— F(s,g(s)7g(s—7))’ds

gm/|f<s>—g<s>|ds+L2/|f<H>—g(swnds

—Ll/lf $)lds+ Ly / 1£(s) — g(s)|ds
—Ll/lf $)|ds + L / £(5) ds+Lz/|f 9(s)] ds
<L1/|f |ds+L2/\f g(s)] ds

gL1/| () — ol Ids+L2/|f g(s)] ds
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t t
s / 1£(5) — g(s)le—HC—t0)eb(—t0) 45 4 L, / 1£(5) — g(5)|e~He—t)eLls—t0) 4
to tO
t

t
< L,Cy, / el=t) ds + L, , / el(s=t0) g

to to
_ Ll +L2 Ofg(eL(t,to) . 1) S L1 +L2 Cf geL(tftO)
L ’ L '
and so,
Li+ L
[(A)() - (Ag)(t)|efL(t7t°) < % Cyy forall t € [to,T).

This inequality and
|(Af)(t) — (Ag)(t)‘ =0 for all t € [ty — T, to]
imply that
Li+ Lo
d(Af,Ag) < ——F—d(f.9),
which means that the mapping A is strictly contractive on S.

Now, for an arbitrary u € S, it is clear that d(Au,u) < oo for all ¢ € I, since F (¢, u(t), u(t — 7))
is bounded on I. Furthermore, we have d(u,v) < oo for any v € S, since both u and v are bounded
on I. That is, {z € S: d(u,v) < co} = S. Hence, according to Theorem 2.1, there exists a unique
continuous function yo : I — R such that Ayg = yo, A"u — yo in S and satisfies equation (3.5).

On the other hand, from equation (3.4), we have

t

et —tg) < /y/(s) ds—/F(s,y(s),y(s—T))ds < elt—to)

to to

and so,
[(Ay)(t) — y(t)| < eT for all t el.

L(t*to)

Multiplying this inequality by e~ , we obtain

[(Ay)(t) — y(t)‘e_L(t_tO) < eTe L(t—to)

and so,
d(Ay,y) < eTe Lt=t0) forall te I

Therefore, according to Theorem 2.1, we have

1 LTe
d < ————d(A <— = e L) forall tel.
Wevo) S T Ly MY S T ) ¢ orat te
From the definition of the metric d, this implies
LTe

ly(t) = yo(t)]e™ %) < e L1 forall tel,

L— (L1 + Lo)
which completes the proof. O

Theorem 3.2. Suppose that the continuous function F' : I x R x R — R satisfies the Lipschitz
condition (3.3) for all (t,x1,y1),(t,22,y2) € I Xx R X R and some Li,Ly > 0. Suppose also that
U [tg — 7,tg] = R is a continuous function. Let ¢ : I — R be a continuous and nondecreasing

function satisfying
¢

\ [ etras

to

< Ko(t) forall tel
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and some K > 0. If a continuous function y : I — R satisfies

ly(t) = C(@)] < o), t € [to — 7o,

then there exists a unique continuous function yo : I — R satisfying equation (3.5) and

{yy' — Fty(t),y(t — )| < ot), t€ [t T,
)l

ly(t) - LK ol

< ——
yo(®) L—(Ly+ Lo
for allt € I and any number L with L > Ly + Lo.

Proof. Define the function d : S x S — [0, 0] as

A(f,9) =t {C € [0,00] : | (1) — gl 2= < Co(t), Ve e T},

(3.7)

where the set S is defined by (3.1). Then, according to Lemma 3.1, (S, d) is a complete generalized
metric space. If we define the mapping A : S — S as in (3.6), every fixed point of A solves the
differential equation (1.1). Furthermore, as in the proof of Theorem 3.1, it can be easily seen that

{ves: du,v) <oo, ue S}t =S for arbitrary u,v € S.

Now we will show that the mapping A is strictly contractive on I. First, note that by integration

by parts and monotonicity of ¢, we have

1

¢ ¢
1 1
/go(s)eL(S_tO) ds < — p(t)elt=to) — 7 /go’(s)eL(s_tO) ds < ng(t)eL(t_tO) for all ¢t e I.

~

t(J tU

Now, for any pair of f,g € S, let Cy 4 be any constant satisfying d(f,g) < Cy 4. That is,

£ (t) — g(t)|eL 1) < O ,o(t) for all t e I.

Hence it follows that for any f,g € S and t € I,

(D0 - (Aa)(0)] = / Fls =) — F(s,g(s),g(s — 7] ds
/|F f(s=71)— F(s7g(s),g(s—7)|ds
<L1/|f \derLz/\fs—'r)fg(sz)\ds

< (L1 + Ls) /\f s —g(s)|e_L(‘g_t°)eL(s_t0)ds

t

S Cﬂg(Ll + LQ)/@(S)QL(SitO) ds

to

L L
< 1+ QCf,gga(t)eL(tftO),

and therefore we have

(AN ~ Ag)(De = < 20 o) forall te 1.
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This inequality and the fact that
|(Af)(t) - (Ag)(t)‘ =0 for all t € [ty — T, to]

imply

arfAg) < P2 ap ),

that is, A is strictly contractive on S. Therefore, all the conditions of Theorem 2.1 are satisfied and
there exists a unique continuous function yg : I — R such that Ayy = yg, A"u — yo in S and satisfies
equation (3.5).

On the other hand, it follows from equation (3.7) that

—p(t) <y'(t) — F(t,yt),y(t — 7)) < o(t),

and so,

< Kp(t) forall tel.

y(t) — (Ay)(®)] < ] [etsras

Multiplying this inequality by e~ Z(t=*)  we obtain, for all t € I,
ly(t) — (Ay)(£)|e™ " 710) < Kp(t)e™F(710),

which means that
d(Ay,y) < Kp(t)e 2= for all ¢t e I.

Hence, according to Theorem 2.1, we have

1
d(yo,y) < - (Ay,y) Kgp(t)e_L(t_tO) forall teI.

Lo+ Lo/ MY S T )

From the definition of d, this means

L
[y(t) — yo(t)|e~H710) <

—————— Kp(t)e “07") forall te I
S I L) o(t)e orall te

The proof is now complete. O

4 Examples
Example 4.1. For any A\i, Ao > 0, consider the differential equation
y'() + Ay (t) + Aoyt — 7) = q(t) (4.1)

on the interval I := [to — 7, T, where tg, 7, T are arbitrary real numbers. Since

F(t,y(t),y(t — 7)) = My(t) + Aay(t — 7) — q(t),
we have

|F(t,x1,01) — F(t, 22, y2)| = |M@1 4 Aayr — q(t) — Az — Aoy + q(t)]
= A (21 — 22) — Aa(y1 — y2)| < Arlwy — @] + Aofyr — 2| forall t€ 1.

So, all conditions of Theorem 3.1 are satisfied and we obtain the stability of the differential equation
(4.1) in the Hyers—Ulam sense.

It should be remarked that Theorem 3.1 guarantees the stability of (4.1) for any T' < oo, while the
result of Tung and Biger [29] can guarantee the stability only in a small subset of I. In this example,
their result works only for T' < Ay + Ao.
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Example 4.2. Consider the differential equation (4.1) on the same interval I with to = 0. We have
already shown, in Example 4.1, that condition (3.3) is satisfied with Ly = A\; and Ly = A\y. Now, if
we define the function o(t) := e (A > 0), we obtain

[

Then, according to Theorem 3.2, equation (4.1) is stable in the Hyers—Ulam—Rassias sense.
Note that the result of Tung and Biger [29] does not work in this example if we choose A > A; + Ay,
while our result works for any A > 0.

t
1 1 1
At At At
= = (eM-1)< ZeM=_ 1 :
/e ds /\(e ) 3 e )\ap(t) forall tel

0

5 Conclusion

In this study, we consider the stability problem of a general class of non-linear differential equations
with delay in the Ulam sense. We obtain some new stability criteria which extend and improve some
well-known results. In Section 4, We compare our new results with some existing results. As a future
research, the stability problem of more general functional differential equations (such as the equations
with non-constant delays, or neutral or advanced type equations) might be considered.
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