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ON THE HYERS–ULAM STABILITY OF
DELAY DIFFERENTIAL EQUATIONS



Abstract. In this paper, we consider the stability problem of delay differential equations in the sense
of Hyers–Ulam and Hyers–Ulam–Rassias. By using a well known fixed point alternative on generalized
complete metric spaces, we obtain some new stability criteria. Our results extend and improve the
results described in literature since their proofs are based on fewer and weaker assumptions than the
recent results dealing with this problem. Some illustrative examples are also given to compare these
results and visualize the improvement.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÃÀÂÅÉÀÍÄÁÖËÉ ÔÉÐÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÌÃÂÒÀ-
ÃÏÁÉÓ ÀÌÏÝÀÍÀ äÀÉÄÒÓ-ÖËÀÌ ÃÀ äÀÉÄÒÓ-ÖËÀÌ-ÒÀÓÉÀÓÉÓ ÀÆÒÉÈ. ÂÀÍÆÏÂÀÃÄÁÖËÉ ÓÒÖËÉ
ÌÄÔÒÖËÉ ÓÉÅÒÝÄÄÁÉÓÈÅÉÓ, ÊÀÒÂÀÃ ÝÍÏÁÉËÉ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÀËÔÄÒÍÀÔÉÅÉÓ ÂÀÌÏÚÄÍÄÁÉÈ,
ÌÉÙÄÁÖËÉÀ ÌÃÂÒÀÃÏÁÉÓ ÀáÀËÉ ÊÒÉÔÄÒÉÖÌÄÁÉ. ÜÅÄÍÉ ÛÄÃÄÂÄÁÉ À×ÀÒÈÏÅÄÁÓ ÃÀ ÀÖÌãÏÁÄÓÄÁÓ
ËÉÔÄÒÀÔÖÒÀÛÉ ÀÃÒÄ ÌÉÙÄÁÖË ÛÄÃÄÂÄÁÓ, ÒÀÃÂÀÍ ÃÀÌÔÊÉÝÄÁÀ Ä×ÖÞÍÄÁÀ Ö×ÒÏ ÍÀÊËÄÁ ÃÀ
ÓÖÓÔ ÃÀÛÅÄÁÄÁÓ, ÅÉÃÒÄ ÀÌ ÀÌÏÝÀÍÀÓÈÀÍ ÃÀÊÀÅÛÉÒÄÁÖËÉ ÁÏËÏÃÒÏÉÍÃÄËÉ ÛÄÃÄÂÄÁÉ. ÀÂÒÄÈ-
ÅÄ ÌÏÝÄÌÖËÉÀ ÒÀÌÃÄÍÉÌÄ ÓÀÉËÖÓÔÒÀÝÉÏ ÌÀÂÀËÉÈÉ ÀÌ ÛÄÃÄÂÄÁÉÓ ÛÄÓÀÃÀÒÄÁËÀÃ ÃÀ ÂÀÖÌãÏ-
ÁÄÓÄÁÉÓ ÃÀÓÀÍÀáÀÃ.
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1 Introduction
In 1940, Ulam [30] posed the following stability problem of functional equations: Given a group
G1 and a metric group (G2, ρ). Given ε > 0, does there exist δ > 0 such that if f : G1 → G2

satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then a homomorphism h : G1 → G2 exists with
ρ(f(x), h(x)) < kε for all x ∈ G1 and some k > 0? Roughly speaking, Ulam raised the question:
suppose one has a function f(t) which is close to solve an equation. Is there an exact solution (to
same equation) h(t) which is close to f(t)? If the answer is affirmative, the equation h(xy) = h(x)h(y)
is called stable in the Ulam sense. One year later, Hyers [13] gave an answer to this problem for
linear functional equations on Banach spaces: Let G1, G2 be real Banach spaces and ε > 0. Then for
each mapping f : G1 → G2 satisfying ∥f(x + y) − f(x) − f(y)∥ ≤ ε for all x, y ∈ G1, there exists
a unique additive mapping g : G1 → G2 such that ∥f(x) − h(x)∥ ≤ ε holds for all x ∈ G1. After
this affirmative answer of Hyers, a new notion of stability of functional equations founded, which
is today called the Hyers–Ulam stability, and is one of the central topics in mathematical analysis
(see, e.g., [7, 8, 12, 22]). In 1978, Rassias [25], by considering the constant ε as a variable in Ulam’s
problem, made an important generalization, which is known as Hyers–Ulam–Rassias stability (see,
e.g., [2, 14,23,24]).

The stability problem of differential equations in the Hyers–Ulam sense was initiated by the papers
of Obloza [18, 19]. Later, Alsina and Ger [1] proved that assuming I is an open interval of reals, for
every differentiable mapping y : I → R satisfying

|y′(x)− y(x)| ≤ ε for all x ∈ I and for a given ε > 0,

there exists a solution y0 of the differential equation

y′(x) = y(x)

such that
|y(x)− y0(x)| ≤ 3ε for all x ∈ I.

This result was later extended by Takahasi, Miura and Miyajima in [27] to the equation

y′(x) = λy(x)

in Banach spaces, and in [16,17] to higher order linear differential equations with constant coefficients.
Recently, Jung [15] proved the Hyers–Ulam stability as well as the Hyers–Ulam–Rassias stability

of the equation
y′ = f(t, y)

which extends the above-mentioned results to a nonlinear case. Jung’s technique has been modified
by Tunç and Biçer [29] also for functional equations in the form

y′(t) = F (t, y(t), y(t− τ)), (1.1)

where F : R3 → R is a bounded and continuous function and τ > 0 is a real constant. After
these pioneering works, a large number of papers devoted to this subject have been published (see,
e.g., [3–6,10,11,20,21,26,28] and the references therein).

In this paper, we will extend and improve these result by proving the stability results for delay
differential equations in the form of (1.1) with weaker assumptions.

2 Preliminaries
For some ε ≥ 0, Ψ ∈ C[t0 − τ, t0] and t0, T ∈ R with T > t0, assume that for any continuous function
f : [t0 − τ, T ] → R he following is satisfied:{∣∣f ′(t)− F (t, f(t), f(t− τ))

∣∣ < ε, t ∈ [t0, T ],

|f(t)−Ψ(t)| < ε, t ∈ [t0 − τ, t0].
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If there exists a continuous function f0 : [t0 − τ, T ] → R satisfying{
f ′
0(t) = F (t, f0(t), f0(t− τ)), t ∈ [t0, T ],

f0(t) = Ψ(t), t ∈ [t0 − τ, t0]

and
|f(t)− f0(t)| < K(ε), t ∈ [t0 − τ, T ],

where K(ε) is an expression of ε only, we say that equation (1.1) has the Hyers–Ulam stability. If the
above statement is also true when we replace ε and K(ε) by φ and Φ, where φ,Φ ∈ C[t0−τ, T ] are the
functions not depending on f and f0 explicitly, then we say that equation (1.1) has the Hyers–Ulam–
Rassias stability. These definitons may be applied to different classes of differential equations (we
refer to Jung [15], Tunç and Biçer [29] and the references cited therein for more detailed definitions
of Hyers–Ulam stability and Hyers–Ulam–Rassias stability).

We will use the following fixed point result on generalized complete metric spaces as the main tool
in our proofs, for the proof of this result we refer to [9].

Theorem 2.1. Let (X, d) be a generalized complete metric space. Assume that T : X → X is a
strictly contractive operator with the Lipschitz constant L < 1. If there is a nonnegative integer k such
that d(T k+1x, T kx) < ∞ for some x ∈ X, then the following are true:

(a) the sequence {Tnx} converges to a fixed point x∗ of T ;

(b) x∗ is the unique fixed point of T in

X∗ =
{
y ∈ X : d(T kx, y) < ∞

}
;

(c) if y ∈ X∗, then
d(y, x∗) ≤ 1

1− L
d(Ty, y).

3 Main results
Throughout this section, we define I := [t0− τ, T ] for the given real numbers t0, T and τ with T > t0.
Further, we define the set S as

S :=
{
f : I → R | f is continuous and f(t) = Ψ(t) for t ∈ [t0 − τ, t0]

}
, (3.1)

where Ψ : [t0 − τ, t0] → R is a continuous function. In our proofs, we will need a completeness of the
space (S, d) which is given in the following result (see [5]).

Lemma 3.1 (see [5]). Define the function d : S × S → [0,∞] with

d(f, g) := inf
{
C ∈ [0,∞] : |f(t)− g(t)|e−M(t−t0) ≤ CΦ(t), t ∈ I

}
, (3.2)

where M > 0 is a given constant and Φ : I → (0,∞) is a given continuous function. Then (S, d) is a
generalized complete metric space.

We are now ready to study the stability of differential equation (1.1) in the Hyers–Ulam sense.

Theorem 3.1. Suppose that the continuous function F : I × R × R → R satisfies the Lipschitz
condition

|F (t, x1, y1)− F (t, x2, y2)| ≤ L1|x1 − x2|+ L2|y1 − y2| (3.3)
for all (t, x1, y1), (t, x2, y2) ∈ I ×R×R and some L1, L2 > 0. Suppose also that Ψ : [t0 − τ, t0] → R is
a continuous function. If a continuous function y : I → R satisfies{∣∣y′(t)− F (t, y(t), y(t− τ))

∣∣ < ε, t ∈ [t0, T ],

|y(t)−Ψ(t)| < ε, t ∈ [t0 − τ, t0],
(3.4)
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then there exists a unique continuous function y0 : I → R such that{
y′0(t) = F (t, y0(t), y0(t− τ)), t ∈ [t0, T ],

y0(t) = Ψ(t), t ∈ [t0 − τ, t0]
(3.5)

and
|y(t)− y0(t)| ≤

εT

L− (L1 + L2)

for all t ∈ I and any number L with L > L1 + L2.

Proof. For the set S defined by (3.1) we introduce the function d : S × S → [0,∞] as follows:

d(f, g) := inf
{
C ∈ [0,∞] : |f(t)− g(t)|e−L(t−t0) ≤ C, ∀ t ∈ I

}
.

Note that (S, d) is a generalized complete metric space in view of Lemma 3.1. Now, let us define the
mapping Λ : S → S by

(Λy)(t) :=


Ψ(t), for t ∈ [t0 − τ, t0],

y(t0) +

t∫
t0

F (s, y(s), y(s− τ))ds, for t ∈ [t0, T ].
(3.6)

For any y ∈ S, it is clear that Λy is continuous and any fixed point of Λ solves the differential
equation (1.1).

Now we will show that Λ is strictly contractive on S. For any f, g ∈ S,

Cf,g ∈
{
C ∈ [t0,∞] : |f(t)− g(t)|e−L(t−t0) ≤ C, ∀ t ∈ I

}
and t ∈ [t0, T ], we have

∣∣(Λf)(t)− (Λg)(t)
∣∣ = ∣∣∣∣

t∫
t0

[
F (s, f(s), f(s− τ))− F (s, g(s), g(s− τ))

]
ds

∣∣∣∣
≤

t∫
t0

∣∣F (s, f(s), f(s− τ))− F (s, g(s), g(s− τ))
∣∣ds

≤ L1

t∫
t0

|f(s)− g(s)|ds+ L2

t∫
t0

|f(s− τ)− g(s− τ)|ds

= L1

t∫
t0

|f(s)− g(s)|ds+ L2

t−τ∫
t0−τ

|f(s)− g(s)|ds

= L1

t∫
t0

|f(s)− g(s)|ds+ L2

t0∫
t0−τ

|f(s)− g(s)|ds+ L2

t−τ∫
t0

|f(s)− g(s)|ds

≤ L1

t∫
t0

|f(s)− g(s)|ds+ L2

t−τ∫
t0

|f(s)− g(s)|ds

≤ L1

t∫
t0

|f(s)− g(s)|ds+ L2

t∫
t0

|f(s)− g(s)|ds
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= L1

t∫
t0

|f(s)− g(s)|e−L(s−t0)eL(s−t0) ds+ L2

t∫
t0

|f(s)− g(s)|e−L(s−t0)eL(s−t0) ds

≤ L1Cf,g

t∫
t0

eL(s−t0) ds+ L2Cf,g

t∫
t0

eL(s−t0) ds

=
L1 + L2

L
Cf,g(eL(t−t0) − 1) ≤ L1 + L2

L
Cf,geL(t−t0)

and so, ∣∣(Λf)(t)− (Λg)(t)
∣∣e−L(t−t0) ≤ L1 + L2

L
Cf,g for all t ∈ [t0, T ].

This inequality and ∣∣(Λf)(t)− (Λg)(t)
∣∣ = 0 for all t ∈ [t0 − τ, t0]

imply that
d(Λf,Λg) ≤ L1 + L2

L
d(f, g),

which means that the mapping Λ is strictly contractive on S.
Now, for an arbitrary u ∈ S, it is clear that d(Λu, u) < ∞ for all t ∈ I, since F (t, u(t), u(t − τ))

is bounded on I. Furthermore, we have d(u, v) < ∞ for any v ∈ S, since both u and v are bounded
on I. That is, {x ∈ S : d(u, v) < ∞} = S. Hence, according to Theorem 2.1, there exists a unique
continuous function y0 : I → R such that Λy0 = y0, Λnu → y0 in S and satisfies equation (3.5).

On the other hand, from equation (3.4), we have

−ε(t− t0) ≤
t∫

t0

y′(s)ds−
t∫

t0

F (s, y(s), y(s− τ))ds ≤ ε(t− t0)

and so,
|(Λy)(t)− y(t)| ≤ εT for all t ∈ I.

Multiplying this inequality by e−L(t−t0), we obtain

|(Λy)(t)− y(t)|e−L(t−t0) ≤ εT e−L(t−t0)

and so,
d(Λy, y) ≤ εT e−L(t−t0) for all t ∈ I.

Therefore, according to Theorem 2.1, we have

d(y, y0) ≤
1

1− (L1 + L2)/L
d(Λy, y) ≤ LTε

L− (L1 + L2)
e−L(t−t0) for all t ∈ I.

From the definition of the metric d, this implies

|y(t)− y0(t)|e−L(t−t0) ≤ LTε

L− (L1 + L2)
e−L(t−t0) for all t ∈ I,

which completes the proof.

Theorem 3.2. Suppose that the continuous function F : I × R × R → R satisfies the Lipschitz
condition (3.3) for all (t, x1, y1), (t, x2, y2) ∈ I × R × R and some L1, L2 > 0. Suppose also that
Ψ : [t0 − τ, t0] → R is a continuous function. Let φ : I → R be a continuous and nondecreasing
function satisfying ∣∣∣∣

t∫
t0

φ(s)ds
∣∣∣∣ ≤ Kφ(t) for all t ∈ I
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and some K > 0. If a continuous function y : I → R satisfies{∣∣y′(t)− F (t, y(t), y(t− τ))
∣∣ < φ(t), t ∈ [t0, T ],

|y(t)−Ψ(t)| < φ(t), t ∈ [t0 − τ, t0],
(3.7)

then there exists a unique continuous function y0 : I → R satisfying equation (3.5) and

|y(t)− y0(t)| ≤
LK

L− (L1 + L2)
φ(t)

for all t ∈ I and any number L with L > L1 + L2.

Proof. Define the function d : S × S → [0,∞] as

d(f, g) := inf
{
C ∈ [0,∞] : |f(t)− g(t)|e−L(t−t0) ≤ Cφ(t), ∀ t ∈ I

}
,

where the set S is defined by (3.1). Then, according to Lemma 3.1, (S, d) is a complete generalized
metric space. If we define the mapping Λ : S → S as in (3.6), every fixed point of Λ solves the
differential equation (1.1). Furthermore, as in the proof of Theorem 3.1, it can be easily seen that
{v ∈ S : d(u, v) < ∞, u ∈ S} = S for arbitrary u, v ∈ S.

Now we will show that the mapping Λ is strictly contractive on I. First, note that by integration
by parts and monotonicity of φ, we have

t∫
t0

φ(s)eL(s−t0) ds ≤ 1

L
φ(t)eL(t−t0) − 1

L

t∫
t0

φ′(s)eL(s−t0) ds ≤ 1

L
φ(t)eL(t−t0) for all t ∈ I.

Now, for any pair of f, g ∈ S, let Cf,g be any constant satisfying d(f, g) ≤ Cf,g. That is,

|f(t)− g(t)|eL(t−t0) ≤ Cf,gφ(t) for all t ∈ I.

Hence it follows that for any f, g ∈ S and t ∈ I,

∣∣(Λf)(t)− (Λg)(t)
∣∣ = ∣∣∣∣

t∫
t0

[F (s, f(s), f(s− τ)− F (s, g(s), g(s− τ)]ds
∣∣∣∣

≤
t∫

t0

∣∣F (s, f(s), f(s− τ)− F (s, g(s), g(s− τ)
∣∣ds

≤ L1

t∫
t0

|f(s)− g(s)|ds+ L2

t∫
t0

|f(s− τ)− g(s− τ)|ds

≤ (L1 + L2)

t∫
t0

|f(s)− g(s)|e−L(s−t0)eL(s−t0) ds

≤ Cf,g(L1 + L2)

t∫
t0

φ(s)eL(s−t0) ds

≤ L1 + L2

L
Cf,gφ(t)eL(t−t0),

and therefore we have∣∣(Λf)(t)− (Λg)(t)
∣∣e−L(t−t0) ≤ L1 + L2

L
Cf,gφ(t) for all t ∈ I.
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This inequality and the fact that∣∣(Λf)(t)− (Λg)(t)
∣∣ = 0 for all t ∈ [t0 − τ, t0]

imply
d(Λf,Λg) ≤ L1 + L2

L
d(f, g),

that is, Λ is strictly contractive on S. Therefore, all the conditions of Theorem 2.1 are satisfied and
there exists a unique continuous function y0 : I → R such that Λy0 = y0, Λnu → y0 in S and satisfies
equation (3.5).

On the other hand, it follows from equation (3.7) that

−φ(t) ≤ y′(t)− F (t, y(t), y(t− τ)) ≤ φ(t),

and so,

|y(t)− (Λy)(t)| ≤
∣∣∣∣

t∫
t0

φ(s)ds
∣∣∣∣ ≤ Kφ(t) for all t ∈ I.

Multiplying this inequality by e−L(t−t0), we obtain, for all t ∈ I,

|y(t)− (Λy)(t)|e−L(t−t0) ≤ Kφ(t)e−L(t−t0),

which means that
d(Λy, y) ≤ Kφ(t)e−L(t−t0) for all t ∈ I.

Hence, according to Theorem 2.1, we have

d(y0, y) ≤
1

1− (L1 + L2)/L
d(Λy, y) ≤ L

L− (L1 + L2)
Kφ(t)e−L(t−t0) for all t ∈ I.

From the definition of d, this means

|y(t)− y0(t)|e−L(t−t0) ≤ L

L− (L1 + L2)
Kφ(t)e−L(t−t0) for all t ∈ I.

The proof is now complete.

4 Examples
Example 4.1. For any λ1, λ2 > 0, consider the differential equation

y′(t) + λ1y(t) + λ2y(t− τ) = q(t) (4.1)

on the interval I := [t0 − τ, T ], where t0, τ , T are arbitrary real numbers. Since

F (t, y(t), y(t− τ)) = λ1y(t) + λ2y(t− τ)− q(t),

we have∣∣F (t, x1, y1)− F (t, x2, y2)
∣∣ = ∣∣λ1x1 + λ2y1 − q(t)− λ1x2 − λ2y2 + q(t)

∣∣
=

∣∣λ1(x1 − x2)− λ2(y1 − y2)
∣∣ ≤ λ1|x1 − x2|+ λ2|y1 − y2| for all t ∈ I.

So, all conditions of Theorem 3.1 are satisfied and we obtain the stability of the differential equation
(4.1) in the Hyers–Ulam sense.

It should be remarked that Theorem 3.1 guarantees the stability of (4.1) for any T < ∞, while the
result of Tunç and Biçer [29] can guarantee the stability only in a small subset of I. In this example,
their result works only for T < λ1 + λ2.
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Example 4.2. Consider the differential equation (4.1) on the same interval I with t0 = 0. We have
already shown, in Example 4.1, that condition (3.3) is satisfied with L1 = λ1 and L2 = λ2. Now, if
we define the function φ(t) := eλt (λ > 0), we obtain

∣∣∣∣
t∫

t0

φ(t)ds
∣∣∣∣ =

t∫
0

eλt ds = 1

λ
(eλt − 1) ≤ 1

λ
eλt = 1

λ
φ(t) for all t ∈ I.

Then, according to Theorem 3.2, equation (4.1) is stable in the Hyers–Ulam–Rassias sense.
Note that the result of Tunç and Biçer [29] does not work in this example if we choose λ > λ1+λ2,

while our result works for any λ > 0.

5 Conclusion
In this study, we consider the stability problem of a general class of non-linear differential equations
with delay in the Ulam sense. We obtain some new stability criteria which extend and improve some
well-known results. In Section 4, We compare our new results with some existing results. As a future
research, the stability problem of more general functional differential equations (such as the equations
with non-constant delays, or neutral or advanced type equations) might be considered.
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