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MATHEMATICAL STUDY
TO A REGULARIZED 3D-BOUSSINESQ SYSTEM



Abstract. We prove existence of weak solution to a regularized Boussinesq system in Sobolev spaces
under the minimal regularity to the initial data. Continuous dependence on initial data (and then
uniqueness) is proved provided that the initial fluid velocity is mean free. If the temperature is also
mean free, we prove that the solution decays exponentially fast, as time goes to infinity. Moreover,
we show that the unique solution converges to a Leray–Hopf solution of the three-dimensional Boussi-
nesq system, as the regularizing parameter alpha vanishes. The mean free technical condition appears
because the nonlinear part of the fluid equation is subject to regularization. The main tools are the en-
ergy methods, the compactness method, the Poincaré inequality and some Grönwall type inequalities.
To handle the long time behaviour, a time dependent change of function is used.
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ÒÄÆÉÖÌÄ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÒÄÂÖËÀÒÉÆÄÁÖËÉ ÁÖÓÉÍÄÓÊÉÓ ÓÉÓÔÄÌÉÓ ÓÖÓÔÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄ-
ÁÏÁÀ ÓÏÁÏËÄÅÉÓ ÓÉÅÒÝÄÄÁÛÉ ÓÀßÚÉÓÉ ÌÏÍÀÝÄÌÄÁÉÓ ÌÉÍÉÌÀËÖÒÉ ÒÄÂÖËÀÒÏÁÉÓ ÐÉÒÏÁÄÁÛÉ.
ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÖßÚÅÄÔÉ ÃÀÌÏÊÉÃÄÁÖËÄÁÀ ÓÀßÚÉÓ ÌÏÍÀÝÄÌÄÁÆÄ (áÏËÏ ÛÄÌÃÄÂ
ÄÒÈÀÃÄÒÈÏÁÀ), ÈÖ ÓÉÈáÉÓ ÓÀßÚÉÓÉ ÓÉÜØÀÒÄ ÓÀÛÖÀËÏÃ ÈÀÅÉÓÖ×ÀËÉÀ. ÈÖ ÔÄÌÐÄÒÀÔÖ-
ÒÀÝ ÓÀÛÖÀËÏÃ ÈÀÅÉÓÖ×ÀËÉÀ, ÌÀÛÉÍ ÜÅÄÍ ÅÀÌÔÊÉÝÄÁÈ, ÒÏÌ ÀÌÏÍÀáÓÍÉ ÄØÓÐÏÍÄÍÝÉÀËÖÒÀÃ
ÓßÒÀ×ÀÃ ØÒÄÁÀ, ÒÏÝÀ ÃÒÏ ÖÓÀÓÒÖËÏÁÉÓÊÄÍ ÌÉÉÓßÒÀ×ÉÓ. ÂÀÒÃÀ ÀÌÉÓÀ, ÃÀÌÔÊÉÝÄÁÖËÉÀ,
ÒÏÌ ÄÒÈÀÃÄÒÈÉ ÀÌÏÍÀáÓÍÉ ÊÒÄÁÀÃÉÀ ÓÀÌÂÀÍÆÏËÄÁÉÀÍÉ ÁÖÓÉÍÄÓÊÉÓ ÓÉÓÔÄÌÉÓ ËÄÒÄÉ-äÏ×ÉÓ
ÀÌÏÍÀáÓÍÉÓÊÄÍ, ÒÏÝÀ ÌÀÒÄÂÖËÉÒÄÁÄËÉ ÀË×À ÐÀÒÀÌÄÔÒÉ ÍÖËÉÓÊÄÍ ÌÉÉÓßÒÀ×ÉÓ. ÓÀÛÖÀËÏ
ÈÀÅÉÓÖ×ËÄÁÉÓ ÔÄØÍÉÊÖÒÉ ÐÉÒÏÁÀ ÂÀÌÏÜÍÃÄÁÀ ÉÌÉÔÏÌ, ÒÏÌ áÃÄÁÀ ÓÉÈáÉÓ ÂÀÍÔÏËÄÁÉÓ
ÀÒÀßÒ×ÉÅÉ ÍÀßÉËÉÓ ÒÄÂÖËÀÒÉÆÀÝÉÀ. ÊÅËÄÅÉÓ ÌÈÀÅÀÒÉ ÉÍÓÔÒÖÌÄÍÔÄÁÉÀ ÄÍÄÒÂÄÔÉÊÖËÉ
ÌÄÈÏÃÄÁÉ, ÊÏÌÐÀØÔÖÒÏÁÉÓ ÌÄÈÏÃÉ, ÐÖÀÍÊÀÒÄÓ ÖÔÏËÏÁÀ ÃÀ ÂÒÏÍÅÄËÉÓ ÔÉÐÉÓ ÖÔÏËÏÁÄÁÉ.
ÉÌÉÓÀÈÅÉÓ, ÒÏÌ ÛÄÅÉÓßÀÅËÏÈ ÚÏ×ÀØÝÄÅÀ áÀÍÂÒÞËÉÅÉ ÃÒÏÉÓ ÂÀÍÌÀÅËÏÁÀÛÉ, ÂÀÌÏÚÄÍÄÁÖËÉÀ
×ÖÍØÝÉÉÓ ÝÅÀËÄÁÀÃÏÁÉÓ ÃÒÏÆÄ ÃÀÌÏÊÉÃÄÁÖËÄÁÀ.
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1 Introduction
We consider the following system denoted by (Bqα):

∂tθ −∆θ + (u · ∇)θ = 0, (t, x) ∈ R+ × T3,

∂tv −∆v + (v · ∇)u = −∇p+ θe3, (t, x) ∈ R+ × T3,

v = u− α2∆u, (t, x) ∈ R+ × T3,

divu = div v = 0, (t, x) ∈ R+ × T3,

(u, θ)
∣∣
t=0

= (u0, θ0), x ∈ T3,

where the unknown vector field u, the scalars p and θ denote, respectively, the velocity, the pressure
and the temperature of the fluid at the point (t, x) ∈ R+×T3. Here, T3 is the three-dimensional torus
and α > 0 is a real parameter that has to go to zero. The data θ0 and u0 are initial temperature and
initial divergence free velocity. In [7], the author explained motivations behind considering regularized
systems such as (Bqα), and he gave a wide review of related literature. Here, we just recall that alpha-
regularization consists in replacing the velocity u in some of its occurrences by the most regular field
v = u−α2∆u. So, contrarily to the non-regularized fluid mechanic equation, we have the existence of a
unique three-dimensional solution that depends continuously on initial data. Moreover, as explained in
[2], these models can be implemented in a relatively simple way in numerical computation of the three-
dimensional fluid equations. Thus, they are to be known as regularization stimulated by numerical
motivations. In the framework of computational fluid dynamics, for zero valued temperature, it
was proved in [4] that the model we are actually considering, provides a computationally sound
analytical subgrid scale model for large eddy simulation of turbulence. More important is that when
the regularizing parameter α tends to zero, the solution of (Bqα) coincides with the solution of
Boussinesq system (Bqα=0). Furthermore, as time tends to infinity, the system (Bqα>0) behaves like
(Bqα=0).

In this paper, we will investigate the weak solution to the modified Leray-alpha model for the
Boussinesq system. More than the linear part, the nonlinear part of the fluid equation is to be
regularized as well. This is one of the main differences between systems we considered in [7] and [3],
where we regularized only the linear part and studied, respectively, the weak and the strong solutions.

Our first result is the existence of the weak solution to the system (Bqα) in the context of the
minimal regularity to the initial data.

Theorem 1.1. Let θ0 ∈ L2(T3) and let u0 ∈ H1(T3) be a divergence-free vector field. Then there
exists a unique weak solution (uα, θα) of system (Bqα) such that uα belongs to C(R+,H

1(T3)) ∩
L2(R+,H

2(T3)) and θα belongs to C(R+, L
2(T3))∩L2(R+,H

1(T3)). Moreover, this solution satisfies
the energy estimate

∥θα∥2L2 + ∥uα∥2L2 + α2∥∇uα∥2L2 + 2

t∫
0

∥∇θα∥2L2(T3) dτ

+ 2

t∫
0

(
∥∇uα∥2L2 + α2∥∆uα∥2L2

)
dτ ≤ ∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 + σα(t), (1.1)

where
σα(t) = (e2t − 1)

(
∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2

)
.

If the initial velocity is mean free, the solution is continuously dependent on the initial data on any
bounded interval [0, T ]. In particular, it is unique.

The proof is done in the frequency space and uses the compactness method. To close the energy
estimates, the buoyancy force presents some difficulties that we have overcome by Grönwall’ s lemma,
without useless sharpness. More than the uniqueness, we have continuous dependence of the weak
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solution on the initial data. This is the main advantage provided by alpha regularization, since such
dependence plays an important role in numerical schemes.

To prove continuous dependence with respect to the initial data, we consider the system satisfied
by the difference of two solutions and apply energy methods. The Young product inequalities and
suitable Sobolev products allow to estimate the nonlinear terms. Grönwall’s type differential inequality
finishes the proof. In particular, we infer the uniqueness of solution. Compared to [7] and [3], the
mean free condition is compulsory, since we are regularizing the nonlinear term and thus the Poincaré
inequality turns to be a necessary tool to run the argument of the continuous dependence to initial
data.

Our next result asserts that for long time, the regularized temperature and the regularized velocity
fields vanish exponentially fast as time tends to infinity. This convergence is uniform with respect to
α. One recovers, for α > 0, a similar property of the long time behavior to the Leray–Hopf solution
of the non-regularized system.
Theorem 1.2. Let a ∈ (0, 1). Let θα and uα be the family of solutions from Theorem 1.1. If θ0 and
u0 are both mean free and satisfy the inequality

∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 ≤ 1− a,

then θα and uα decay exponentially fast to zero as time tends to infinity as soon as the initial data
(hence the solution) are mean free:

∥θα(t)∥L2 + ∥uα(t)∥H1 ≤ (1− a)e−at ∀ t ≥ 0.

To prove this result, we use a change of the function that depends explicitly on time. This
leads to an energy estimate that is sharper than the one of the existence result. For zero-mean
valued temperature and velocity, this estimation allows to derive the vanishing limit and the rate of
convergence, as time tends to infinity.

Our last result describes the weak and strong convergence, as α → 0, of the unique weak solution
of the regularized system (Bqα) to the Leray–Hopf solution of the system (Bq0). This convergence
asserts that as smaller is alpha, as better we describe reality.
Theorem 1.3. Let T > 0, (uα, θα) be the unique solution of system (Bqα). Then there exist the
subsequences uαk

, vαk
and θαk

, a scalar function θ, and a divergence-free vector field u, both belonging
to L∞([0, T ], L2(T3)) ∩ L2([0, T ],H1(T3)), such that as αk → 0+, we have:

1. The sequence uαk
converges to u and θαk

converges to θ weakly in L2([0, T ],H1(T3)) and strongly
in L2([0, T ], L2(T3)).

2. The sequence vαk
converges to u weakly in L2([0, T ], L2(T3)) and strongly in L2([0, T ],H−1(T3)).

3. The sequence uαk
converges to u and θαk

converges to θ weakly in L2(T3) and uniformly over
[0, T ]. Furthermore, (u, θ) is the weak solution of the Boussinesq system (Bq0) on [0, T ] associated
with the initial data (u0, θ0) satisfying for all t ∈ [0, T ] the energy inequality

∥θ∥2L2 + ∥u∥2L2 +
t∫
0

∥∇θ∥2L2 + ∥∇u∥2L2 dτ ≤ ∥θ0∥2L2 + ∥u0∥2L2 + σ0(t). (1.2)

Here, (Bq0) and σ0 denote, respectively, (Bqα) and σα for α = 0.
The purpose of the proof is to extract subsequences that converge to the solution of (Bq) as

α → 0+. First, we derive a uniform bound independent of the parameter α. This gives the weak
convergence. Then, following the lines of the existence proof, we establish strong convergence of such
subsequences in suitable spaces. This strong convergence allows to take the limit in the quadratic
terms, and hence a weak convergence of the unique weak solution of (Bq) to a weak solution of (Bq)
is proved and the associated energy estimate is derived.

The remainder of the paper is organized as follows. We start with recalling some useful background.
Section 3 is devoted to the proof of the existence result and the continuous dependence of the weak
solution on the initial data, in particular, uniqueness. In Section 4, we investigate the long time
behaviour of the regularized temperature and the regularized velocity. Section 5 is devoted to proving
several convergence results, as the regularizing parameter α vanishes.
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2 Preliminary results
For n ∈ N , let Pn denote the projection into the Fourier modes of order up to n, that is,

Pn

( ∑
k∈Z3

ûke
ik·x

)
=

∑
|k|≤n

ûke
ik·x.

We define for s ≥ 0 the operator Λs acting on Hs(T3) by

Λsu(x) =
∑
k∈Z3

|k|sûke
ik·x ∈ L2(T3).

Moreover, we denote by ∥ · ∥Ḣs the seminorm ∥ · ∥L2 . This is, of course, compatible with the definition
of the Sobolev norm that ∥ · ∥Hs is equivalent to ∥ · ∥L2 + ∥ · ∥Ḣs . We will also make use of the fact
that ∥u∥Ḣs ≤ ∥u∥Ḣt if 0 < s ≤ t and Λ2 = −∆. Moreover, if divu = 0, we have (v · ∇u, u)L2(T3) = 0
and (u ·∇θ, θ)L2(T3) = 0. Finally, we recall the version of the Aubin–Lions Theorem that will be used.

Lemma 2.1. Let X0, X and X1 be three Banach spaces with X0 ⊂ X ⊂ X1. Suppose that X0 is
compactly embedded in X and X is continuously embedded in X1. For 1 ≤ p, q ≤ ∞, let

W =
{
u ∈ Lp([0, T ], X0) :

du

dt
∈ Lq([0, T ], X1)

}
.

• If p < +∞, then the embedding of W into Lp([0, T ];X) is compact.

• If p = +∞ and q > 1, then the embedding of W into C([0, T ];X) is compact.

Also, we need the following inequalities:

∥ϑ∥L3 ≤ ∥ϑ∥1/2L2 ∥∇ϑ∥1/2L2 , (2.1)

∥ϑ∥L∞ ≤ ∥ϑ∥1/2
Ḣ1

∥ϑ∥1/2
Ḣ2

, (2.2)
∥ϑ∥L6 ≤ ∥∇ϑ∥L2 . (2.3)

3 Existence and uniqueness results
Let un = Pnu. One approximates the continuous problem (Bqα) by the following problem denoted
by (Bqα)n:

∂tθn −∆θn + Pn div(θnun) = 0, (3.1)

∂tvn −∆vn + Pn div(vnun)− θne3 = Pn∇∆−1
( 3∑

i,j=1

∂i∂j(v
i
nu

j
n)− ∂3θn

)
, (3.2)

vn = un − α2∆un, (3.3)
divun = div vn = 0, (3.4)

(un, θn)t=0 = (u0
n, θ

0
n) = (Pnu

0, Pnθ
0). (3.5)

The ordinary differential equation theory implies that there exists some maximal T ∗
n > 0 and a unique

local solution un ∈ C∞([0, T ∗
n) × T3) to (Bqα)n. Taking the inner product of (3.1) by θn and (3.2)

by un, applying the Cauchy–Schwarz inequality to the forcing term < θne3, un >L2 and dropping the
viscous term, we obtain

d

dt

(
∥θn∥2L2 + ∥un∥2L2 + α2∥∇un∥2L2

)
≤ 2

(
∥θn∥2L2 + ∥un∥2L2 + α2∥∇un∥2L2

)
.

Let
ϕ(t) = ∥θn∥2L2 + ∥un∥2L2 + α2∥∇un∥2L2 ,



98 Ridha Selmi, Mounia Zaabi

then the above equation reads ϕ′(t) ≤ 2ϕ(t). Applying Grönwall’ s inequality and integrating over
[0, t], we obtain ϕ(t) ≤ ϕ(0)e2t. Thus,

∥θn(t)∥2L2 + ∥un(t)∥2L2 + α2∥∇un(t)∥2L2 ≤ (∥θ0n∥2L2 + ∥u0
n∥2L2 + α2∥∇u0

n∥2L2)e2t.

This implies that

∥θn(t)∥2L2 + ∥un(t)∥2L2 + α2∥∇un(t)∥2L2 + 2

t∫
0

∥∇θn(τ)∥2L2(T3) dτ

+ 2

t∫
0

(∥∇un(τ)∥2L2 + α2∥∆un(τ)∥2L2) dτ ≤ ∥θ0n∥2L2 + ∥u0
n∥2L2 + α2∥∇u0

n∥2L2 + σα(t),

where
σα(t) = (e2t − 1)

(
∥θ0n∥2L2 + ∥u0

n∥2L2 + α2∥∇u0
n∥2L2

)
.

So, the maximal solution to problem (3.1)–(3.5) is global and T ∗
n = +∞.

Using the product laws and interpolation inequality, we obtain

∥div(vn ⊗ un)∥Ḣ−2 ≤ ∥vn∥L2∥un∥1/2L2 ∥un∥1/2Ḣ1
.

Hence, d
dt vn ∈ L2([0, T ], Ḣ−2). We denote by W the set of functions defined by

W =
{
un : un ∈ L2([0, T ], Ḣ2(T3)),

dun

dt
∈ L2([0, T ], L2(T3))

}
.

By the Aubin–Lions Theorem, we conclude that there is a subsequence un′ such that un′ ⇀ uα

weakly in L2([0, T ], Ḣ2(T3)), and un′ → uα strongly in L2([0, T ], Ḣ1(T3)), moreover, un′ → uα in
C([0, T ], L2(T3)). Likewise, if we denote

W ′ =
{
θn : θn ∈ L2([0, T ], Ḣ1(T3)),

dθn
dt

∈ L2([0, T ], Ḣ−1(T3))
}
,

then there exists θα such that θn′ ⇀ θα weakly in L2([0, T ], Ḣ1(T3)), and θn′ → θα strongly in
L2([0, T ], L2(T3)), moreover, θn′ → θα in C([0, T ], Ḣ−1(T3)). Further, we relabel un′ , vn′ and θn′

by un, vn and θn and note that the strong convergence is compulsory when taking the limit in the
nonlinear term. Let us begin with proving that

lim
n→+∞

Pn[(un∇)θn] = [(uα∇)θα]

in D′(R∗
+ × T3). Let Ψ ∈ Ḣ2 be a vector divergence-free test function, Φ ∈ Ḣ1 be a scalar test

function, and ∀t ∈ R+,

I1n =

t∫
0

⟨
Pn

[
(un − uα)∇θn

]
,Φ

⟩
L2 dτ,

I2n =

t∫
0

⟨
Pn

[
(uα)∇(θn − θα)

]
,Φ

⟩
L2 dτ,

I3n =

t∫
0

⟨
(Pn − I)(uα∇)θα,Φ

⟩
L2 dτ.

Using, respectively, the Cauchy–Schwarz inequality and Sobolev product laws, we obtain

|I1n| ≤ ∥un − uα∥L2([0,T ],Ḣ1)∥θn∥L2([0,T ],Ḣ1)∥Φ∥Ḣ1 ,

|I2n| ≤ ∥uα∥L2([0,T ],Ḣ2)∥θn − θα∥L2([0,T ],L2)∥Φ∥Ḣ1 .
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As for I3n, first, we estimate the term

⟨
(Pn − I)(uα∇)θα,Φ

⟩
L2 =

∫
T3

∑
|k|>n

̂(uα,k∇)θα,ke
ik·xΦ dx

≤
∫
T3

∑
|k|>n

|k|
n

̂(uα,k∇)θα,ke
ik·xΦ dx ≤ 1

n

∫
T3

Λ(div(uαθα))Φ dx.

Then, by inequality (2.2) and Hölder’s inequality, we obtain

|I3n| ≤
1

n

t∫
0

∥∥Λ(div(uαθα))
∥∥
Ḣ−1∥Φ∥Ḣ1 dτ ≤ 1

n
∥uα∥L2([0,T ],Ḣ2)∥θα∥L2([0,T ],Ḣ1)∥Φ∥Ḣ1 .

Now, let us prove that
lim

n→+∞
Pn(vn · ∇)un = (vα · ∇)uα

in D′(R∗
+ × T3). Let

J1
n =

t∫
0

⟨
Pn(vn − vα) · ∇un,Ψ

⟩
L2 dτ,

J2
n =

t∫
0

⟨
Pnvα · ∇(un − uα),Ψ

⟩
L2 dτ,

J3
n =

t∫
0

⟨
(Pn − I)(vα · ∇)uα,Ψ

⟩
L2 dτ.

As for J1
n, we have

|J1
n| ≤

t∫
0

∥∥(vn − vα) · ∇un

∥∥
Ḣ−2∥Ψ∥Ḣ2 dτ

≤ c

t∫
0

∥vn − vα∥Ḣ−1∥∇un∥Ḣ1/2∥Ψ∥Ḣ2 dτ ≤ c∥vn − vα∥L2([0,T ],Ḣ−1)∥un∥L2([0,T ],Ḣ2)∥Ψ∥Ḣ2 .

Since un is bounded in L2([0, T ], Ḣ2) and vn → vα in L2([0, T ], Ḣ−1), we get lim
n→+∞

J1
n = 0. Applying

the Cauchy–Schwarz inequality and Sobolev product laws, we have

|J2
n| ≤

t∫
0

∥∥vα · ∇(un − uα)
∥∥
Ḣ−2∥Ψ∥Ḣ2 dτ

≤
t∫

0

∥vα∥Ḣ−1/2

∥∥∇(un − uα)
∥∥
L2∥Ψ∥Ḣ2 dτ ≤ ∥vα∥L2([0,T ],L2)∥un − uα∥L2([0,T ],Ḣ1)∥Ψ∥Ḣ2 .

Since vα is bounded in L2([0, T ], L2) and un → uα strongly in L2([0, T ], Ḣ1), we get lim
n→+∞

J2
n = 0.

As for J3
n, at a first step, we estimate the term⟨
(Pn − I)(vα · ∇)uα,Ψ

⟩
L2 =

∫
T3

(Pn − I)(vα · ∇)uαΨ dx ≤ 1

n

∫
T3

Λ(div(vα ⊗ uα))Ψ dx,
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where we have used the divergence-free condition and a standard calculation. Then, by the Cauchy–
Schwarz inequality and Sobolev product laws, we get

|J3
n| ≤

1

n

t∫
0

⟨
Λ(div(vα ⊗ uα)),Ψ

⟩
L2 dτ

≤ 1

n

t∫
0

∥∥Λ(div(vα ⊗ uα))
∥∥
Ḣ−2∥Ψ∥Ḣ2 dτ ≤ 1

n
∥vα∥L2([0,T ],L2)∥uα∥L2([0,T ],Ḣ2)∥Ψ∥Ḣ2 .

To prove the continuity of the solution, it suffices to prove at a first step that for all t0 ∈ R+,

∥θα(t)− θα(t0)∥L2(T3) → 0 as t → t0.

Towards this end, we have to prove that the function t 7−→ ∥θα(t)∥L2 is continuous and the func-
tion t 7−→ θα(t) is weakly continuous with value in L2(T3). We have θα ∈ L∞(R+, L

2(T3)) ∩
L2(R+, Ḣ

1(T3)), so, d
dt∥θα(t)∥

2
L2 belongs to L1([0, T ]). Hence, ∥θα(t)∥2L2 belongs to C([0, T ]). Since

θα ∈ L2(R+, Ḣ
1(T3)) and Φ ∈ Ḣ1, we find that as t tends to t0, the inequality∣∣∣∣

t∫
t0

⟨
∇θα,∇Φ

⟩
L2 dτ

∣∣∣∣ ≤ ( t∫
t0

∥∇θα(τ)∥2L2 dτ

)1/2( t∫
t0

∥∇Φ(τ)∥2L2 dτ

)1/2

tends to zero. Using inequality (2.2) and the Cauchy–Schwarz and Hölder inequalities, we find that∣∣∣∣
t∫

t0

⟨
div(θαuα),Φ >L2 dτ

∣∣∣∣ ≤ ( t∫
t0

∥θα∥2L2 dτ

)1/2( t∫
t0

∥uα∥2Ḣ2 dτ

)1/2

∥Φ∥Ḣ1

tends to zero as t tends to t0. Therefore langleθα(t),Φ⟩L2 → ⟨θ(t0),Φ⟩L2 as t → t0 for every Φ ∈ Ḣ1.
In particular, θα(t) ∈ L2 and Φ ∈ Ḣ1 ⊂ L2. Since the Sobolev space Ḣ1 is dense in L2, we have for
t ∈ [0, T ], ⟨θα(t),Φ⟩L2 → ⟨θ(t0),Φ⟩L2 as t → t0 for every Φ ∈ L2. Hence, θα ∈ C([0, T ), L2). Similarly,
we obtain ∥∇uα(t)−∇uα(t0)∥2L2 → 0 as t → t0.

To prove continuous dependence of solutions on initial data, we assumer that (u, θ) and (u, θ) are
any two solutions of the system (Bqα) on the interval [0, T ], with initial values (u0, θ0) and (u 0, θ

0
),

respectively. Let us denote v = u− α2∆u, v = u− α2∆u, δu = u− u, δv = v − v, δθ = θ − θ, and by
δp = p− p. Then

∂tδθ −∆δθ + (δu · ∇)θ + (u · ∇)δθ = 0,

∂tδv −∆δv + (δv · ∇)u+ (v · ∇)δu = −∇δp+ δθe3,

δv = δu− α2∆δu,

div δu = div δv = 0,

(δu, δθ)t=0 = (u0 − u 0, θ0 − θ
0
).

We have d
dt δθ ∈ L2([0, T ], Ḣ−1) and δθ ∈ L2([0, T ], Ḣ1). Moreover, d

dt δv belongs to L2([0, T ], Ḣ−2)

and δu ∈ L2([0, T ], Ḣ2). By appropriate duality action, for almost every time t in [0, T ] we have⟨ d

dt
δθ, δθ

⟩
Ḣ−1

+ ∥∇δθ∥2L2 + ⟨δu · ∇θ, δθ
⟩
Ḣ−1

= 0,⟨ d

dt
δv, δu

⟩
Ḣ−2

+
(
∥∇δu∥2L2 + α2∥∆δu∥2L2

)
+ ⟨δv · ∇u, δu⟩Ḣ−2 = ⟨δθ, δu⟩Ḣ−1 .

Using the fact that (see, e.g., [8, Chapter 3, p. 169])⟨ d

dt
δθ, δθ

⟩
Ḣ−1(T3)

=
1

2

d

dt
∥δθ∥2L2(T3),⟨ d

dt
δv, δu

⟩
Ḣ−2(T3)

=
1

2

d

dt

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3)

)
,



Mathematical Study to a Regularized 3D-Boussinesq System 101

and summing up, we obtain
1

2

d

dt

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
+
(
∥∇δu∥2L2(T3) + α2∥∆δu∥2L2(T3)

)
+ ∥∇δθ∥2L2(T3)

= ⟨δθ, δu⟩Ḣ−1(T3) −⟨δv · ∇u, δu⟩Ḣ−2(T3)︸ ︷︷ ︸
I2

−⟨δu · ∇θ, δθ⟩Ḣ−1(T3)︸ ︷︷ ︸
I3

.

Using, respectively, the Cauchy–Schwarz and Young’s inequalities, we obtain∣∣⟨δθ, δu⟩Ḣ−1(T3)

∣∣ ≤ 1

2

(
∥δu∥2L2 + ∥δθ∥2L2

)
. (3.6)

For I2, we note that∣∣⟨δv · ∇u, δu⟩Ḣ−2(T3)

∣∣ = ∣∣⟨δv · ∇u, δu⟩L2(T3)

∣∣ ≤ ∥δu∥L∞(T 3)∥∇u∥L2(T 3)∥δv∥L2(T 3).

Using inequality (2.2), we obtain

|I2| ≤ C∥δv∥L2(T 3)∥∇u∥L2(T 3)∥δu∥
1/2

Ḣ1(T 3)
∥δu∥1/2

Ḣ2(T 3)
.

The velocity has zero average for positive times, thus we have

∥δv∥L2(T 3) ≤ (c+ α2)∥∆δu∥L2(T 3), (3.7)

using (3.7) and Young’s inequality, we obtain

|I2| ≤ C(c+ α2)∥∇u∥L2(T 3)∥δu∥
1/2

Ḣ1(T 3)
∥δu∥3/2

Ḣ2(T 3)

≤ C

α6
(c+ α2)4∥∇u∥4L2(T 3)∥∇δu∥2L2(T 3) +

α2

2
∥∆δu∥2L2(T 3). (3.8)

To estimate I3, we use the Cauchy–Schwarz inequality twice to obtain∣∣⟨δu · ∇θ, δθ⟩Ḣ−1(T3)

∣∣ ≤ ∥δu∥L3∥∇θ∥L2∥δθ∥L6 .

Next, inequalities (2.1), (2.3) and Sobolev’s norm definition imply that∣∣⟨δu · ∇θ, δθ⟩Ḣ−1(T3)

∣∣ ≤ ∥δu∥1/2L2 ∥δu∥1/2
Ḣ1

∥∇θ∥L2∥δθ∥Ḣ1 ≤ ∥δu∥1/2L2 ∥∇δu∥1/2L2 ∥∇θ∥L2∥∇δθ∥L2 .

Using twice the Young product inequality, we obtain

|I3| ≤
1

4α

(
∥δu∥2L2 + α2∥∇δu∥2L2

)
∥∇θ∥2L2 +

1

2
∥∇δθ∥2L2 . (3.9)

Summing up estimates (3.6), (3.8) and (3.9), we infer that

d

dt

(
∥δu∥2L2 + α2∥∇δu∥2L2 + ∥δθ∥2L2

)
+
(
∥∇δu∥2L2 + α2∥∆δu∥2L2

)
+ ∥∇δθ∥2L2

≤ g(t)
(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
,

where
g(t) =

(
1 + C

( 1

α8
+ 1

)
∥∇u∥4L2 +

1

2α
∥∇θ∥2L2

)
.

Dropping the dissipative positive term from the left-hand side, we obtain
d

dt

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
≤ g(t)

(
∥δu∥2L2(T3) + α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
.

Since θ∈L2([0, T ], Ḣ1) and u∈L∞([0, T ], Ḣ1), Grönwall’s lemma (cf. [5, Appendix A, p. 377]) leads to

(
∥δu∥2L2(T3)+ α2∥∇δu∥2L2(T3) + ∥δθ∥2L2(T3)

)
≤
(
∥δu0∥2L2(T3)+ α2∥∇δu0∥2L2(T3)+ ∥δθ0∥2L2(T3)

)
e

t∫
0

g(s) ds
.

This implies the continuous dependence of the weak solution on the initial data in any bounded
interval of time [0, T ]. In particular, the solution is unique.
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4 Decay results
Following [1], we introduce the change of functions φn := F−1(eat|k|θ̂n) and wn := F−1(eat|k|ûn).
Applying Fourier transform to (3.1) and to (3.2), we obtain

∂tφ̂n + |k|(|k| − a)φ̂n + eat|k|F(Pn(un · ∇θn)) = 0, (4.1)
(1 + α2|k|2)

(
∂tŵn + |k|(|k| − a)ŵn

)
− φ̂ne3 + eat|k|F(Pn(vn · ∇θn)) = 0. (4.2)

We note that under the divergence free condition, the pressure term vanishes. The Plancherel identity
implies that the trilinear expressions vanish as (v · ∇u, u)L2 = 0 and (u · ∇θ, θ)L2 = 0. Taking the
combinations (4.1)φ̂n +(4.1)φ̂n and (4.2)ŵn +(4.2)ŵn, using the Cauchy–Schwarz inequality and the
fact that

(1− a)|k|2 ≤ |k|(|k| − a) ∀ k ∈ Z3,

one obtains
∂t|φ̂n|2 + 2(1− a)|k|2|φ̂n|2 = 0 (4.3)

and
(1 + α2|k|2)∂t|ŵn|2 + 2(1− a)|k|2(1 + α2|k|2)|ŵn|2 ≤ |φ̂n| |ŵn|. (4.4)

Integrating (4.3) with respect to time and summing up over k ∈ Z3, we obtain

∥φ(t, · )∥2L2 + (1− a)

t∫
0

∥∇φ(τ)∥2L2 dτ ≤ ∥θ0∥2L2 . (4.5)

Integrating (4.4) with respect to time and summing up over k ∈ Z3, we obtain

∥w(t)∥2L2 + α2∥∇w(t)∥2L2 + (1− a)

t∫
0

∥∇w(s)∥2L2 + α2∥∆w(s)∥2L2 ds

≤ ∥u0∥2L2 + α2∥∇u0∥2L2 + ∥θ0∥L2

t∫
0

∥w(τ)∥L2 dτ.

Since ∂t|ŵn|2 ≤ |φ̂n∥ŵn|, we can deduce that

∥w(t)∥2L2 + α2∥∇w(t)∥2L2 + (1− a)

t∫
0

∥∇w(s)∥2L2 + α2∥∆w(s)∥2L2 ds

≤
(
∥u0∥2L2 + α2∥∇u0∥2L2 + t∥θ0∥L2

)2
. (4.6)

Summing up estimates (4.5) and (4.6), one obtains

∥φ(t)∥2L2 + ∥w(t)∥2L2 + α2∥∇w(t)∥2L2 + (1− a)

t∫
0

∥∇φ(t)∥2L2 + ∥∇w(t)∥2L2 + α2∥∆w(t)∥2L2

≤
(
∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 + t∥θ0∥L2

)2
.

As for the existence result, this energy estimate allows to run a standard compactness argument and to
obtain the existence of (φ,w) such that φ ∈ C(R+, L2)∩L2(R+,H1) and w ∈ C(R+,H1)∩L2(R+,H2).
In particular,∑

k∈Z3

e2at|k|
(
|θ(t, k)|2 + (1 + α2|k|2)|u(t, k)|2

)
≤

(
∥θ0∥2L2 + ∥u0∥2L2 + α2∥∇u0∥2L2 + t∥θ0∥L2

)2
. (4.7)

For zero-mean valued (θ, u), multiplying by exp(−2at), we deduce that θ and u vanish, respectively,
in the L2 and H1 norm as time tends to infinity. Note that estimation (4.7) does not allow to deduce
the decay result, so a sharper estimation is needed.
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5 Convergence results
As α is destined to vanish, we can suppose that there exists a fixed α0 such that 0 < α ≤ α0. It
follows that

∥θα∥2L2 + ∥uα∥2L2 + α2∥∇uα∥2L2 + 2

t∫
0

∥∇θα∥2L2(T3) dτ

+ 2

t∫
0

(
∥∇uα∥2L2 + α2∥∆uα∥2L2

)
dτ ≤ ∥θ0∥2L2 + ∥u0∥2L2 + α2

0∥∇u0∥2L2 + σα0
(t). (5.1)

This implies that θα and uα are uniformly bounded in L2([0, T ], Ḣ1(T3)) and vα is uniformly bounded
in L2([0, T ], L2(T3)), then the Banach–Alaoglu theorem [6] allows to extract subsequences (uα),
(vα), and (θα) such that (θα, uα) ⇀ (θ, u) weakly in L2([0, T ], Ḣ1(T3)) and vα ⇀ u weakly in
L2([0, T ], L2(T3)) as α → 0. Using the energy estimate, we infer that (uα, θα) converges to (u, θ)
weakly in L2(T3) and uniformly over [0, T ]. At this step, we have proved the two first results of
statements 1 and 2 and the third statement of Theorem 1.3.

About time derivatives, since θα is uniformly bounded independently on α in the space
L2([0, T ], Ḣ1(T3)), we find that ∆θα belongs to L2([0, T ], Ḣ−1(T3)). Furthermore, the energy es-
timate (5.1) implies that

T∫
0

∥div θαuα∥2Ḣ−3/2 ≤ ∥θα∥2L∞([0,T ],L2)∥uα∥2L2([0,T ],Ḣ1)

≤ 1

2

(
∥θ0∥2L2 + ∥u0∥2L2 + α2

0∥∇u0∥2L2 + σα0(t)
)2
.

Then we obtain ∥∥∥ d

dt
θα

∥∥∥
L2([0,T ],Ḣ−3/2)

≤ K1,

where K1 is a real positive constant. To handle the velocity derivatives, we apply the operator
(I − α2∆)−1 to the equation (3.2) and obtain

d

dt
uα = ∆uα − (I − α2∆)−1(vα · ∇)uα + (I − α2∆)−1∇pα + (I − α2∆)−1θαe3. (5.2)

We have that uα is uniformly bounded independently of α in L2([0, T ], Ḣ1(T3)), and it follows that
∆uα belongs to L2([0, T ], Ḣ−1(T3)). First, we note that∥∥ |(I − α2∆)−1|

∥∥ ≤ 1.

Then we use the Sobolev norms definition and product laws to get

T∫
0

∥∥(I − α2∆)−1 div(vα ⊗ uα)
∥∥2
Ḣ−5/2 ≤

T∫
0

∥∥div(vα ⊗ uα)
∥∥2
Ḣ−5/2

≤
T∫

0

∥vα∥2L2∥uα∥2L2 ≤ ∥uα∥2L∞([0,T ],L2)∥vα∥
2
L2([0,T ],L2).

Thus, estimate (5.1) allows to bound the convective term. The linear terms are not problematic.
Equation (5.2) implies that ∥ d

dt uαk
∥L2([0,T ],Ḣ−5/2(T3)) ≤ K, where K is a real positive constant, and

so on for d
dtvαk

in the space L2([0, T ], Ḣ−9/2(T3)).
At this step, using Aubin’s compactness theorem, we can extract subsequences of θα, uα that con-

verge strongly in L2([0, T ], L2(T3)) and subsequence of vα converging strongly in L2([0, T ], Ḣ−1(T3)).
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Thus, as in the existence section, using Aubin’s compactness theorem, we can take the weak limit
in the variational formulation associated to the system (Bqα). For t ∈ [0;T ] one obtains

(θ(t),Φ)− (θ(0),Φ)−
t∫

0

(θ,∆Φ) dτ +

t∫
0

((u∇)θ,Φ) dτ = 0,

(u(t),Ψ)− (u(0),Ψ)−
t∫

0

(u,∆Ψ) dτ +

t∫
0

((u∇)u,Ψ) dτ −
t∫

0

(θe3,Ψ) dτ = 0

for all Φ and Ψ belonging to the space of infinitely differentiable functions with a compact support
D(T3 × [0, T )).

On the other hand, θα converges weakly to θ and uα converges weakly to u in L2([0, T ], L2(T3))∩
L2([0, T ], Ḣ1(T3)), which are Hilbert spaces. So, for all non-negative time t, we have

∥θ∥2L2 + ∥u∥2L2 ≤ lim inf
α→0

(
∥θα∥2L2 + ∥uα∥2L2 + α2∥∇uα∥2L2

)
,

and

2

t∫
0

∥∇θ∥2L2(T3) dτ + 2

t∫
0

∥∇u∥2L2 dτ

≤ lim inf
α→0

2

t∫
0

∥∇θα∥2L2(T3) dτ + 2

t∫
0

(
∥∇uα∥2L2 + α2∥∆uα∥2L2

)
dτ.

Taking the lower limit as α tends to zero in the energy inequality (1.1), we obtain (1.2).
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