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THE BOUNDARY VALUE PROBLEMS
FOR THE BI-LAPLACE–BELTRAMI EQUATION



Abstract. The purpose of the present paper is to investigate the boundary value problems for the
bi-Laplace–Beltrami equation ∆2

Cφ = f on a smooth hypersurface C with the boundary Γ = ∂C . The
unique solvability of the BVP is proved on the basis of Green’s formula and Lax–Milgram Lemma.

We also prove the invertibility of the perturbed operator in the Bessel potential spaces ∆2
C +H I :

Hs+2
p (S ) → Hs−2

p (S ) for a smooth closed hypersurface S without boundary for arbitrary 1 < p <∞
and −∞ < s <∞, provided H is a smooth function, has non-negative real part Re H (t) > 0 for all
t ∈ S and non-trivial support mes supp Re H ̸= 0.
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ÒÄÆÉÖÌÄ. ÓÔÀÔÉÉÓ ÌÉÆÀÍÉÀ ÂÀÌÏÅÉÊÅËÉÏÈ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ ÁÉ−ËÀÐËÀÓ−ÁÄËÔÒÀÌÉÓ
∆2

Cφ = f ÂÀÍÔÏËÄÁÉÓÈÅÉÓ, ÒÏÂÏÒÝ ÜÅÄÖËÄÁÒÉÅÉ, ÀÓÄÅÄ ÛÄÒÄÖËÉ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉÈ
ÂËÖÅ C äÉÐÄÒÆÄÃÀÐÉÒÆÄ, ÒÏÌËÉÓ ÓÀÆÙÅÀÒÉÀ Γ = ∂C . ÌÏÝÄÌÖËÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÀ ÃÀ
ÀÌÏÍÀáÓÍÉÓ ÄÒÈÀÃÄÒÈÏÁÀ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÂÒÉÍÉÓ ×ÏÒÌÖËÉÓÀ ÃÀ ËÀØÓ−ÌÉËÂÒÀÌÉÓ ËÄÌÉÓ
ÓÀÛÖÀËÄÁÉÈ.

ÀÂÒÄÈÅÄ ÃÀÌÔÊÉÝÄÁÖËÉÀ ∆2
C + H I : Hs+2

p (S ) → Hs−2
p (S ) ÛÄÛ×ÏÈÄÁÖËÉ ÏÐÄÒÀÔÏÒÉÓ

ÛÄÁÒÖÍÄÁÀÃÏÁÀ ÁÄÓÄËÉÓ ÐÏÔÄÍÝÉÀËÈÀ ÓÉÅÒÝÄÄÁÛÉ ÜÀÊÄÔÉËÉ ÂËÖÅÉ äÉÐÄÒÆÄÃÀÐÉÒÉÓÈÅÉÓ
S ÓÀÆÙÅÒÉÓ ÂÀÒÄÛÄ, 1 < p <∞ ÃÀ −∞ < s <∞ ÐÀÒÀÌÄÔÒÄÁÉÓÈÅÉÓ. ÀÓÄÅÄ ÃÀÌÔÊÉÝÄÁÖËÉÀ,
ÒÏÌ H ÀÒÉÓ ÂËÖÅÉ ×ÖÍØÝÉÀ, ÀØÅÓ ÀÒÀÖÀÒÚÏ×ÉÈÉ Re H (t) > 0 ÍÀÌÃÅÉËÉ ÍÀßÉËÉ ÚÅÄËÀ
t ∈ S -ÓÈÅÉÓ ÃÀ mes supp Re H ̸= 0.
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1 Introduction
Let C ⊂ S be a smooth subsurface of a closed hypersurface S in the Euclidean space Rn (see
Section 2 for details) and Γ = ∂C ̸= ∅ be its smooth boundary. Let Dj := ∂j − νj∂ν , j = 1, . . . , n, be
Günter’s tangential derivatives, and ∆2 :=

n∑
j,k=1

D2
j D2

k be the bi-Laplace–Beltrami operator restricted

to the surface C .
The purpose of the present paper is to investigate the boundary value problems (BVPs) for the

bi-Laplace–Beltrami equation 
∆2

Cu(t) = f(t), t ∈ C ,

(B0u)
+(s) = g(s), on Γ,

(B1u)
+(s) = h(s), on Γ,

(1.1)

where the boundary operators can be chosen as follows:

B0 = I and B1 = ∂νΓ
, or B1 = ∆C ,

B0 = ∂νΓ
and B1 = ∆C , or B1 = ∂νΓ

∆C .
(1.2)

The BVP {
∆2

Cu(t) = f(t), t ∈ C ,

u+(τ) = 0, (∂νΓ
u)+(τ) = 0, τ ∈ Γ,

is called a clamped surface equation and is considered in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ).

The BVP {
∆2

Cu(t) = f(t), t ∈ C ,

u+(τ) = g(τ), (∆Cu)
+ + a∂νΓu)

+(τ) = h(τ), τ ∈ Γ,

with Steklov Boundary Conditions is considered in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ), g ∈ H3/2(Γ), h ∈ H−3/2(Γ).

Here a is a real-valued constant.
The BVP {

∆2
Cu(t) = f(t), t ∈ C ,

u+(τ) = g(τ), (∆Cu)
+ = h(τ), τ ∈ Γ

with Navier Boundary Conditions is considered in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ), g ∈ H3/2(Γ), h ∈ H−1/2(Γ).

First we consider in detail the case
∆2u(t) = f(t), t ∈ C ,

(∂νΓ
u)+(s) = g(s), on Γ,

(∂νΓ
∆Cu)

+(s) = h(s), on Γ,

(1.3)

in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ C ), g ∈ H1/2(Γ), h ∈ H−3/2(Γ), (1.4)

where
H̃−2

Γ (Ω) :=
{
f ∈ H̃−2(Ω) | (f, φ)L2(Ω) = 0, φ ∈ C∞

0 (Ω)
}
. (1.5)
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Remark 1.1. Let us comment on the condition f ∈ H̃−2
Γ (C ) in (1.4).

As is shown in [13, p. 196], the condition f ∈ H̃−2(C ) does not ensure the uniqueness of a solution
to the BVP (1.3). The right-hand side f needs additional constraint that it belongs to the subspace
H̃−2

0 (Ω) ⊂ H̃−2(Ω) which is the orthogonal complement to the subspace H̃−2
Γ (Ω) of those distributions

from H̃−2(Ω) which are supported only on the boundary Γ = ∂Ω of the domain (see (1.5)).

Another cases in (1.2) are considered analogously.
We will prove the unique solvability of the BVP (1.3) in the classical setting (1.4) by applying the

Lax–Milgram Lemma.
We also consider the following BVP with the mixed boundary conditions: Let C ⊂ S be a smooth

subsurface of a closed hypersurface S in the Euclidean space Rn (see Section 2 for details) and its
smooth boundary ∂C = Γ = Γ1 ∪ Γ2 ̸= ∅ be decomposed into two non-intersecting connected parts.
Consider the mixed BVP for the bi-Laplase-Beltrami equation

∆2u(t) = f(t), t ∈ C ,

(u)+(s) = g1(s), on Γ1,

(∂νΓu)
+(s) = g2(s), on Γ2,

(∆Cu)
+(s) = h1(s), on Γ1,

(∂νΓ∆Cu)
+(s) = h2(s), on Γ2,

(1.6)

in the weak classical setting

u ∈ H2(C ), f ∈ H̃−2
Γ (C ), g1 ∈ H3/2(Γ1), g2 ∈ H1/2(Γ2), h1 ∈ H−1/2(Γ1), h2 ∈ H−3/2(Γ2). (1.7)

The following are the main theorems of the present paper. The proofs are exposed in Sections 3
and 4, below.

Prior formulating the theorems let us introduce the Hilbert spaces with detached constants
H2

#(S ) := H2(S ) \ {const}. Another description of the space H2
#(S ) is that it consists of all

functions φ ∈ H2(S ), which have the zero mean value, (φ, 1)S = 0.

Theorem 1.1. The boundary value problem (1.3) in the weak classical setting (1.4) has a unique
solution in the space H2

#(C ).

Theorem 1.2. The mixed type boundary value problem (1.6) in the weak classical setting (1.7) has a
unique solution in the space H2

#(C ).

The Bi-Laplace–Beltrami operator ∆2 = ∆×∆ is a model of a fourth-order operator. The BVPs
on hypersurfaces arise in a variety of situations and have many practical applications. They appear
in various problems of linear elasticity, for example, when looking for small displacements of a plate,
whereas the Laplacian describes the behavior of a membrane.

A hypersurface S in Rn has the natural structure of an (n − 1)-dimensional Riemannian mani-
fold and the aforementioned partial differential equations (PDEs) are not the immediate analogues
of the ones corresponding to the flat, Euclidean case, since they have to take into consideration geo-
metric characteristics of S such as curvature. Inherently, these PDEs are originally written in local
coordinates, intrinsic to the manifold structure of S .

Another problem we encounter in considering BVPs (1.1) is the existence of a fundamental solution
for the bi-Laplace–Beltrami operator. An essential difference between the differential operators on
hypersurfaces and the Euclidean space Rn lies in the existence of the fundamental solution: In Rn,
a fundamental solution exists for all partial differential operators with constant coefficients if it is
not trivially zero. On a hypersurface, the bi-Laplace–Beltrami operator has no fundamental solution
because it has a non-trivial kernel, constants, in all Bessel potential spaces. Therefore we consider the
bi-Laplace–Beltrami operator in the Hilbert spaces with detached constants ∆2

C : H2
#(S ) → H−2(S )

and prove that it is an invertible operator. The established invertibility implies the existence of a
certain fundamental solution, which can be used to define the volume (Newtonian), single layer and
double layer potentials.
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2 Auxiliary material
We commence with the definition of a hypersurface. There exist other equivalent definitions, but they
are most convenient for us. Equivalence of these definitions and some other properties of hypersurfaces
are discussed, e.g., in [7, 8].

Definition 2.1. A subset S ⊂ Rn of the Euclidean space is said to be a hypersurface if it has a

covering S =
M∪
j=1

Sj and coordinate mappings

Θj : ωj −→ Sj := Θj(ωj) ⊂ Rn, ωj ⊂ Rn−1, j = 1, . . . ,M, (2.1)

such that the corresponding differentials

DΘj(p) := matr
[
∂1Θj(p), . . . , ∂n−1Θj(p)

]
have the full rank

rankDΘj(p) = n− 1, ∀ p ∈ Yj , k = 1, . . . , n, j = 1, . . . ,M,

i.e., all points of ωj are regular for Θj for all j = 1, . . . ,M .
Such a mapping is called an immersion as well.

Here and in what follows, matr[x1, . . . , xk] refers to the matrix with the listed vectors x1, . . . , xk
as columns.

A hypersurface is called smooth if the corresponding coordinate diffeomorphisms Θj in (2.1) are
smooth (C∞-smooth). Similarly is defined a µ-smooth hypersurface.

The next definition of a hypersurface is called implicit.

Definition 2.2. Let k > 1 and ω ⊂ Rn be a compact domain. An implicit Ck-smooth hypersurface
in Rn is defined as the set

S =
{

X ∈ ω : ΨS (X ) = 0
}
,

where ΨS : ω → R is a Ck-mapping, which has the non-vanishing gradient ∇Ψ(X ) ̸= 0.

The most important role in the calculus of tangential differential operators that we are going to
apply belongs to the unit normal vector field ν(y), t ∈ C . The unit normal vector field to the
surface C , known also as the Gauß mapping, is defined by the vector product of the covariant basis

ν(X ) := ±
g1(X ) ∧ · · · ∧ gn−1(X )

|g1(X ) ∧ · · · ∧ gn−1(X )|
, X ∈ C .

The system of tangential vectors {gk}n−1
k=1 to C is, by the definition, linearly independent and is

known as the covariant basis. There exists the unique system {gk}n−1
k=1 biorthogonal to it, i.e., the

contravariant basis
⟨gj , g

k⟩ = δjk, j, k = 1, . . . , n− 1.

The contravariant basis is defined by the formula

gk =
1

detGS
g1 ∧ · · · ∧ gk−1 ∧ ν ∧ gk+1 ∧ · · · ∧ gn−1, k = 1, . . . , n− 1,

where
GS (X ) :=

[⟨
gk(X ), gm(X )

⟩]
n−1×n−1

, p ∈ S ,

is the Gram matrix.
Günter’s derivatives are the simplest examples of tangential differential operators

Dj := ∂j − νj∂ν = ∂j − νj

n∑
k=1

νk∂k.
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The surface divergence divS and the surface gradient ∇S are defined as follows:

divS U =

n∑
k=1

∂kUk, ∇Sφ := (D1φ, . . . ,Dnφn)
⊤, U := (U1, . . . , Un)

⊤,

and the surface Laplace–Beltrami operator ∆S is their superposition

∆Sψ = divS∇S ψ =

n∑
j=1

Djψ. (2.2)

In contrast to the classical differential geometry, the surface gradient, the surface divergence
and the surface Laplace–Beltrami operator ∆S are defined by Günter’s derivatives much simpler,
with the help of only normal vector field ν, while definitions in the classical differential geometry are
based on the Christoffel symbols Γj

km, the covariant and the contravariant G−1 := [gjk] Riemann
metric tensors and are rather complicated.

It is well known that divS is the negative dual to the surface gradient

⟨divSV , f⟩ := −⟨V ,∇S f⟩, ∀V ∈ V (S ), ∀ f ∈ C1(S ).

Let M be a non-trivial, mes M ̸= ∅, smooth closed hypersurface, s ∈ R and 1 < p < ∞. For the
definitions of Bessel’s potential Hs

p(M ) and Sobolev–Slobodeckii Ws
p(M ) spaces for a closed smooth

manifold M we refer to [22] (see also [6, 12, 13]). For p = 2, the Sobolev–Slobodetski Ws(M ) :=
Ws

2(M ) and the Bessel potential Hs(M ) := Hs
2(M ) spaces coincide (i.e., the norms are equivalent).

Let C be a subsurface of a smooth closed surface M , C ⊂ M , with the smooth boundary
Γ := ∂C . The space H̃s

p(C ) is defined as the subspace of those functions φ ∈ Hs
p(M ), which are

supported in the closure of the subsurface, suppφ ⊂ C , whereas Hs
p(C ) denotes the quotient space

Hs
p(C ) = Hs

p(M )/H̃s
p(C

c) and C c := M \C is the complementary subsurface to C . The space Hs
p(C )

can be identified with the space of distributions φ on C which have an extension to a distribution
ℓφ ∈ Hs

p(M ). Therefore rCHs
p(M ) = Hs

p(C ), where rC denotes the restriction operator of functions
(distributions) from the surface M to the subsurface C .

The spaces W̃s
p(C ) and Ws

p(C ) are defined similarly (see [22] and also [6, 12,13]).
By Xs

p(C ) we denote one of the spaces: Hs
p(C ) or Ws

p(C ), and by X̃s
p(C ) one of the spaces: H̃s

p(C )

and W̃s
p(C ) (if C is open).

The bi-Laplace–Beltrami operator has the finite dimensional kernel dim Ker∆C ≤ ∞, and its
kernel consists only of constants. Hence the space Xs(C ) decomposes into the direct sum

Xs
p(C ) = Xs

p,#(C ) + {const},

where
Xs

p,#(C ) :=
{
φ ∈ Xs

2(C ) : (φ, 1) = 0
}

(2.3)
is the space without constants.

Lemma 2.1. The bi-Laplace–Beltrami operator ∆2
Sφ := (divS∇S )2φ : H2(S ) → H−2(S ) is

elliptic, self-adjoint (∆2
S )∗ = ∆2

S , non-negative

(∆2
Sφ,φ) = (∆Sφ,∆Sφ) =

∥∥∆Sφ
∣∣L2(S )

∥∥2 ≥ 0, φ ∈ H2(S )

and the homogenous equation has only a constant solution

(∆2
Sφ,φ) = 0, only for φ = const. (2.4)

Proof. ∆2
S is elliptic and self-adjoint since ∆S is elliptic and self-adjoint (see [7]).

Due to (2.2) and (2.4), we get

0 = (∆2
Sφ,φ) = (∆Sφ,∆Sφ) =

∥∥∆Sφ
∣∣L2(S )

∥∥2
which gives ∆Sφ = 0 and, consequently, φ = const (see [7]).
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Corollary 2.1. The space Xs(C ) decomposes into the direct sum

Xs(C ) = Xs
#(C ) + {const},

where Xs
#(C ) is the space with detached constants and the operator ∆2

S is invertible between the spaces
with detached constants (see (2.3))

∆2
S : Xs+2

# (S ) −→ Xs−2
# (S ). (2.5)

Therefore ∆2
S has the fundamental solution in the setting (2.5).

Proof. The boundedness in (2.5) follows from that of the operator

∆S : Xs+1
# (S ) −→ Xs−1

# (S )

proved in [10].
Since ∆2

S has the trivial kernel in the setting (2.5) and is self-adjoint (see the foregoing Lemma 2.1),
it has the trivial co-kernel as well and is invertible.

Corollary 2.2. For the bi-Laplace–Beltrami operator ∆2
C on the open hypersurface C the following

I and II Green’s formulae are valid:

(∆2
Cφ,ψ)C − (∆Cφ,∆Cψ)C = −((∂νΓ

∆Cφ)
+, ψ+)Γ + ((∆Cφ)

+, (∂νΓ
ψ)+)Γ, (2.6)

(∆2
Cφ,ψ)C + ((∂νΓ∆Cφ)

+, ψ+)Γ − ((∆Cφ)
+, (∂νΓψ)

+)Γ

= (φ,∆2
Cψ)C + (φ+, (∂νΓ

∆Cψ)
+)Γ − ((∂νΓ

φ)+, (∆Cψ)
+)Γ

for arbitrary φ,ψ ∈ X2(C ) (see [4]).

Lemma 2.2 (see [14] (Lax–Milgram)). Let B be a Banach space, A(φ,ψ) be a continuous, bilinear
form

A( · , · ) : B×B −→ R

and positive definite
A(φ,φ) ≥ C

∥∥φ∣∣B∥∥2, ∀φ ∈ B, C > 0.

Let L( · ) : B → R be a continuous linear functional.
A linear equation

A(φ,ψ) = L(ψ)

has a unique solution φ ∈ B for an arbitrary ψ ∈ B.

3 The solvability of BVPs for the bi-Laplace–Beltrami
equation

Let again C ⊂ S be a smooth subsurface of a closed hypersurface S and Γ = ∂C ̸= ∅ be its smooth
boundary.

To prove the forthcoming theorem about the unique solvability we will need more properties of
the trace operators (called retractions) and their inverses, called co-retractions (see [22, § 2.7]).

To keep the exposition simpler we recall a very particular case of Lemma 4.8 from [6], which we
apply to the present investigation.

Lemma 3.1. Let s > 0, s ̸∈ N, p = 2, B(D) be a normal differential operator of the third order
defined in the vicinity of the boundary Γ = ∂C and A(D) be a normal differential operator of the
fourth order defined on the surface C . Then there exists a continuous linear operator

B : Hs(Γ)⊗Hs−1(Γ)⊗Hs−2(Γ)⊗Hs−3(Γ) −→ Hs+ 1
2 (C )
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such that
(BΦ)+ = φ0, (B1(D)BΦ)+ = φ1, (B2(D)BΦ)+ = φ2,

(B3(D)BΦ)+ = φ3, A(D)BΦ ∈ H̃s−4+ 1
2 (C )

for an arbitrary quadruple of the functions Φ = (φ0, φ1, φ2, φ3)
⊤, where φ0 ∈ Hs(Γ), φ1 ∈ Hs−1(Γ),

φ2 ∈ Hs−2(Γ) and φ3 ∈ Hs−3(Γ).

Corollary 3.1. Let u be a solution of the equation ∆2
Cu = f . Then it has the traces u+ ∈ H 3

2 ,
(∂νΓu)

+ ∈ H 1
2 , (∆Cu)

+ ∈ H− 1
2 , (∂νΓ∆Cu)

+ ∈ H− 3
2 .

Proof. The existence of the traces u+ ∈ H 3
2 , (∂νΓ

u)+ ∈ H 1
2 is a direct consequence of the general trace

theorem (see [22] for details). Let us prove the existence of the rest traces. Concerning the existence
of the trace (∂νΓ

∆Cφ)
+ in (1.3) for a solution u ∈ H2(C ) is not guaranteed by the general trace

theorem, but, according to Lemma 3.1, there exists a function ψ ∈ H2(C ) such that (∂νΓψ)
+ = 0.

Then the first Green’s formula (2.6) ensures the existence of the trace. Indeed, by setting φ = u and
inserting the data ∆2

Cφ = f(t) into the first Green’s formula (2.6), we get

−((∂νΓ
∆Cu)

+, ψ+)Γ = (f, ψ)C − (∆Cu,∆Cψ)C . (3.1)

The scalar product (∆Cu,∆Cψ) in the right-hand side of equality (3.1) is correctly defined and defines
correct duality in the left-hand side of the equality. Since ψ+ ∈ H3/2(Γ) is arbitrary, by the duality
argument this implies that (∂νΓ

∆Cu)
+ should be in the dual space, i.e., in H−3/2(Γ).

Let us now prove the existence of the trace (∆Cφ)
+. Taking an arbitrary ψ ∈ H2(C ) and rewriting

the first Green’s formula (2.6) in the form

((∆Cu)
+, (∂νΓ

ψ)+)Γ = (f, ψ)C − (∆Cu,∆Cψ)C + ((∂νΓ
∆Cu)

+, ψ+)Γ, (3.2)

we note that the right-hand side of equality (3.2) is correctly determined and defines correct duality
in the left-hand side. Since (∂νΓψ)

+ ∈ H1/2(Γ) is arbitrary, by the duality argument this implies that
(∆Cu)

+ should be in the dual space, i.e., in H−1/2(Γ).

Proof of Theorem 1.1. We commence with the reduction of the BVP (1.3) to an equivalent one with
the homogeneous condition and apply Lemma 3.1: there exists a function Φ ∈ H2(C ) such that
(∂νΓ

Φ)+(t) = g(t) for t ∈ Γ and ∆2
CΦ ∈ H̃−2

0 (C ).
For a new unknown function v := u−Φ we have the following equivalent reformulation of the BVP

(1.3): 
∆2

C v(t) = f0(t), t ∈ C ,

(∂νΓv)
+(s) = 0, on Γ,

(∂νΓ∆C v)
+(s)⟩ = h0(s), on Γ,

(3.3)

where

f0 := f +∆2
CΦ ∈ H̃−2

0 (C ), h0 := h+ (∂νΓ∆CΦ)+ ∈ H−3/2(Γ), v+ ∈ H̃3/2(Γ).

By inserting the data from the reformulated boundary value problem (3.3) into the first Green’s
identity (2.6), where φ = ψ = v, we get

(∆C v,∆C v)C = (∆2
C v, v)C +((∂νΓ

∆C v)
+, v+)Γ − ((∆C v)

+, (∂νΓ
v)+)Γ = (f0, v)C +(h0, v

+)Γ. (3.4)

In the left-hand side of equality (3.4) we have a symmetric bilinear form, which is positive definite:

(∆Sφ,∆Sφ) =
∥∥∆Sφ | L2(S )

∥∥2 ≥ 0, φ ∈ H2
#(S ).

(h0, v
+)Γ and (f0, v)C from equality (3.4) are the correctly defined continuous functionals, since h0 ∈

H−3/2(Γ), f0 ∈ H̃−2(C ), while their counterparts in the functional belong to the dual spaces v+ ∈
H̃3/2(Γ) and v ∈ H̃2(Γ,C ) ⊂ H2(C ).

The Lax–Milgram Lemma 2.2 accomplishes the proof.
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4 The solvability of mixed BVPs for the bi-Laplace–Beltrami
equation

Proof of Theorem 1.2. We commence with the reduction of the BVP (1.6) to an equivalent one with
the homogeneous conditions. Towards this end, we extend the boundary data g1 ∈ H3/2(Γ1), g2 ∈
H1/2(Γ2) and h1 ∈ H−1/2(Γ1) up to some functions g̃1 ∈ H3/2(Γ), g̃2 ∈ H1/2(Γ) and h̃1 ∈ H−1/2(Γ) on
the entire boundary Γ and apply Lemma 3.1: there exists a function Φ ∈ H2(C ) such that

Φ+ = g̃1, (∂νΓ
Φ)+ = g̃2, (∆CΦ)+ = h1, and ∆2

CΦ ∈ H̃−2
0 (C ).

For a new unknown function v := u − Φ we have the following equivalent reformulation of the
BVP (1.6): 

∆2v(t) = f0(t), t ∈ C ,

(v)+(s) = 0, on Γ1,

(∂νΓ
v)+(s) = 0, on Γ2,

(∆C v)
+(s) = 0, on Γ1,

(∂νΓ∆C v)
+(s) = h0(s), on Γ2,

(4.1)

where
f0 := f +∆2

CΦ ∈ H̃−2
0 (C ), h0 := h2 + (∂νΓ

∆CΦ)+ ∈ H−3/2(Γ2),

v+ ∈ H̃3/2(Γ2), (∂νΓ
v)+ ∈ H̃1/2(Γ1), (∆C v)

+ ∈ H̃−1/2(Γ2)
(4.2)

To justify the last inclusion v+ ∈ H̃3/2(Γ2), (∂νΓv)
+ ∈ H̃1/2(Γ1) and (∆C v)

+ ∈ H̃−1/2(Γ2),
note that, due to our construction, the traces of a solution vanish: v+ |Γ1= 0, (∂νΓv)

+ |Γ2= 0 and
(∆C v)

+ |Γ1
= 0. By inserting the data from the reformulated boundary value problem (4.1) into the

first Green’s identity (2.6), where φ = ψ = v, we get

(∆C v,∆C v)C = (∆2
C v, v)C + ((∂νΓ∆C v)

+, v+)Γ1 + ((∂νΓ∆C v)
+, v+)Γ2

− ((∆C v)
+, (∂νΓ

v)+)Γ1
− ((∆C v)

+, (∂νΓ
v)+)Γ2

= (f0, v)C + (h0, v
+)Γ2

(4.3)

In the left-hand side of equality (4.3) we have a symmetric bilinear form, which is positive definite:

(∆Sφ,∆Sφ) = ∥∆Sφ | L2(S )∥2 ≥ 0, φ ∈ H2
#(S ),

(h0, v
+)Γ2

and (f0, v)C from equality (4.3) are the correctly defined continuous functionals, since
h0 ∈ H−3/2(Γ2), f0 ∈ H̃−2(C ), while their counterparts in the functional belong to the dual spaces
v+ ∈ H̃3/2(Γ2) and v ∈ H̃2(Γ,C ) ⊂ H2(C ).

The Lax–Milgram Lemma 2.2 accomplishes the proof.
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