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Abstract. The paper discusses the asymptotic stability regions of multistep discretization of linear
delay differential equation with a constant delay. Different location of delay dependent parts of
stability regions with respect to parity of number of steps clarifies unexpected changes in numerical
solution’s behaviour under various settings of the equation’s parameters and stepsize.∗
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÌÒÀÅÀËÓÀ×ÄáÖÒÉÀÍÉ ÃÉÓÊÒÄÔÉÆÀÝÉÉÓ ÀÓÉÌÐÔÏÔÖÒÀÃ ÌÃÂÒÀ-
ÃÉ ÀÒÄÄÁÉ ßÒ×ÉÅÉ ÃÀÂÅÉÀÍÄÁÖË-ÀÒÂÖÌÄÍÔÉÀÍÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÌÖÃÌÉÅÉ
ÃÀÂÅÉÀÍÄÁÉÈ. ÌÃÂÒÀÃÏÁÉÓ ÀÒÄÄÁÉÓ ÃÀÂÅÉÀÍÄÁÀÆÄ ÃÀÌÏÊÉÃÄÁÖËÉ ÍÀßÉËÄÁÉÓ ÂÀÍÓáÅÀÅÄÁÖËÉ
ÀÃÂÉËÌÃÄÁÀÒÄÏÁÀ ÁÉãÈÀ ÒÀÏÃÄÍÏÁÉÓ ËÖß-ÊÄÍÔÏÁÀÓÈÀÍ ÌÉÌÀÒÈÄÁÀÛÉ áÓÍÉÓ ÒÉÝáÅÉÈÉ ÀÌÏ-
ÍÀáÓÍÄÁÉÓ ØÝÄÅÉÓ ÌÏÖËÏÃÍÄË ÝÅËÉËÄÁÄÁÓ ÂÀÍÔÏËÄÁÉÓ ÓáÅÀÃÀÓáÅÀ ÐÀÒÀÌÄÔÒÄÁÉÓ ÃÀ
ÓáÅÀÃÀÓáÅÀ ÁÉãÉÓ ÛÄÌÈáÅÄÅÀÛÉ.
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1 Introduction
For the recent decades the delay differential equations theory has made great achievements. Con-
sequently, appropriate numerical methods and corresponding theoretical background are being de-
veloped since 1970’s. A valuable monograph, which summarize numerical methods for various delay
differential equations and introduce comparison with the methods known for ordinary differential
equations, is due to Bellen and Zennaro [2]. A various phenomena were observed as differences be-
tween the both mentioned classes of differential equations and their numerical discrete counterparts.

The concepts of asymptotic stability in numerical analysis are usually related to the numerical
solution behaviour of the studied method applied to a certain test equation. Such equations in the
delay differential case are, e.g.,

y′(t) = by(t− τ), t > 0,

y′(t) = ay(t) + by(t− τ), t > 0, (1.1)

where a, b, τ ∈ R, τ > 0. In general, the coefficients a, b are considered as complex ones in various
types of stability manner. In this paper, we constrain our considerations to the case of equation
(1.1) with real coefficients a, b. This restriction arises from the studied numerical discretization and
visualization purposes.

The numerical scheme, that we are going to analyse, can be captured by the linear difference
equation

yn+2 + αyn + γyn−ℓ = 0, n = 0, 1, 2, . . . , (1.2)
where α, γ ∈ R and ℓ ∈ N. We recall that equations (1.1) and (1.2) are said to be asymptotically stable
if for any of their solutions y(t) → 0 as t → ∞ and yn → 0 as n → ∞, respectively. This terminology
is usual in the theory of homogeneous linear differential (difference) equations with a constant delay.

In the case of linear difference equations with constant coefficients the asymptotic stability coin-
cides with affiliation of all roots of a characteristic polynomial to the open unit disk in the complex
plane. There exist several valuable criteria for checking this property, but these are suitable just for
a computational verification for concrete given values of equation’s (polynomial’s) parameters. These
criteria are mostly based on the analysis of signs of certain determinant sequences (see [9] or [12]). In
several particular cases the necessary and sufficient conditions for asymptotic stability were derived in
a closed effective form, i.e., a few conditions should be verified instead of a huge number of computa-
tions depending on the order of difference equation in the case of algebraic criterion. The asymptotic
stability conditions for (1.2) in necessary and sufficient manner are introduced in [6]. We recall them
in Section 2 for our consideration purposes. In addition to the previous, we remark that there are
several results introducing closed form of necessary and sufficient conditions for asymptotic stability
of certain difference equations, which cover many numerical schemes intended for delay differential
equations, e.g.,

yn+1 + αyn + γyn−ℓ = 0, n = 0, 1, 2, . . . ,

yn+1 + αyn−m + γyn−ℓ = 0, n = 0, 1, 2, . . . ,

yn+1 + αyn + βyn−ℓ+1 + γyn−ℓ = 0, n = 0, 1, 2, . . . ,

yn+2 + αyn + βyn−ℓ+2 + γyn−ℓ = 0, n = 0, 1, 2, . . . ,

where α, β, γ ∈ R and m, ℓ ∈ N, m < ℓ. The results can be found in [3, 4, 11] and [5], respectively.
The structure of the paper is as follows. In Section 2, we recall the necessary and sufficient

asymptotic stability conditions for equations (1.1) and (1.2). In Section 3, we introduce the anal-
ysed numerical scheme, description and visualization of its stability regions and discussion of some
unexpected situations arising at numerical computations. We conclude the paper by final remarks in
Section 4.

2 Preliminaries
Any asymptotic stability property of a numerical scheme is usually connected with asymptotic stabili-
ty properties of a certain test differential equation. In this paper, we are going to analyse asymptotic
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stability regions (i.e., the sets of pairs (a, b) ∈ R2 such that the studied discretization is asymptotically
stable considering fixed stepsize) of numerical scheme applied to delay differential equation (1.1).
Therefore we recall the necessary and sufficient conditions for asymptotic stability of (1.1) itself
introduced in [1] and [7].

Theorem 1. Any solution of equation (1.1) is asymptotically stable if and only if one of the following
two conditions holds:

a ≤ b < −a for any τ > 0; (2.1)

|a|+ b < 0 for τ <
arccos(−a/b)

(b2 − a2)1/2
. (2.2)

As we can see, the first condition is valid for any positive delay τ . We call such case as delay
independent asymptotic stability region, which is depicted in Figure 1 as SDI . Condition (2.2) contains
a restriction on delay τ . This condition forms a dependent stability region SDD (see Figure 1). The
greater value of τ , the closer the most right point of SDD to the origin of the plane (a, b) is.

a

b

1/τ

SDI

SDD

Figure 1. Asymptotic stability region of (1.1): delay independent (SDI) and delay dependent (SDD)
case.

Next, we recall the necessary and sufficient conditions for asymptotic stability of difference equation
(1.2) introduced in [6]:

Theorem 2. Let α, γ be arbitrary reals such that αγ ̸= 0.

(i) Let ℓ be even and γ(−α)ℓ/2+1 < 0. Then (1.2) is asymptotically stable if and only if

|α|+ |γ| < 1. (2.3)

(ii) Let ℓ be even and γ(−α)ℓ/2+1 > 0. Then (1.2) is asymptotically stable if and only if either

|α|+ |γ| ≤ 1, (2.4)

or ∣∣|α| − |γ|
∣∣ < 1 < |α|+ |γ|, ℓ < 2 arccos α

2 + γ2 − 1

2|αγ|

/
arccos α

2 − γ2 + 1

2|α|
holds.

(iii) Let ℓ be odd and α < 0. Then (1.2) is asymptotically stable if and only if (2.3) holds.

(iv) Let ℓ be odd and α > 0. Then (1.2) is asymptotically stable if and only if either (2.4), or

γ2 < 1− α < |γ|, ℓ < 2 arcsin 1− α2 − γ2

2|αγ|

/
arccos α

2 − γ2 + 1

2|α|

holds.
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Actually, equivalent description of asymptotic stability regions can be found, e.g., in [10] and [13],
where another proving procedures naturally lead to another form of the conditions. In the first
mentioned paper, the boundary of stability region was described by straight lines and parametric
curves, while in the second one the conditions contained an auxiliary nonlinear equation, which should
be solved for certain choice of differential equation parameters α, γ, ℓ.

A comparison of conditions for asymptotic stability for (1.1) (see Theorem 1) and conditions for
its discrete counterpart (1.2) in Theorem 2 leads us to a conclusion that such asymptotic stability
analysis is much more complicated in the case of difference equation.

3 Numerical discretization and its properties
We consider an equidistant mesh with stepsize h satisfying the property τ = kh with k ∈ N, k > 2.
We denote the nodal points of the mesh as tn = nh, n = 0, 1, 2, . . . .

By integration of both sides of (1.1) from tn to tn+2 we obtain

y(tn+2) = y(tn) +

tn+2∫
tn

ay(s)ds+
tn+2∫
tn

by(s− τ)ds. (3.1)

Numerical scheme we obtain by applying trapezoidal rule and midpoint rule to the integrals in (3.1),
respectively. Denoting by yn the approximation of value y(tn), we have

yn+2 = yn + ah(yn + yn+2) + 2bhyn−k+1. (3.2)

The obtained formula is a (k + 1)-step numerical method. We emphasize that there is no need of
interpolation dealing with delayed term due to the appropriate stepsize h = τ/k and integration of
(1.1) over two steps. Since we are going to utilize Theorem 2, we rewrite (3.2) in the form of linear
difference equation

yn+2 −
1 + ah

1− ah
yn − 2bh

1− ah
yn−k+1 = 0, n = 0, 1, . . . , (3.3)

where the stepsize h satisfies ah ̸= 1.

3.1 Asymptotic stability conditions
Now we state the necessary and sufficient conditions for asymptotic stability of (3.3). The analysis of
(3.3) falls naturally into two parts according to the parity of k. For an effective and clear formulation
of the main result we introduce the symbols

τ∗1 (h) = h+ 2h arcsin a+ b2h

(1 + ah)|b|

/
arccos 1 + a2h2 − 2b2h2

a2h2 − 1
,

τ∗2 (h) = h+ 2h arccos a+ b2h

|(1 + ah)b|

/
arccos 1 + a2h2 − 2b2h2

|a2h2 − 1|
,

which are utilized in these two parts, respectively.

Theorem 3. The asymptotic stability conditions for (3.3) are formulated below in two cases, consid-
ering k even and k odd, respectively.

1. Let k ≥ 2 be even. Then (3.3) is asymptotically stable if and only if one of the following
conditions holds:

|bh| ≤ 1, |b|+ a < 0, (3.4)
2 < 2b2h2 < 1− ah, τ < τ∗1 (h). (3.5)
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2. Let k ≥ 3 be odd and m = (k − 1)/2. Then (3.3) is asymptotically stable if and only if one of
the following conditions holds:

a ≤ b < −a, |bh| < 1, (3.6)
|b|+ a < 0, (−1)mbh = 1, (3.7)

b+ |a| < 0, bh > −1, τ < τ∗2 (h), (3.8)
(−1)mb+ a < 0, (−1)mbh > 1, τ < τ∗2 (h), (3.9)

(−1)mb+ a > 0, (−1)m+1bh > 1, τ < τ∗2 (h). (3.10)

Proof. The necessary and sufficient conditions stated above follow from the application of Theorem 2
to (3.3). Considering

α = −1 + ah

1− ah
, γ = − 2bh

1− ah
, ℓ = k − 1,

the difference equation (3.3) turns into (1.2). The complete proof (with detailed analysis) can be
found in [8].

The above asymptotic stability conditions define in the plane (a, b) the asymptotic stability regions.
Analogously to the continuous counterpart, the delay independent ((3.4), (3.6), (3.7)) and delay
dependent ((3.5), (3.8)–(3.10)) stability regions can be distinguished. Figures 2 and 3 illustrate these
stability region in the case of k even and odd, respectively. Moreover, in the case of k odd a position of
delay dependent stability regions (in figures hatched ones) depends also on a parity of m = (k− 1)/2.
We emphasize that in the case k even the delay dependent part for b < 0, b < a is missing.

The next part illustrates by numerical examples consequences of stability regions location diversity
with respect to the change of k.

a

b

−1/h

Figure 2. Asymptotic stability region for k even

3.2 Asymptotic stability discussion
Numerical solutions of delay differential equations can have some unexpected properties with respect
to one’s experience with numerical solving of ordinary differential equations. Several numerical phe-
nomena are introduced in [2]. One of them is related to the following discussion:

We consider the initial value problem for (1.1) with τ = 1

y′(t) = ay(t) + by(t− 1), t > 0, (3.11)
y(t) = 1 for t ∈ [−1, 0] (3.12)

and we decide to use formula (3.3) to obtain numerical solution.
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a

b

−1/h a

b

−1/h

Figure 3. Asymptotic stability region for k odd and m even; k odd and m odd

Example 4. First we point the attention to the situation arising by the choice of a = 30, b = −51/10.
As we can see from Theorem 1 (and as well as from Figure 1), the solution cannot be asymptotically
stable. On the contrary, numerical solution with k = 5, i.e., h = 0.2, evinces asymptotically sta-
ble behaviour (see Figure 4) and the numerical formula really is asymptotically stable according to
Theorem 3. Moreover, numerical solutions for any integer k ≥ 2, k ̸= 5, do not have this property.
This extraordinary case k = 5 of asymptotic stable solution for given (a, b) = (30,−51/10) is the only
occurrence of (a, b) in delay dependent stability region within the fourth quadrant (see Figure 3(1)).
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−4

−3

−2

−1

0

1

2

3

4

Figure 4. a = 30, b = −51/10, k = 5

Example 5. We consider a = −1, b = −3/2. The solution of (3.11), (3.12) is asymptotically stable
in accordance with Theorem 1 (see Figure 1). The numerical solution for k = 50, k = 51 and k = 52,
k = 53 is depicted on Figures 5 and 6, respectively.

As we can see, for this fixed pair of (a, b) there occurs switching of asymptotically stable (k
even) and unstable (k odd) solutions for several values of k in sequence. This can be explained by
Figures 3(1) and 3(2): (a, b) is included in a delay dependent stability region and (a, b) is not included
in a delay dependent stability region, by rotation.

Finally, we discuss a limit form of Theorem 3 considering h → 0. In the case of even k, the
asymptotic stability region of (3.3) becomes |b|+ a < 0. It corresponds to (2.1) with the exception of
the boundary. In the case of odd k, the asymptotic stability conditions turn into (2.1), (2.2) letting
h → 0. These conditions are equivalent to the ones defining the asymptotic stability region of (1.1).
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Figure 5. a = −1, b = −3/2, k = 50; a = −1, b = −3/2, k = 51
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Figure 6. a = −1, b = −3/2, k = 52; a = −1, b = −3/2, k = 53

4 Conclusions and remarks
To summarize the previous, Theorem 3 describes the asymptotic stability regions of difference equa-
tion (3.3). This equation actually represents a discretization of delay differential equation (1.1) by
modified midpoint rule. It was shown that the asymptotic stability regions depend not only on the
value of stepsize h, but also on parity of k. We had provided the discussion with two examples, where
specific situations occurred with respect to the position of delay dependent asymptotic stability re-
gions. Deeper analysis for more complicated numerical methods is a great call because of the absence
of effective form of the appropriate necessary and sufficient conditions for asymptotic stability.
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