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Abstract. A concise survey on the construction of the spectra, symbols
and index-formulas for singular integral operators with piecewise continuous
coefficients in the spaces Ln

p (Γ, ρ) is given. Influence of some results by
B. V. Khvedelidze on this research is shown. Several interesting associated
results, obtained during this research, and their applications are discussed in
appendix. An open question is stated. Some historical information, related
to this paper is presented in the introduction.
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ÒÄÆÉÖÌÄ. ÜÅÄÍ ßÀÒÌÏÂÉÃÂÄÍÈ ÌÏÊËÄ ÌÉÌÏáÉËÅÀÓ ÓÐÄØÔÒÉÓ, ÓÉÌÁÏ-
ËÏÓ ÃÀ ÉÍÃÄØÓÉÓ ÀÂÄÁÉÓ ÛÄÓÀáÄÁ ÖÁÀÍ-ÖÁÀÍ ÖßÚÅÄÔ ÊÏÄ×ÉÝÉÄÍÔÄÁÉ-
ÀÍÉ ÓÉÍÂÖËÀÒÖËÉ ÉÍÔÄÂÒÀËÖÒÉ ÏÐÄÒÀÔÏÒÄÁÉÓÀÈÅÉÓ Lp(Γ, ρ) ÓÉÅÒ-
ÝÄÄÁÛÉ. ÍÀÜÅÄÍÄÁÉÀ Á. áÅÄÃÄËÉÞÉÓ ÆÏÂÉÄÒÈÉ ÛÄÃÄÂÉÓ ÂÀÅËÄÍÀ
ÃÀÓÀáÄËÄÁÖË ÊÅËÄÅÄÁÆÄ. ÃÀÍÀÒÈÛÉ ÂÀÍáÉËÖËÉÀ ÆÏÂÉÄÒÈÉ ÓÀÉÍÔÄ-
ÒÄÓÏ ÀÓÏÝÉÒÄÁÖËÉ ÛÄÃÄÂÉ ÃÀ ÌÀÈÉ ÂÀÌÏÚÄÍÄÁÀ, ÒÏÌËÄÁÉÝ ÌÉÙÄÁÖ-
ËÉÀ ÀÓÄÈÉ ÊÅËÄÅÄÁÉÓ ÃÒÏÓ. ÃÀÓÌÖËÉÀ ÆÏÂÉÄÒÈÉ ÀÌÏÝÀÍÀ, ÒÏÌÄËÉÝ
ÓÀàÉÒÏÄÁÓ ÂÀÃÀßÚÅÄÔÀÓ. ÛÄÓÀÅÀËÛÉ ÜÀÒÈÖËÉÀ ÉÓÔÏÒÉÖËÉ ÉÍ×ÏÒ-
ÌÀÝÉÀ, ÒÏÌÄËÉÝ ÄáÄÁÀ ÌÏÝÄÌÖË ÓÔÀÔÉÀÓ.
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1. Introduction

About eighty years ago S. G. Mikhlin [24] in solving the regularization
problem for two-dimensional singular integral operators (SIOs) assigned to
each such an operator A a function σ(A)(x), which he called a symbol, and
he showed that the regularization is possible if inf

x
|σ(A)(x)| > 0. There-

after (as widely known) the notion of the symbol was extended to multi-
dimensional and one-dimensional SIOs by many authors. In particular, for
one-dimensional singular operator A = aI + bS + T , where a(t), b(t) are
continuous functions on a simple closed contour Γ, T is a compact operator
and

Sf(t) :=
1

πi

∫
Γ

f(τ)

τ − t
dτ (t ∈ Γ), (1.1)

the symbol in the space Lp(Γ, ρ) (1 < p <∞) was defined by the equality

σ(aI + bS + T )(t, z) = a(t) + z b(t)
(
(t, z) ∈ Γ× {±1}

)
. (1.2)

For a long period of time, symbols of SIOs were used for the following
(sufficient) conditions:

If inf
x
|σ(A)(x)| > 0, then A is a Fredholm operator.

An important role in raising the status of the symbols (for many classes
of operators) was played by Gelfand’s theory of maximal ideals in Banach
algebras. Using this theory, I. Gohberg obtained the following important
results.

Theorem 1.1 ( [3]). Let A := aI+bS+T and σ(A)(t, z) denote, respectively,
the singular integral operator and its symbol, defined in (1.2). Then

A ∈ F (L2(Γ)) ⇐⇒ σ(A)(t, z) ̸= 0, ∀ (t, z) ∈ Γ× {±1}, (1.3)

where F (B) denote the set of all Fredholm operators on Banach space B.

To formulate a next theorem, we need the following notations. Let Ω
denote the unit sphere in an n-dimensional space Rn; Yn(θ) (θ ∈ Ω, n =
1, 2, . . .) the sequence of all n-dimensional spherical functions, numbered in
some order; Yn the simplest singular integral operator (see [24] or [5])

(Ynf)(x) =
1

γn

∫
Rn

yn(ν)

|x− y|n
f(y) dy

with the symbol Yn(θ); T the ideal of all compact operators in the algebra L
(Lp(Rn)) (1 < p <∞); Ap the Banach subalgebra of L (Lp(Rn)), generated
by the operators

Af(x) := a0(x)f(x) +

r∑
n=1

an(x)(Ynf)(x) + T (T ∈ T )
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with continuous coefficients an(x) and with the symbols

A(x, θ) = a0(x) +
r∑

n=1

an(x)Yn(θ).

Theorem 1.2 ( [5]). The quotient algebra Â2 = A2/T is a commutative
Banach algebra; the symbols A(x, θ) coincides with the functions of element
Â ∈ Â2 on the compact space of maximal ideals of the algebra Â2 and

A ∈ F (L2(Rn)) ⇐⇒ A(x, θ) ̸= 0, ∀ (x, θ) ∈ Rn × Ω. (1.4)

Theorems 1.1, 1.2 were extended in [4,6] to systems of the corresponding
SIOs.

With the appearance of the (revolutionary) results [3–6] the concept of
the symbols of SIOs achieved a higher status: responsibility for the nec-
essary and sufficient conditions of Fredholmness (see (1.3), (1.4)). This
inspired many mathematicians, interested in the theory of symbol of SIOs,
to generalize these results, obtained by Gohberg, to other Banach spaces1.

The author of this survey was inspired, too. And in the papers [19, 20]
the main results from [3–6] were extended to spaces Lp and Ln

p (1 < p <∞).
Shortly thereafter, I. Gohberg invited me to join him for studying the

Fredholm theory of one-dimensional SIOs with piecewise continuous coeffi-
cients on Ln

p (Γ): to obtain the spectrum, symbols and formulas for compu-
tation the index. I gladly accepted this invitation.

The Fredholm theory for SIOs with PC coefficients, obtained in [7–10],
is briefly described in Sections 2, 3. The influence of some results of
B. V. Khvedelidze on this cycle of researches is described in Section 4.
In Section 5, we construct a counterexample, related to a scalar symbol in
algebra generated by SIOs with PC coefficients. In appendix (Section 6),
some associated results and their applications, obtained in [19, 20] and [8],
are shown. An open question is stated.

It is my pleasure to thank my friend Prof. Roland Duduchava2 for useful
remarks and comments.

2. On the Spectrum and Index of SIOs with PC Coefficients

Recall (for convenience) several notations and definitions.
Let Lp(Γ, ρ), 1 < p <∞ denote a weighted Banach space with

ρ(t) =
n∏

k=1

|t− tk|βk , −1 < βk < p− 1,

∥f∥pLp(Γ,ρ)
=

∫
Γ

|f(t)|pρ(t) |dt|,

1Many results, obtained in this research, are described in the (encyclopedic) book [25].
2Note, that Roland Duduchava had a privilege to be the student of both: B. V. Khve-

delidze and I. C. Gohberg!
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PC (Γ) is the set of all piecewise continuous functions3 on Γ; A = aP + bQ;
C = cP + Q, where a, b, c ∈ PC, P := (I + S)/2, Q = (I − S)/2, and the
operator S is defined by (1.1).

In this section we assume, for simplicity, that Γ is a simple closed oriented
Lyapunov contour, 0 ∈ D+ and the function c(t) (∈ PC(Γ)) has only one
point t0 of discontinuity:

c(t0 − 0) = z1, c(t0 + 0) = z2. (2.1)

Definition 2.1. We denote by ν(z1, z2, δ) (0 < δ < π) the circular arc
joining the points z1 to z2 and having the following properties:

10. Let δ ∈ (0, π). Then from any interior point z ∈ ν(z1, z2, δ) one sees
the straight line [z1, z2] under the angle δ, and running through the
arc from z1 to z2, this straight line is located in the left-hand side.

20. Let δ ∈ (π, 2π), then we define ν(z1, z2, δ) := ν(z2, z1, 2π − δ).
30. Finally, ν(z1, z2, π) denotes the straight line [z1, z2].

Next, we denote by Wp,ρ(c) the plane curve which results from the range
of the function c(t) by adding the arc ν(c(t0 − 0), c(t0 + 0), 2π(1+β)

p ). We
orient the curve Wp,ρ(c) in the natural manner. Also, we write Wp(c) if
ρ(t) ≡ 1.

Definition 2.2. The function c(t) (∈ PC(Γ)) is called {p, ρ}-non-singular,
if the curve Wp,ρ(c) does not contain the origin.

Definition 2.3. Let the function c(t) be a {p, ρ}-non-singular. Then the
winding number of the curve Wp,ρ(c) around the point z = 0 is called {p, ρ}-
index of the function c(t). This index is abbreviated by indcp,ρ.

Theorem 2.4. The operator C = cP + Q is at least one-side invertible
on Lp(Γ, ρ) if and only if the function c(t) is {p, ρ}- non-singular. Let
the function c(t) be {p, ρ}-non-singular. Then the operator C is invertible,
invertible only from the left or invertible only from the right, depending
on whether the number k := ind cp,ρ is equal to zero, positive or negative,
respectively. If k > 0, then dim coker(C) = k, and if k < 0, then dim
ker(C) = −k.

Remark 2.5. If the function c(t) has several points tk of discontinuity, then
Wp,ρ(c) results from the range of the function c(t) by adding several arcs
ν(c(tk − 0), c(tk + 0), δ).

Theorem 2.6. The operator A = aP + bQ is Fredholm on Lp(Γ, ρ) if and
only if b(t± 0) ̸= 0 (t ∈ Γ), and the function c(t) = a(t)/b(t) is {p, ρ}-non-
singular.

Remark 2.7. A theorem similar to Theorem 2.6, was obtained by H. Widom
[28] for the case where Γ is a measurable subset of R.

3See (for details) the definition of PC(Γ) in [13, p. 62].
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Remark 2.8. For the space L2(Γ), the results of Theorems 2.4 and 2.6 were
obtained in [7]. For the spaces Lp(Γ) and Lp(Γ, ρ) in [8, 9].

After the papers [8, 9] were published, we (the authors) were periodi-
cally asked (at seminars and conferences) various questions related to these
papers. Most often we were asked the following

Question 2.9. How did you guess (or, how did you come) to adding these
special circular arcs, depending on p, ρ and joining the points c(tk ± 0)?

In Sections 4, we show a way, paved by B. V. Khvedelidze, on which we
came to the idea of these circular arcs.

3. SIOs with Matrix PC-Coefficients in Ln
p (Γ, ρ)

Let R := AP + BQ denote a singular integral operator with piecewise
continuous matrix coefficients A := [aik]

n
i,k=1 and B := [bik]

n
i,k=1. Sufficient

conditions for the operator R to be Fredholm in Ln
p (Γ, ρ) was first obtained

by B. V. Khvedelidze (see [17, Chapter 2]). Then the Fredholm criterion
was obtained in our work [10]. See also [25, Chapter 5, Section 6] for some
additional historical details.

Let C := [cik]
n
i,k=1 be a piecewise continuous matrix function, and let

t1, . . . , tr be the points of discontinuity of the matrix C. To each point ts
(s = 1, . . . , r) we attach a matrix-valued arc

ν(ts, µ) :=
eiµθs sin(1− µ)θs

sin θs
G(ts − 0) +

ei(µ−1)θs sinµθs
sin θs

G(ts + 0), (3.1)

where θs = π − 2π(1+βs)
p , and we assume that

ρ(t) =

m∏
k=1

|t− tk|β (m ≥ r). (3.2)

We associate with the matrix C a continuous matrix curve Cp,ρ(t, µ), ob-
tained by adding r arcs ν(ts, µ) to the range of the matrix C.

Definition 3.1. The matrix function C := [cik]
n
i,k=1 is called {p, ρ}-nonsin-

gular if 0 /∈ detCp,ρ(t, µ). Let C(t) be {p, ρ}-nonsingular matrix function,
then its {p, ρ} index is defined by the equality indCp,ρ := ind detCp,ρ(t, µ).

Theorem 3.2. The operator R = AP + BQ is a Fredholm operator on
Ln
p (Γ, ρ) if and only if detB(t±0) ̸= 0 for all t ∈ Γ and the matrix function

C(t) := B(t)−1A(t) is {p, ρ}-nonsingular. If these conditions are fulfilled,
then the index of operator R in the space Ln

p (Γ, ρ) is defined by the equality
indR = − indCp,ρ.

4. Influence of Some Results by B. V. Khvedelidze

In this section we assume, for simplicity, that Γ is a simple closed oriented
Lyapunov contour, 0 ∈ D+ and 1 ∈ Γ.
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By the time we (Gohberg–Krupnik) started to work on the Fredholm
theory of SIOs with piecewise continuous coefficients on Lp(Γ) (1 < p <∞),
the following statement was well known:
Proposition 4.1. The spectrum and Fredholm spectrum for one-dimensio-
nal SIOs with continuous coefficients in the spaces Lp(Γ) do not depend on
p ∈ (1,∞).

Naturally, there arose the following
Question 4.2. Is Proposition 4.1 true in the case of piecewise continuous
coefficients?

In order to get the answer to this question (as well as to some other
questions), we referred to Khvedelidze’s works [16–18]. First we turned our
attention to the following important statements.
Theorem 4.3 ( [16]). Let 1 < p < ∞ and ρ = |t − t0|β (t0 ∈ Γ). If
−1 < β < p− 1, then the singular operator S is bounded in Lp(Γ, ρ).
Corollary 4.4. The operator (t − t0)

δS(t − t0)
−δ (t0 ∈ Γ) is bounded in

Lp(Γ) if and only if
−1

p
< Re δ < 1− 1

p
.

Next, using suitable ideas and results from [16–18], we have proved the
following
Theorem 4.5. The operator A = tγP +Q with Re γ ∈ (0, 1) is a Fredholm
operator in Lp(Γ) for all p ̸= 1/Re γ.
Proof. Following [17, 18], we considered the following two factorizations of
the function ψ(t) = tγ (Re γ ∈ (0, 1)):

ψ(t) = (t− 1)γ
( t− 1

t

)−γ

= ψ+(t)ψ−(t)

and
ψ(t) = (t− 1)γ−1t

( t− 1

t

)1−γ

= ξ+(t) t ξ−(t). (4.1)
We assumed that Γ satisfies the conditions, formulated above (before (2.1)).
Without loss of generality, we also assumed that t0 = 1 and 0 ∈ D+.

Let A = ψ(t)P + Q = ψ−(ψ+P + ψ−1
− Q) and B = (ψ−1

+ P + ψ−Q)ψ−1
− .

It is not difficult to check that AB = BA = I. Therefore, the operator A is
invertible in some space Lp(Γ), if and only if the operator B is bounded in
Lp. Using the representation

B =
1

2

[
(ψ−1 + 1)I + (ψ−1 − 1)ψ−Sψ

−1
− I

]
and Corollary 4.4, it was obtained in [17] that the operator A is invertible
in Lp for all p:

1− p

p
< Re γ < 1

p
, i.e., for p <

1

Re γ .
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Next, we used factorization (4.1) and represented the operator A in the
form A = A1T , where A1 = ξ+(t)ξ−(t)P+Q and T = tP+Q. The operator
T is Fredholm in Lp for all p ∈ (1,∞). Like in the first factorization, one
can obtain here that the operator A1 is invertible in Lp(Γ) for all p such
that

1− p

p
< Re γ − 1 <

1

p
, i.e., for p >

1

Re γ .

Thus, for all p > 1/Re γ, the operator A is a Fredholm one with
indpA = 1. �

Example 4.6. Let γ = 1/2. The operator A = t1/2P+Q is invertible in Lp

for all p < 2 and it is a Fredholm with indp = 1 for all p > 2. This follows
from Theorem 4.5. For p = 2, the operator A is not Fredholm. This does
not follow from Theorem 4.5, but it follows from the paper [7] in which the
Fredholm theory for SIOs with PC coefficients in L2(Γ) was developed.

Remark 4.7. Example 4.6 shows the spectral behavior of the point λ = 0
of the operator A − λI and, in particular, gives the negative answer to
Question 4.2.

In order to analyze the spectral behavior of other points λ, we consider
ψ(t) = t1/2, A = ψP + Q, and λ ̸∈ {ψ(t) : t ∈ Γ}. We represent operator
A− λI in the form

A− λI = (1− λ)R, where R :=
(ψ(t)− λ

1− λ
P +Q

)
:= g(t)P +Q. (4.2)

It follows from (4.2) that
g(1− 0)

g(1 + 0)
=
λ+ 1

λ− 1
:= z = reiθ = eiθ+ln r. (4.3)

Following [17], we consider such a function h(t) = tγ , that
h(1− 0)

h(1 + 0)
= e2πiγ = eiθ+ln r =⇒ Re γ =

θ

2π
. (4.4)

Now we can prove the following

Theorem 4.8. Let ψ(t) = t1/2, A = ψP +Q,

λ ̸∈
{
ψ(t) : t ∈ Γ

}
, and λ+ 1

λ− 1
̸= r exp 2πi

p
(0 ≤ r <∞). (4.5)

Then the operator A− λI is a Fredholm operator in Lp(Γ).

Proof. It follows from (4.5) and (4.3) that θ ̸= 2π/p and from (4.4) that
Re γ ̸= 1/p. Thus (see Theorem 4.5), operator H = hP + Q is Fredholm
in Lp(Γ). Equalities (4.3), (4.4) provide that the function h(t)/g(t) is con-
tinuous on Γ, and hence operators R (as well as operator A − λI) under
the condition θ ̸= 2π/p is a Fredholm operator in Lp, too. This proves the
theorem. �
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Remark 4.9. It remains to describe the set ℓ of the points λ ∈ C\{ψ(t) : t ∈
Γ} (candidates for “non-Fredholm points”), for which the second condition
in (4.5) is not satisfied. This is not difficult.

Let z = (λ + 1)/(λ − 1) = r exp(2πi/p) (0 ≤ r < ∞). If r = 0, then
λ = −1, if r = ∞, then λ = 1. If r = 1, then, λ = −i cot π

p . Thus, ℓ is
a circular arc with the chord [−1, 1]. The point −i cot π

p is located on the
circular arc ℓ, and from this point one sees the segment [−1, 1] under the
angle δ = 2π

p .

Conclusion 4.10. Let ψ(t) = t1/2 and A = ψP + Q. Then the set
of the points λ ∈ C \ {ψ(t) : t ∈ Γ}, which are candidates for “non-
Fredholm points” of operator A − λI in Lp(Γ), coincides with the circular
arc ν(−1, 1, 2πp ).

This is the way on which we came to the idea of circular arc, and it gives
the answer to Question 2.9.

5. Symbols for Algebras of SIOs with PC Coefficients

Let E denote a subalgebra of the algebra A := L(B), where B is a Banach
space. We say that algebra E is with a (scalar) Fredholm symbol if there
exists a collection {hy}y∈Y , of multiplicative functionals hy : E → C such
that

A ∈ E ∩ F (B) ⇐⇒ hy(A) ̸= 0, ∀ y ∈ Y. (5.1)
Compare (5.1) with scalar symbols in (1.2) and (1.4), where the sets Y1, Y2
are defined, respectively, by the equalities:

Y1 = Γ× {±1} and Y2 = Rn × Ω.

After the results in [7–10] were obtained a natural question arose:

Question 5.1. Is algebra E, generated by SIOs with piecewise continuous
coefficients on Lp(Γ, ρ), with a scalar symbol?

We (I. Gohberg and N. Krupnik) tried to get a positive answer to this
question. But (instead), we constructed a counterexample (see below). Af-
ter some thought, we decided to construct a matrix symbol for algebras,
generated by (scalar) SIOs with PC coefficients. This idea opened a next
cycle of our common research, review of which is beyond the scope of this
article.

We conclude this section with a counterexample, mentioned above.4

Lemma 5.2. Let E denote the algebra generated by SIOs with PC coeffi-
cients on Lp(Γ), where Γ is a unite circle, and let G = λI + CP − PC,
where C := c(t)I. If algebra E is with a scalar symbol, then G is a Fredholm
operator for each λ ̸= 0.

4To my knowledge, such a counterexample has never been published.
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Proof. Let algebra A be with a scalar symbol. Then

hx(G) = λ+ hx(C)hx(P )− hx(P )hx(C) = λ ̸= 0, ∀λ ̸= 0.

From the definition of scalar symbol it follows that G ∈ F (Lp(Γ)) for all
λ ̸= 0. �

Lemma 5.3. Let p = 2, c(t) = t1/2 and c(1 ± 0) = ±1. Then there exists
λ ̸= 0 such that the operator G, defined in Lemma 5.2, is not Fredholm.

Proof. It follows from Shur’s representation

R :=

[
I C
P λI + CP

]
=

[
I 0
P I

] [
I 0
0 G

] [
I C
0 I

]
that the operator G ∈ F (L2(Γ)) if and only if the operator R ∈ F (L2

2(Γ)).
The operator R can be represented in the form

R =

[
1 c(t)
1 λ+ c(t)

]
P +

[
1 c(t)
0 λ

]
Q = AP +BQ.

Since detB(t) ̸= 0, the operator R is Fredholm if and only if the matrix
Mλ := B−1A is 2-nonsingular. In particular (see Theorem 3.2 and equalities
(3.1), (3.2)), this means that

0 ̸∈ det νλ(1, µ), where νλ(t, µ) := (1− µ)Mλ(1− 0) + µMλ(t+ 0).

But for µ = 1/2, we have the equality

νλ

(
1,

1

2

)
=

1

2λ

([
λ− 1 −1
1 λ+ 1

] ]
+

[
λ+ 1 −1
1 λ− 1

])
=

1

λ

[
λ −1
1 λ

]
and for λ0 = i, we receive det νλ0(1, 1/2) = 0. This proves that the operator
G = iI + t1/2P − Pt1/2I is not an F -operator in L2(Γ). �

Corollary 5.4. Combining these two lemmas, we obtain the negative answer
to Question 5.1.

6. Appendix: Several (Side) Results Associated with the Main
Results in [19,20] and [8]

6.1. Banach spaces versus Hilbert spaces. Let L(B) (L(H)) denote
the algebra of all linear bounded operators in the Banach (Hilbert) space B
(H) and GL(B) be the group of invertible operators. By T (B) we denote
the ideal of all compact operators on B and by F (B) the set of all Fedholm
operators on B.

Analyzing the proofs of Theorems 1.1 and 1.2 for the purpose of trans-
ferring them to Banach spaces, an idea appeared to find a replacement of
the following well known Proposition 6.1 (so that it would work in Banach
spaces):
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Proposition 6.1. For any operator A ∈ L(H), there exist two operators
A1, A2 ∈ L(H) such that A = A1 + iA2, spec(Ai) ⊂ R (i = 1, 2) and the
relation

A = A1 + iA2 ∈ GL(H) ⇐⇒ A := A1 − iA2 ∈ GL(H)

holds.
Indeed, one can take A1 = (A+A∗)/2, and A2 = (A−A∗)/2i.
In the paper [19], the following version of substitution was proposed.

Theorem 6.2. Let operators A1, A2 ∈ L(B), A1A2 = A2A1 and spec(Ai) ⊂
R (i = 1, 2). Then

A := A1 + iA ∈ GL(B) ⇐⇒ A := A1 − iA2 ∈ GL(B).

Corollary 6.3. Let operators A1, A2 ∈ L(B), A1A2 − A2A1 ∈ T (B) and
spec(Ai) ⊂ R (i = 1, 2). Then

A := A1 + iA ∈ F (B) ⇐⇒ A := A1 − iA2 ∈ F (B).

Remark 6.4. These (side) results were first used in [19] for extending Goh-
berg’s Theorem 1.2 from L2 to Lp. Thereafter, Theorem 6.2 and Corollary
6.3 were used for different purposes by many authors. For illustration we
consider two examples.

In 1962 Kharazov and Khvedelidze proved the following statement [15]:
Theorem 6.5. Let A = a(t)I + b(t)S be a SIO with continuous coefficients
on a closed contour in Lp(Γ). If A is a Fredholm operator in both Lp(Γ)
and Lq(Γ), (p−1 + q−1 = 1), then a(t)2 − b(t)2 ̸= 0 on Γ.

Let us show (for illustration) how Theorem 6.5 and Corollary 6.3 could
be combined for a simple extension of Gohberg’s Theorem 1.1 from L2(Γ)
to Lp(Γ).
Theorem 6.6. The operator A = aI+ bS with continuous coefficients on a
closed contour Γ is Fredholm in Lp(Γ) if and only if a(t)2 − b(t)2 ̸= 0 on Γ.
Proof. The sufficiency of this condition was proved earlier by B. V. Khvede-
lidze [17]. Now, let A ∈ F (Lp). It follows from Corollary 6.3 that A = aI +

bS ∈ F (Lp), too. Therefore, the operator A∗
= aI + bS + T , T ∈ T (Lp(Γ))

is Fredholm in L∗
p. Thus, the operator A is a Fredholm operator in both

Lp(Γ) and Lq(Γ). Using Theorem 6.5, we obtain a(t)2 − b(t)2 ̸= 0. �
For a second illustration, consider the following theorem which is proved

by using Theorem 6.2.
Theorem 6.7. Let K be a Banach algebra and let K0 be commutative sub-
algebra of K, which possesses a symmetric sufficient family of multiplicative
functionals. Then K0 is inverse closed in K. See [21, Theorem 13.3] for
details.

We conclude this subsection with an open
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Question 6.8. Can we replace in Theorem 6.2 the Banach space B with a
normed or topological (or even with non-topological) space?

6.2. The circular arc νp(c) and exact values of the norms of opera-
tors S, P , Q on Lp(Γ). It is well known (especially now) that the norms
of SIOs play an important role in various applications. But, by the time
we were working on the paper [8], almost nothing was known about these
norms. We decided to illustrate the results (we just received) for this paper
with possible estimation of the norms of operators S, P , Q. We started
with the following experiment:

It is evident that for any operator R on the Banach space B the relation
I+R ̸∈ GL(B) =⇒ ∥R∥ ≥ 1 holds. We considered the operator A := cP+Q,
where the function c(t) (|t| = 1) takes only two values : r exp(±πi/p), r > 0,
p ≥ 2. In this case, νp(c) is a circular arc which connects these two points,
and from the point 0 ∈ νp(c) the segment [r exp(−πi/p), r exp(πi/p)] is seen
at the angle 2π/p.

It follows from Theorem 2.4 that the operator A is not invertible. But
A = I+(c−1)P , |c(t)−1| = r2+1−2r cos π

p does not depend on t, and its
minimal value (for a fixed number p) equals sin π

p (when r = cos π
p ). Taking

r = cosπp , we obtain

1 ≤
∥∥∥ sin π

p
P
∥∥∥, therefore ∥P∥ ≥

(
sin π

p

)−1

.

This was the best estimation we could extract from our experiment. Using
same approach, we obtained the following estimates:

∥Q∥p ≥ |Q|p ≥ 1

sin(π/p) , ∥P∥p ≥ |P |p ≥ 1

sin(π/p) , (6.1)

∥S∥p ≥ |S|p ≥ cot π

2p∗
, (6.2)

where |A| := inf
T

∥A+T∥, T are compact operators, and p∗ = max(p, p/(p−
1)).

These estimates acquired greater significance (for us) when we were able
to prove the accuracy of some estimates. For example,

∥S∥p =


cot π

2p
if p = 2n,

tan π

2p
if p = 2n

2n − 1
,

n = 1, 2, . . . (6.3)

(see [8, Section 3] for details). And we formulated the following

Conjecture 6.9. Inequalities (6.1), (6.2) can be replaced by equalities.

These results (associated with the main part of results in [8]) and Con-
jecture 6.9 gave rise to a large number of publications dedicated to the best
constants, and such publications continue to appear. Almost all new result
related to best constants required new ideas and methods for their proofs.
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Some problems turned out to be very complicated. For example, it took
more than 30 years of attempts of many authors to confirm Conjecture 6.9
for analytical projections P and Q. This was done by B. Hollenbeck and
I. Verbitsky (see [14] and the list of references in this paper). The operator
S was more lucky. Conjecture 6.9 was confirmed by S. K. Pichorides [26]
in 1972. Some addendum to his paper was obtained in [23]. A survey re-
lated to best constant in the theory of one-dimensional SIO is written in
the paper [22].

6.3. One more associated result. Denote by E a subalgebra of the Ba-
nach algebra A = L(B), where B is a Banach space, and by Mn(E) the
algebra of all n×n-matrices with the entries from E . Comparing the results
in articles [3, 5] and [4, 6] related, respectively, to the symbols of SIOs with
scalar and matrix coefficients, the following statement was predicted:
Theorem 6.10. Let the algebra E be commutative modulo compact opera-
tors, and let R ∈Mn(E). Then

R ∈ F (L(Bn)) ⇐⇒ det(R) ∈ F (L(B)). (6.4)
Remark 6.11. When one writes the determinant det(R), the order of the
factors is irrelevant, since the possible determinants differ from one another
by a compact term.

In [20], a following statement, associated with Theorem 6.10, was ob-
tained:
Theorem 6.12. Let K be an associative and, generally speaking, non-
commutative ring with identity e. Assume that amk ∈ K (m, k ≤ n) for
some n ∈ N, and amkapq = apqamk, ∀m, k, p, q = 1, . . . , n. Then the matrix
A := [amk]

n
m,k=1 is invertible in Mn(K) if and only if the element ∆ := detA

is invertible in K.
The proof of Theorem 6.10 was represented in [20], as a corollary from

the general Theorem 6.12.
These two theorems (6.10 and 6.12) proved to be useful for many classes

of equations and they were included in many publications, even in the pub-
lications of the current millennium (see, for example, Lemma 1.2.34 and
related statements in [27]). Theorem 6.10 was first used in the proof of
Theorem 6 from [19].

Consider one more example of application of Theorem 6.10. Let Ta :=
[ai−k]

∞
i,k=1 denote the Toeplitz operator, generated by a function a(t) =

∞∑
j=−∞

ajt
j ∈ L∞(S1). The following statement is proved in [11, Section 3].

Theorem 6.13. Algebra E ⊂ L(ℓ2), generated by Toeplitz operators Ta :=
[ai−k], where a(t) are piecewise continuous functions on the unite circle , is
with a scalar Fredholm symbol. In particular, the symbol of operator Ta is
defined by the equality

a(t, µ) = µa(t+ 0) + (1− µ)a(t− 0)
(
|t| = 1, 0 ≤ µ ≤ 1

)
. (6.5)
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The following corollary follows directly from Theorems 6.13 and 6.10:
Corollary 6.14. Let A := [Ai,k]

n
i,k=1 (Ai,k ∈ E). Then

A ∈ F (L(ℓn2 )) ⇐⇒ detA ∈ F (L(l2)).

Remark 6.15. In order to get the analogue of Theorem 6.13 and Corollary
6.14 for ℓp spaces with p ̸= 2, it was necessary to obtain some additional
results, related to Toeplitz operators on ℓp. In contrast with the space ℓ2,
here the Khvedelidze and Gohberg–Krupnik approaches did not work. But,
Rolland Duduchava proposed a new approach and succeeded in solving the
necessary problems (see [1, 2]). This made it possible to obtain in [12] the
analogues of Theorem 6.13 for ℓp (1 < p < ∞) and to use (automatically)
Theorem 6.10 in ℓnp .
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