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Abstract. We investigate the Dirichlet type boundary value problems
for anisotropic pseudo-Maxwell’s equations in screen type problems. It is
shown that the problems with tangent Dirichlet traces are well-posed in
tangent Sobolev spaces and they can equivalently be reduced to the Dirich-
let boundary value problems in usual Sobolev spaces. Using the potential
method and theory if pseudeodifferential equations the uniqieness and ex-
istence theorems are proved. Asymptotic expansions of solutions near the
screen edge are derived and used to establish the best Hölder smoothness
for solutions.
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ÒÄÆÉÖÌÄ. ÂÀÌÏÊÅËÄÖËÉÀ ÄÊÒÀÍÉÓ ÔÉÐÉÓ ÃÉÒÉáËÄÓ ÓÀÓÀÆÙÅÒÏ
ÀÌÏÝÀÍÄÁÉ ÀÍÉÆÏÔÒÏÐÖËÉ ×ÓÄÅÃÏ-ÌÀØÓÅÄËÉÓ ÂÀÍÔÏËÄÁÄÁÉÓÀÈÅÉÓ.
ÍÀÜÅÄÍÄÁÉÀ, ÒÏÌ ÀÌÏÝÀÍÄÁÉ ÃÉÒÉáËÄÓ ÌáÄÁÉ ÊÅÀËÄÁÉÈ ÊÏÒÄØÔÖËÀÃ
ÀÒÉÀÍ ÃÀÓÌÖËÉ ÌáÄÁ ÓÏÁÏËÄÅÉÓ ÓÉÅÒÝÄÄÁÛÉ ÃÀ ÉÓÉÍÉ ÄÊÅÉÅÀËÄÍÔÖ-
ÒÀÃ ÃÀÉÚÅÀÍÄÁÀ ÓÏÁÏËÄÅÉÓ ÓÉÅÒÝÄÄÁÛÉ ÃÀÓÌÖË ÃÉÒÉáËÄÓ ÀÌÏÝÀ-
ÍÄÁÆÄ. ÐÏÔÄÍÝÉÀËÈÀ ÌÄÈÏÃÉÓÀ ÃÀ ×ÓÄÅÃÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏ-
ËÄÁÀÈÀ ÌÄÈÏÃÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÀÒÓÄÁÏÁÉÓÀ ÃÀ ÄÒ-
ÈÀÃÄÒÈÏÁÉÓ ÈÄÏÒÄÌÄÁÉ. ÌÉÙÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÀÓÉÌÐÔÏÔÖÒÉ ÃÀÛ-
ËÀ ÄÊÒÀÍÉÓ ÓÀÆÙÅÒÉÓ ÌÀáËÏÁËÏÁÀÛÉ, ÒÏÌËÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÃÀÃÂÄ-
ÍÉËÉÀ ÀÌÏÍÀáÓÍÉÓ äÄËÃÄÒÖËÉ ÖßÚÅÄÔÏÁÉÓ ÓÀÖÊÄÈÄÓÏ ÌÀÜÅÄÍÄÁÄËÉ.
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1. Introduction

The study of boundary value problems in electromagnetism naturally
leads us to the pseudo-Maxwell’s equations with inherited tangent boundary
conditions, which are in some sense non-standard for the system of elliptic
equations, cf. the works of Buffa, Costabel, Christiansen, Dauge, Hazard,
Lenoir, Mitrea, Nicaise and others. Due to the presence of tangent boundary
conditions the usage of the potential methods for the investigation is com-
plicated and the case of tangent Dirichlet type boundary condition is mostly
studied by variational methods. Our goal is to investigate well-posedness
of the screen type Dirichlet boundary value problems for pseudo-Maxwell’s
equations
A(D)U := curl µ−1 curl U−sε grad div(εU)−ω2εU = 0 in R3\C (1.1)

with the help of the potential method and tools of pseudodifferential equa-
tions; here, C ⊂ R3 denotes a screen which is a compact, orientable and
non self-intersecting surface with the boundary.

The present investigation covers the anisotropic case when the coefficients
in (1.1) are real-valued and constant matrices

ε = [εjk]3×3, µ = [µjk]3×3, (1.2)
which are symmetric and positive definite,

⟨εξ, ξ⟩ ≥ c|ξ|2, ⟨µξ, ξ⟩ ≥ d|ξ|2, ∀ ξ ∈ R3 ,

for some positive constants c > 0, d > 0, where

⟨η, ξ⟩ :=
3∑

j=1

ηjξj , η, ξ ∈ C3,

s in (1.2) is a positive real number and the frequency parameter ω is assumed
to be non-zero and complex valued, i.e., Imω ̸= 0.

2. Formulation of the Problems

From now on throughout the paper, unless stated otherwise, Ω denotes
either a bounded Ω+ ⊂ R3 or an unbounded Ω− := R3 \ Ω+ domain with
the smooth, non-self-intersecting boundary S := ∂Ω+ and ν is the outer
unit normal vector field to S . Whenever necessary, we will specify the case.

By C we denote a subsurface of S (a screen) with a boundary ∂C ,
which has two faces C− and C+ and inherits the orientation from S : C+

borders the inner domain Ω+ and C− borders the outer domain Ω−. The
unbounded domain with a screen configuration is denoted by

R3
C := R3 \ C .

The space H̃r(C ) comprises those functions φ ∈ Hr(S ) which are sup-
ported in C (functions with the “vanishing traces on the boundary”). For
the detailed definitions and properties of these spaces we refer, e.g., to
[13,14,16,17]).
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It is well-known that Hr−1/2(S ) is a trace space for Hr(Ω), provided
that r > 1/2 and the corresponding trace operator is denoted by γS . For
the detailed definitions and properties of these spaces we refer, e.g., to [17].

Let us note that since S is smooth, the Dirichlet trace γSU , the tan-
gential (Dirichlet) traces γτU = γS (ν ×U) and γπU = γC [(ν ×U) × ν],
the normal (Dirichlet) traces γnU = ⟨ν, γSU⟩ (i.e., γnU = ν · γSU) are
well defined for the elements of H1(Ω) and γτU , γπU belong to the Sobolev
space

H
1
2
t (S ) :=

{
U ∈ (H

1
2 (Γ))3 : ν ·U = 0 on S

}
of tangential vector fields of order 1/2 on the surface S , while γnU ∈
H

1
2 (S ) and γSU ∈ H 1

2 (S ).
First, for the smooth functions, using the Gauß formula (integration by

parts), we obtain the following Green’s formulae:
(A(D)U ,V )Ω+ = (ν × µ−1 curlU ,V π)S − (sdiv(εU), εν · V )S

+ aε,µ(U ,V )Ω+ − ω2(εU ,V )Ω+ , (2.1)
where aε,µ is the natural bilinear differential form associated with Green’s
formulae (2.1)

aε,µ(U ,V )Ω := (µ−1 curl U , curl V )Ω + s ( div(εU),div(εV ))Ω. (2.2)
and V π := V − ⟨ν,V ⟩ν.

Note that Green’s formula (2.1) allows us to define the Neumann’s trace
T (D,ν)U := s div(εU)εν − ν × µ−1 curl U , (2.3)

for an arbitrary vector U ∈ H1(Ω+) provided that A(D)U ∈ L2(Ω
+) by

the duality as follows
(T (D,ν)U ,V )S = aε,µ(U ,V )Ω+−(A(D)U ,V )Ω+−ω2(εU ,V )Ω+ , (2.4)

for all V ∈ H1(Ω+).

Theorem 2.1 (cf. [6]). In (1.1), the operator
A(D)U := curl µ−1 curl U − s ε grad div(εU)− ω2εU

is elliptic, has a positive definite principal symbol and is self-adjoint.

Now we are ready to formulate the screen type Dirichlet boundary value
problems (BVPs) for anisotropic pseudo-Maxwell’s equations:

The Dirichlet boundary value problem D:
Find U ∈ H1(R3

C ) such that{
A(D)U = 0 in R3

C ,

γ±(U) = g± on C ,
(2.5)

where the given data g± satisfy the conditions

g± ∈ H1/2(C ), g+ − g− ∈ rC H̃1/2(C ). (2.6)
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The Dirichlet boundary value problem Dτ :
Find U ∈ H1

εν,0(R3
C ) :=

{
U ∈ H1(R3

C ) : ⟨εν, γC±U⟩ = 0 on C
}

such
that {

A(D)U = 0 in R3
C ,

γ±
τ (U) = f± on C ,

(2.7)

where the given data f± satisfy the conditions

f± ∈ H1/2
t (C ), f+ − f− ∈ rC H̃1/2

t (C ). (2.8)

The Dirichlet boundary value problem Dπ:
Find U ∈ H1

εν,0(R3
C ) such that{

A(D)U = 0 in R3
C ,

γ±
π (U) = f± on C ,

(2.9)

where the given data f± satisfy the conditions

f± ∈ H1/2
t (C ), f+ − f− ∈ rC H̃1/2

t (C ). (2.10)

Before we proceed it is worth to note that tangent boundary conditions
in Problems Dτ and Dπ are motivated by tight connections between bound-
ary value problems for pseudo-Maxwell’s equation and Maxwell’s equation,
where the boundary operators γτ and γπ are natural, cf. [1–3,7] and others.
However, since we consider smooth screens there is a connection between
the traces γτ and γπ established by the geometric operation ν × · which is
in fact a rotation operator and therefore from the uniqueness, existence and
regularity results for the Problem Dτ we get the same results for the Prob-
lem Dπ, and vice versa. Moreover, the uniqueness, existence and regularity
results for these problems are an easy consequence of the results obtained
for the Problem D below due to the following formula:

g = (ν × g)× ν +
⟨εν,g⟩ − ⟨εν, (ν × g)× ν⟩

⟨εν,ν⟩
ν, (2.11)

which holds true for the smooth vector field ν and any g ∈ H 1
2 (S ). Indeed,

first, from the decomposition

g = ν × (g × ν) + ⟨ν,g⟩ν (2.12)

we have
⟨εν,g⟩ = ⟨εν,ν × (g × ν)⟩+ ⟨ν,g⟩⟨εν,ν⟩. (2.13)

Now, by expressing ⟨ν,g⟩ from (2.13) and inserting it into (2.12), we get
(2.11). Further, if U is a unique solution of the Problem D with the bound-
ary data

g± = f± × ν − ⟨εν, f± × ν⟩
⟨εν,ν⟩

ν,
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where f± satisfy the conditions (2.8) (therefore g± satisfy the conditions
(2.6)), we need to show that U ∈ H1

εν,0(R3
C ) and γ±

τ (U) = f±. Clearly, we
have

⟨εν, γC±U⟩ = ⟨εν,g±⟩ = ⟨εν, f± × ν⟩ − ⟨εν, f± × ν⟩
⟨εν,ν⟩

⟨εν,ν⟩ = 0

and

γ±
τ (U) = ν × (f± × ν)− ⟨εν, f± × ν⟩

⟨εν,ν⟩
(ν × ν) = ν × (f± × ν) = f±,

since f± ∈ H1/2
t (C ). Thus it is sufficient to study the Problem D.

3. Vector Potentials

The elliptic operator A(D) in (1.1) has the fundamental solution (cf. [13])

FA(x) := F−1
ξ→x

[
A −1(ξ)

]
= F−1

ξ′→x′

[
± 1

2π

∫
L

e−iτx3A −1(ξ′, τ) dτ

]
,

ξ′ = (ξ1, ξ2)
⊤ ∈ R2, x = (x′, x3) ∈ R3,

where F−1 denotes the inverse Fourier transform and A (ξ) is the full sym-
bol of the operator A(D):

A (ξ) := σcurl(ξ)µ
−1σcurl(ξ) + s ε

[
ξjξk]3×3ε− ω2ε, ξ = (ξ1, ξ2, ξ3)

⊤ ∈ R3,

where

σcurl(ξ) :=

 0 iξ3 −iξ2
−iξ3 0 iξ1
iξ2 −iξ1 0

 .

If x3 < 0 (if, respectively, x3 > 0), we fix the sign “+” (the sign “−”) and
a contour L in the upper (in the lower) complex half-plane, which encloses
all roots of the polynomial equation det A (ξ) = 0 in the corresponding
half-planes.

Let us consider, respectively, the single-layer and double-layer potential
operators

VU(x) :=

∮
S

FA(x− τ)U(τ) dS, (3.1)

WU(x) :=

∮
S

[(
T (D,ν(τ))FA

)
(x− τ)

]⊤
U(τ) dS, x ∈ Ω, (3.2)

related to pseudo-Maxwell’s equations in (1.1). Obviously,

A(D)VU(x) = A(D)WU(x) = 0, ∀U ∈ L1(S ), ∀x ∈ Ω. (3.3)

For the next Propositions 3.1–3.4 and for their proofs we refer, e.g.,
to [9, 11,15].
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Proposition 3.1. Let Ω ⊂ R3 be a domain with the smooth boundary
S = ∂Ω.

The potential operators above map continuously the spaces

V : Hr(S ) → Hr+3/2(Ω),

W : Hr(S ) → Hr+1/2(Ω), ∀ r ∈ R.
(3.4)

The direct values V−1, W0 and V+1 of the potential operators V, W
and T (D,ν)W are pseudodifferential operators of order −1, 0 and 1, re-
spectively, and map continuously the spaces

V−1 : Hr(S ) → Hr+1(S ),

W0 : Hr(S ) → Hr(S ),

V+1 : Hr(S ) → Hr−1(S ), ∀ r ∈ R.
(3.5)

Proposition 3.2. The potential operators on an open, compact, smooth
surface C ⊂ R3 have the following mapping properties:

V : H̃r(C ) → Hr+3/2(R3
C ),

W : H̃r(C ) → Hr+1/2(R3
C ), ∀ r ∈ R.

(3.6)

The direct values V−1, W0 and V+1 of the potential operators V, W
and T (D,ν)W are pseudodifferential operators of order −1, 0 and 1, re-
spectively, and have the following mapping properties:

V−1 : H̃r(C ) → Hr+1(C ),

W0 : H̃r(C ) → Hr(C ),

V+1 : H̃r(C ) → Hr−1(C ), ∀ r ∈ R.

(3.7)

Proposition 3.3. For the traces of potential operators we have the following
Plemelji formulae:

(γS −VU)(x) = (γS +VU)(x) = V−1U(x), (3.8)

(γS ±T (D,ν)VU)(x) = ∓1

2
U(x) + (W0)

∗(x,D)U(x), (3.9)

(γS ±WU)(x) = ±1

2
U(x) + W0(x,D)U(x), (3.10)

(γS −T (D,ν)WU)(x) = (γS +T (D,ν)WU)(x) = V+1U(x), (3.11)
x ∈ S , U ∈ Hs

p(S ),

where (W0)
∗(x,D) is the adjoint to the pseudodifferential operator W0(x,D),

the direct value of the potential operator T (D,ν)V on the boundary S .

Proposition 3.4. Let the boundary S = ∂Ω± be a compact smooth surface.
Solutions to pseudo-Maxwell’s equations with anisotropic coefficients ε and
µ are represented as

U(x) = ±W(γS ±U)(x)∓ V(γS ±T (D,ν)U)(x), x ∈ Ω±, (3.12)
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where γS ±T (D,ν)Ψ is Neumann’s trace operator (see (2.3)) and γS ±Ψ is
Dirichlet’s trace operator.

If C ⊂ R3 is an open compact smooth surface, then a solution to pseudo-
Maxwell’s equations with anisotropic coefficients ε and µ is represented as

U(x) = W([U ])(x)− V([T (D,ν)U ])(x), x ∈ R3
C ,

[U ] := γC+U − γC−U ,
[
T (D,ν)U

]
:= γC+T (D,ν)U − γC−T (D,ν)U .

As a consequence of the representation formula (3.12) we derive the fol-
lowing

Corollary 3.5. For a complex valued frequency, a solution to the screen type
boundary value problems for pseudo-Maxwell’s equations decays at infinity
exponentially, i.e.,

U(x) = O
(
e−α|x|) as |x| → ∞ provided that Imω ̸= 0 (3.13)

for some α > 0.

Theorem 3.6. The Problem D has at most one solution.

Proof. The proof is standard and uses Green’s formula (cf. (2.1)–(2.4)).
Let R be a sufficiently large positive number and B(R) be the ball centered
at the origin with radius R. Set ΩR := R3

C ∩ B(R). Note that the domain
ΩR has a piecewise smooth boundary SR including both sides of C .

Let U be a solution of the homogeneous problem. Then applying Green’s
formula for V = U in ΩR and passing to the limit R → ∞, taking into
account the estimate

U(x) = O
(
e−α|x|) as |x| → ∞ for α > 0,

we get
aε,µ(U ,U)R3 − ω2(εU ,U)R3 = 0.

Since ε and µ−1 are positive definite constant matrices, s > 0, and Imω ̸= 0,
it follows that

(εU ,U)R3 = 0,

and therefore U ≡ 0 in R3. �

4. The Screen Type Dirichlet Problem

Let ℓf+ ∈ H−1/2(S ) be a fixed extension of the function f+ ∈ H−1/2(C )

up to the entire closed surface S and let ℓ0(f+ − f−) ∈ H−1/2
εν,0 (S ) be an

extension by zero of the function f+ − f− ∈ rC H̃−1/2(C ), cf. (2.6). Then
any extension of the function f+ ∈ H−1/2(C ) onto S is given as

ℓ+f+ = ℓf+ + �,

where � is an arbitrary element of the space H̃1/2(C c), C c := S \C . There-
fore, any extension of the function f− ∈ H1/2(C ) onto S is defined as
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ℓ−f− := ℓ+f+ − ℓ0(f+ − f−) ∈ H1/2(S ) and we have

rC ℓ−f− = f+ − (f+ − f−) = f−,
rC cℓ+f+ = rC cℓ−f−.

(4.1)

We look for a solution of the screen type Dirichlet problem (2.5)-(2.6) in
the form of single-layer potentials:

U(x) =

{
V(V−1)

−1ℓ+f+(x), x ∈ Ω+,

V(V−1)
−1ℓ−f−(x), x ∈ Ω−.

(4.2)

Then U satisfies the basic differential equation (1.1) in the domains Ω±,
as well as the boundary conditions on C . From the ellipticity of the differ-
ential operator A(D) it follows that a generalized solution of the equation
A(D)U = 0 is analytic in R3

C and following continuity conditions{
rC cγS +U − rC cγS −U = 0,

rC cγS +(T (D,ν)U)− rC cγS −(T (D,ν)U) = 0
(4.3)

hold across the complementary surface C c. It is clear that by our construc-
tion the first equation in (4.3) is satisfied, cf. (3.8) and (4.1). From the
second equation, by applying (3.9) and (4.1) we derive the equation

rC c

(
− 1

2
I +(W0)

∗
)
(V−1)

−1ℓ+f+ −rC c

(1
2

I +(W0)
∗
)
(V−1)

−1ℓ−f−=0,

which is a strongly elliptic pseudo-differential equation on the surface C

−rC c(V−1)
−1� = F, (4.4)

with the known right-hand side

F := rC c(V−1)
−1ℓf+ − rC c

(1
2

I + (W0)
∗
)
(V−1)

−1ℓ0(f+ − f−) ∈ H
1
2 (C c).

The principal homogeneous symbol σ−(V−1)−1(x, ξ) of the operator
−(V−1)

−1 is even with respect to ξ for all x ∈ C . This implies that the
matrix(

σ−(V−1)−1(x′, 0, 0,−1)
)−1

σ−(V−1)−1(x′, 0, 0,+1) = I, x′ ∈ ∂C , (4.5)

has trivial eigenvalues. Using the equality (4.5) analogously to Lemma 3.12
from [6] we can prove the following theorem.

Theorem 4.1. The operator

−rC c(V−1)
−1 : H̃s(C c) → Hs−1(C c)

is invertible for all 0 < s < 1.

From Theorem 4.1 the following existence result follows immediately.
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Theorem 4.2. The Problem D possesses a unique solution U ∈ H1(R3
C )

which can be represented by single- layer potentials

U =

{
V(V−1)

−1(ℓf+ + �) in Ω+,

V(V−1)
−1

(
ℓf+ + � − ℓ0(f+ − f−)

)
in Ω−,

where � is a solution of the uniquely solvable pseudo-differential equation
(4.4).

Moreover, if the conditions
f± ∈ H

1
2+s(C ), f+ − f− ∈ rC H̃

1
2+s(C ).

for the data in (2.6) hold, a solution U of the screen type Dirichlet problem
belongs to the space H1+s(R3

C ) for all s ∈ [0, 1/2).

Finally, we characterize the asymptotic behaviour of solutions of the
problem D-I near the screen edge ∂C .

Let x′ ∈ ∂C and Πx′ be the plane passing through the point x′ and
orthogonal to the curve ∂C . We introduce the polar coordinates (r, α),
z ≥ 0, −π ≤ α ≤ π, on the plane Πx′ , with pole at the point x′, such that
the points (r,±π) describe the faces of the screen C in the vicinity of the
boundary ∂C . We assume that the boundary data f± are infinitely smooth.
Applying the results obtained in [4,5,8,12], near the screen edge we obtain
the following asymptotic expansion:

U(x′, r, α) = d0(x
′, α)r

1
2 +

M∑
k=1

dk(x
′, α)r

1
2+k +UM+1(x

′, r, α), (4.6)

where dk ∈ (C∞(∂C × [−π, π]))3, k = 0, . . . ,M , UM+1 ∈ CM+1(Ω±).
Note that from asymptotic expansion (4.6) it follows that U has C

1
2 -

smoothness in the tubular neighbourhood of the screen edge ∂C .
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