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ON THE WEIGHTED INITIAL PROBLEM FOR SINGULAR
FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. For singular functional differential systems, sufficient condi-
tions for solvability and well-posedness of the weighted initial problem are
established.

îâäæñéâ. ïæêàñèŽîñèæ òñêóùæëêŽèñî áæòâîâêùæŽèñîæ ïæïðâéâ-
ĲæïŽåãæï áŽáàâêæèæŽ ûëêæŽêæ ïŽûõæïæ ŽéëùŽêæï ŽéëýïêŽáëĲæïŽ áŽ çë-
îâóðñèëĲæï ïŽçéŽîæïæ ìæîëĲâĲæ.
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In a finite interval ]a, b[ we consider the functional differential system

dx(t)
dt

= f(x)(t) (1)

with the weighted initial condition

lim sup
t→a

∥∥φ−1(t)x(t)
∥∥ < +∞. (2)

Here, f : C([a, b];Rn) → Lloc(]a, b];Rn) is a singular operator satisfying
the local Carathéorory conditions, φ(t) = diag

(
ϕ1(t), . . . , ϕn(t)

)
, and ϕi :

[a, b] → R+ (i = 1, . . . , n) are continuous non-decreasing functions such that
ϕi(a) = 0, ϕi(t) > 0 for a < t ≤ b (i = 1, . . . , n).

The initial problem for the singular system (1) has been thoroughly in-
vestigated in the cases, in which f is either the Nemytski’s operator [1]–[6],
or the evolutionary operator [7]–[9]. The weighted initial problem for higher
order singular functional differential equations is studied in [11]–[14]. As for
the weighted singular problem (1), (2), it is not studied well enough. In the
present paper unimprovable in a certain sense conditions are given which,
respectively, guarantee solvability and well-posedness of this problem.

Throughout the paper, the use will be made of the following notation.
R = ]−∞,+∞[ , R+ = [0, +∞[ .
Rn is the space of n-dimensional real column-vectors x = (xi)n

i=1 with
the norm

‖x‖ =
n∑

i=1

|xi|.
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If x = (xi)n
i=1 ∈ Rn, then

[x]+ =
(xi + |xi|

2

)n

i=1
.

r(X) is the spectral radius of the n×n matrix X, and X−1 is the inverse
to X matrix.

diag(x1, . . . , xn) is the diagonal n × n-matrix with diagonal elements
x1, . . . , xn.

If X = diag(x1, . . . , xn), then Sgn(X) =
(
sgn(x1), . . . , sgn(xn)

)
.

Rn
+ and Rn×n

+ are the sets of n-dimensional vectors and n × n-matrices
with nonnegative components.

C([a, b];Rn) is the space of continuous vector functions x : [a, b] → Rn

with the norm
‖x‖C = max

{
‖x(t)‖ : a ≤ t ≤ b

}
.

Cφ([a, b];Rn) is the space of continuous vector functions x : [a, b] → Rn,
satisfying the condition (2), with the norm

‖x‖Cφ
= sup

{∥∥φ−1(t)x(t)
∥∥ : a < t ≤ b

}
.

If x = (xi)n
i=1 ∈ Cφ([a, b];Rn), then

|x|Cφ
=

(‖xi‖Cϕi

)n

i=1
.

L([a, b];Rn) is the space of vector functions with Lebesgue integrable on
[a, b] components.

Lloc(]a, b];Rn) is the space of vector functions whose components are
Lebesgue integrable on [a + ε, b] for an arbitrarily small ε > 0.

Kloc(]a, b] × Rk;Rm) and Kloc(C([a, b];Rk); Lloc(]a, b];Rm)) are the sets
of vector functions g : ]a, b] × Rk → Rm and operators f : C([a, b];Rk) →
Lloc(]a, b];Rm), satisfying the local Carathéodory conditions (see [15]).

An important particular case of the functional differential system (1) is
the differential system with a deviating argument

dx(t)
dt

= g
(
t, x(t), x(τ(t))

)
. (3)

Along with the problem (1), (2), we consider the problem (3), (2). Every-
where below, when the question concerns these problems, it will be assumed
that

f ∈ Kloc

(
C([a, b];Rn); Lloc(]a, b];Rn)

)
, g ∈ Kloc(]a, b]× R2n;Rn),

and τ : [a, b] → [a, b] is a measurable function.
We are mainly interested in the case, where the systems (1) and (3) are

singular, i.e., in the case in which
b∫

a

f∗ρ (t) dt = +∞ and

b∫

a

g∗ρ(t) dt = +∞ for ρ > 0,
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where

f∗ρ (t) = sup
{∥∥f(x)(t)

∥∥ : ‖x‖C ≤ ρ
}

,

g∗ρ(t) = max
{∥∥g(t, x, y)

∥∥ : ‖x‖+ ‖y‖ ≤ ρ
}

.

For an arbitrary positive number δ, we put

χ(t, δ, λ) =

{
0 for a ≤ t < a + δ

λ for t > a + δ
,

and consider the auxiliary initial problem
dx(t)

dt
= χ(t, δ, λ)f(x)(t), (4)

x(a) = 0, (5)

depending on the parameters λ ∈ ]0, 1] and δ > 0.
On the basis of Corollary 2 in [16], the following theorem can be proved.

Theorem 1. Let there exist a positive number ρ0 such that for arbitrary
λ ∈ ]0, 1] and δ > 0 every solution x of the problem (4), (5) admits the
estimate

‖x‖Cφ
≤ ρ0.

Then the problem (1), (2) has at least one solution.

This theorem allows one to get efficient sufficient conditions for the solv-
ability of the problems (1), (2) and (3), (2). In particular, the following
propositions are valid.

Theorem 2. Let there exist a matrix P ∈ Rn×n
+ and a vector function

q : R+ → Rn
+ such that

r(P) < 1, lim
ρ→+∞

‖q(ρ)‖
ρ

= 0, (6)

and for an arbitrary vector function x ∈ Cφ([a, b];Rn) on the interval [a, b]
the inequality

t∫

a

[
sgn(x(s))f(x)(s)

]
+

ds ≤ φ(t)
(
P|x|Cφ

+ q
(‖x‖Cφ

))

is fulfilled. Then the problem (1), (2) has at least one solution.

Corollary 1. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and let there exist a set of zero measure I0 ⊂ [a, b], matrices Pk ∈ Rn×n

+ (k =
1, 2) and a vector function q : R+ → Rn

+ with non-decreasing components
such that on the set ([a, b] \ I0)× R2n the inequality

Sgn(x)g(t, x, y) ≤ φ′(t)
(
P1φ

−1(t)|x|+ P2φ
−1(τ(t))|y|

)
+

+ φ′(t)q
(∥∥φ−1(t)|x|+ φ−1(τ(t))|y|

∥∥
)
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is fulfilled. If, moreover, the conditions (6) are fulfilled, where P = P1 +P2,
then the problem (3), (2) has at least one solution.

Remark 1. In Theorem 2 and Corollary 1, the condition r(P) < 1 is
unimprovable and it cannot be replaced by the condition r(P) ≤ 1. The
validity of that fact follows directly from the theorem below.

Theorem 3. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and let there exist a set of zero measure I0 ⊂ [a, b], matrices Pk ∈ Rn×n

+

(k = 1, 2) and a vector q0 = (q0i)n
i=1 with positive components q0i (i =

1, . . . , n) such that on the set ([a, b] \ I0)× R2n the inequality

g(t, x, y) ≥ φ′(t)
(
P1φ

−1(t)|x|+ P2φ
−1(τ(t))|y|+ q0

)

is fulfilled. If, moreover, r(P1 + P2) ≥ 1, then the problem (3), (2) has no
solution.

Along with the problem (1), (2), we consider the perturbed problem

dy(t)
dt

= f(y)(t) + h(t), (7)

lim sup
t→a

∥∥φ−1(t)y(t)
∥∥ < +∞, (8)

and introduce the following

Definition. The problem (1), (2) is called well-posed if there exists a
positive number ρ such that for an arbitrary function h ∈ L([a, b];Rn),
satisfying the condition

νφ(h) = sup
{∥∥∥φ−1(t)

t∫

a

|h(s)| ds
∥∥∥ : a < t ≤ b

}
< +∞,

the problem (7), (8) is uniquely solvable and its solution admits the estimate

‖y − x‖Cφ
≤ ρνφ(h),

where x is a solution of the problem (1), (2).

Theorem 4. Let there exist a matrix P ∈ Rn×n
+ such that r(P) < 1, and

for arbitrary vector functions x and y ∈ Cφ([a, b];Rn) in the interval [a, b]
the inequality

t∫

a

[
sgn(y(s))

(
f(x + y)(s)− f(x)(s)

)]
+

ds ≤ φ(t)P|y|Cφ

is fulfilled. If, moreover,

sup
{∥∥∥φ−1(t)

t∫

a

∣∣f(0)(s)
∣∣ ds

∥∥∥ : a < t ≤ b

}
< +∞,

then the problem (1), (2) is well-posed.
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Corollary 2. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and let there exist a set of zero measure I0 ⊂ [a, b] and matrices Pk ∈ Rn×n

+

(k = 1, 2) such that r(P1 + P2) < 1, and for any t ∈ [a, b] \ I0, x, x, y and
y ∈ Rn the inequality

sgn(x)
(
g
(
t, x+x, y+y

)−g(t, x, y)
)
≤φ′(t)

(
P1φ

−1(t)|x|+P2φ
−1(τ(t))|y|

)

is fulfilled. If, moreover,

sup
{∥∥∥φ−1(t)

t∫

a

∣∣g(s, 0, 0)
∣∣ ds

∥∥∥ : a < t ≤ b

}
< +∞,

then the problem (3), (2) is well-posed.

From Theorem 3 and Corollary 2 it follows

Corollary 3. Let the functions ϕi (i = 1, . . . , n) be absolutely continuous
and

g(t, x, y) = φ′(t)
(
P1φ

−1(t)|x|+ P2φ
−1(τ(t))|y|+ q0

)
,

where Pk ∈ Rn×n
+ (k = 1, 2), and q0 ∈ Rn

+ is the vector with positive
components. Then the problem (3), (2) is well-posed if and only if

r(P1 + P2) < 1.

Remark 2. According to Corollary 3, the inequality r(P) < 1 (r(P1 +
P2) < 1) in Theorem 4 (in Corollary 2) is unimprovable and it cannot be
replaced by the inequality r(P) ≤ 1 (r(P1 + P2) ≤ 1).
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