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Abstract. The set of positive solutions of Thomas–Fermi type differen-
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x′′ = q(t)φ(x)
is studied under the assumptions that q, φ are regularly varying functions
in the sense of Karamata. It is shown that such solutions exist and their
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îâäæñéâ. àŽéëçãèâñèæŽ åëéŽï{òâîéæï ðæìæï

x′′ = q(t)φ(x)
áæòâîâêùæŽèñîæ àŽêðëèâĲæï áŽáâĲæå ŽéëêŽýïêåŽ ïæéîŽãèâ æé öâéåý-
ãâãŽöæ, îëùŽ q áŽ φ çŽîŽéŽðŽï Žäîæå îâàñèŽîñèŽá ùãŽèâĲŽáæ òñ-
êóùæâĲæŽ. ïŽýâèáëĲî, êŽøãâêâĲæŽ Žïâåæ ŽéëêŽýïêâĲæï ŽîïâĲëĲŽ áŽ áŽá-
àâêæèæŽ ñïŽïîñèëĲŽöæ éŽåæ Žïæéìðëðñîæ õëòŽóùâãŽ.
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1. Introduction

The present paper is devoted to the existence and the asymptotic analysis
of positive solutions of nonlinear ordinary differential equations of Thomas–
Fermi type

x′′ = q(t)φ(x) (A)

assuming that q : [a,∞) → (0,∞), a > 0, is a continuous function which is
regularly varying at infinity of index σ ∈ R and φ(x) is a positive, continuous
function which is regularly varying at zero or at ∞ of index γ ∈ (0, 1).

We begin by stating some obvious but important facts valid for all pos-
itive solutions of equation (A): Let x(t) be a positive solution of (A) on
[a,∞), a ≥ 0. Since all positive solutions are convex, it follows that x′(t)
is increasing, and hence either x′(t) < 0 on [a,∞) or x′(t) > 0 on [t0,∞)
for some t0 > a. In the former case, x′(t) tends to 0 as t → ∞. In
fact, if x′(t) tends to some negative constant w1, we have x(t) ≤ w1 t, for
t ≥ t1 ≥ t0, which contradicts positivity of x(t). Moreover, x(t) is positive
and decreasing, so that it tends either to a positive constant or to 0 as
t →∞. In the latter case, x′(t) is positive and increasing, so it tends either
to ∞ or to some positive constant as t → ∞. Thus, x′(t) ≥ k for some
positive constant k and for t ≥ t1 ≥ t0. Accordingly, by integration we get
x(t) ≥ x(t1) + k(t− t1) which implies that x(t) →∞ as t →∞.

On the basis of the above observations all possible positive decreasing
solutions of (A) fall into the following two types:

lim
t→∞

x(t) = const > 0, lim
t→∞

x′(t) = 0, (1.1)

lim
t→∞

x(t) = 0, lim
t→∞

x′(t) = 0, (1.2)

while all possible positive increasing solutions of (A) fall into the following
two types:

lim
t→∞

x(t) = ∞, lim
t→∞

x(t)
t

= const > 0, (1.3)

lim
t→∞

x(t) = ∞, lim
t→∞

x′(t) = ∞. (1.4)

In our analysis we shall extensively use the class of regularly varying
functions introduced by J. Karamata in 1930 by the following

Definition 1.1. A measurable function f : [a,∞)→ (0,∞), a > 0, is
said to be regularly varying at infinity of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for all λ > 0.

A measurable function f : (0, a) → (0,∞) is said to be regularly varying at
zero of index ρ ∈ R if f( 1

t ) is regularly varying at ∞ i.e. if

lim
t→0+

f(λt)
f(t)

= λρ for all λ > 0. (1.5)
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By RV(ρ) and RV(ρ) we denote, respectively, the set of regularly varying
functions of index ρ at infinity and at zero. If, in particular, ρ = 0, the
function f is called slowly varying at infinity or at zero. By SV and SV we
denote, respectively, the set of slowly varying functions at infinity and at
zero. Saying only regularly or slowly varying function, we mean regularity
at infinity.

It follows from Definition 1.1 that any function f(t) ∈ RV(ρ) is written as

f(t) = tρg(t) with g(t) ∈ SV. (1.6)

If, in particular, the function g(t) → k > 0 as t → ∞, it is called a trivial
slowly varying one denoted by g(t) ∈ tr-SV, the function f(t) ∈ RV(ρ) is
called a trivial regularly varying of index ρ, denoted by f(t) ∈ tr-RV(ρ).
Otherwise g(t) is called a nontrivial slowly varying function denoted by
g(t) ∈ ntr-SV and f(t) is called a nontrivial RV(ρ) function, denoted by
f(t) ∈ ntr-RV(ρ). Similarly for the set RV(ρ).

Comprehensive treatises on regular variation are given in
N. H. Bingham et al. [2] and by E. Seneta [15]. To help the reader, we
present here a fundamental result which will be used throughout the paper.

Proposition 1.1 (Karamata’s integration theorem). Let L(t) ∈ SV.
Then

(i) if α > −1,
t∫

a

sαL(s) ds ∼ 1
α + 1

tα+1L(t), t →∞;

(ii) if α < −1,
∞∫

t

sαL(s) ds ∼ − 1
α + 1

tα+1L(t), t →∞;

(iii) if α = −1,

m1(t) =

t∫

a

L(s)
s

ds ∈ SV, m2(t) =

∞∫

t

L(s)
s

ds

and

lim
t→∞

L(t)
mi(t)

= 0, i = 1, 2.

The symbol ∼ denotes the asymptotic equivalence

f(t) ∼ g(t), t →∞⇐⇒ lim
t→∞

f(t)
g(t)

= 1.

Also, f(t) ³ g(t) means that there exist constants 0 < m < M such that

mg(t) ≤ f(t) ≤ Mg(t), t ≥ t0.
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Throughout the text, “t ≥ t0” means that t is sufficiently large, so that t0
need not to be the same at each occurrence.

We shall also use the following results:

Proposition 1.2. Let q1(t) ∈ RV(σ1), q2(t) ∈ RV(σ1), q3(t) ∈ RV(σ3).
Then

(i) g1(t) + g2(t) ∈ RV(σ), σ = max(σ1, σ2);

(ii) g1(t)g2(t) ∈ RV(σ1 + σ2), (g1(t))α ∈ RV(ασ1) for any α ∈ R;

(iii) q1(q2(t)) ∈ RV(σ1σ2) if q2(t) →∞, as t →∞;
q3(q2(t)) ∈ RV(σ3σ2) if q2(t) → 0, as t →∞;

(iv) for any ε > 0 and L(t)∈ SV, one has tεL(t)→∞, t−εL(t)→ 0, as
t →∞.

Proposition 1.3. If f(t) ∼ tαl(t) as t → ∞ with l(t) ∈ SV, then f(t)
is a regularly varying function of index α i.e. f(t) = tαl?(t), l?(t) ∈ SV,
where, in general, l?(t) 6= l(t), but l?(t) ∼ l(t) as t →∞.

Proposition 1.4. A positive measurable function f(t) belongs to SV if
and only if for every α > 0, there exist a non-decreasing function Ψ and a
non-increasing function ψ with

tαf(t) ∼ Ψ(t), and t−αf(t) ∼ ψ(t), t →∞.

Proposition 1.5. For the function f(t) ∈ RV(α), α > 0, there exists
g(t) ∈ RV(1/α) such that

f(g(t)) ∼ g(f(t)) ∼ t as t →∞.

Here, g is an asymptotic inverse of f (and it is determined uniquely to
within asymptotic equivalence).

Note, the same result holds for t → 0 i.e. when f(t) ∈ RV(α), α > 0:

Proposition 1.6. For the function f(t) ∈ RV(α), α > 0, there exists
f(t) ∈ RV(1/α) such that

f(g(t)) ∼ g(f(t)) ∼ t as t → 0.

This follows from Proposition 1.5, since by Definition 1.1 the assump-
tion is equivalent to the saying that f(1/t) ∈ RV(−α). Thus, one applies
Proposition 1.5 to the function 1/f(1/t) ∈ RV(α).

The assumptions on q and φ, using notation (1.6), imply that equation
(A) can be written in the form

x′′(t)= tσl(t)xγL(x), l(t)∈SV, L(x)∈SV or L(x)∈SV. (1.7)

If in (1.7), γ ∈ (0, 1) or γ > 1, equation is called sublinear or superlinear,
respectively.

The study of nonlinear differential equations of the form (A) in the frame-
work of regular variation was initiated by Avakumović [1] (as the very first
attempt of the kind in the theory of differential equations), followed by
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Marić and Tomić [12]–[14] and some more recent results [4], [5], [7], [8],
[10]. See also Marić [11, Chapter3]. These papers and some closely related
ones [16], [17] are concerned exclusively with decreasing positive solutions
of superlinear Thomas–Fermi type equations. No analysis from the view-
point of regular variation, until recently in [9], seems to have been made
of positive solutions of sublinear type of equations. There positive increas-
ing solutions of the both types (1.3), (1.4) of the equation (A) (or (1.7))
with γ ∈ (0, 1) were analyzed. Very recently a paper [6] by Evtukhov and
Samoilenko appeared. A more general equation x(n) = αq(t)x(t) is studied
and the existence and the asymptotics of solutions is obtained covering a
subclass of regularly varying solutions. Here α may be +1 (Thomas–Fermi
type), or −1 (Emden–Fowler one).

Our purpose here is to proceed further in studying positive solutions of
sublinear equation (A) by establishing the sharp conditions for the existence
and constructing the precise asymptotic forms of these. Besides regular
variation, the main tools employed in the proof of our main results are the
Schauder–Tychonoff fixed point theorem in locally convex spaces and the
following generalized L’Hospital’s rule (see [3]):

Lemma 1.1. Let f, g ∈ C1[T,∞) and

lim
t→∞

g(t) = ∞ and g′(t) > 0 for all large t

or
lim

t→∞
f(t) = lim

t→∞
g(t) = 0 and g′(t) < 0 for all large t.

Then

lim inf
t→∞

f ′(t)
g′(t)

≤ lim inf
t→∞

f(t)
g(t)

≤ lim sup
t→∞

f(t)
g(t)

≤ lim sup
t→∞

f ′(t)
g′(t)

.

2. Results

To avoid repetitions, we state here basic conditions imposed on the func-
tions q and φ in all theorems which follows:

q(t) ∈ RV(σ), σ∈R, (2.1)

a) φ(x) ∈ RV(γ), γ ∈ (0, 1);

b) φ(x) ∈ RV(γ), γ ∈ (0, 1).
(2.2)

First, observe that in either of two cases a) or b) in (2.2), by Propositions
1.5 and 1.6 there exists an asymptotic inverse ϕ(x) of the function x/φ(x).

In addition, in some of the theorems it is required that either

φ(x) ∈ RV(γ) satisfies φ(tλu(t)) ∼ φ(tλ)u(t)γ , as t →∞,

for each λ ∈ R− and u(t) ∈ SV ∩ C1(R),
(2.3)

or
φ(x) ∈ RV(γ) satisfies φ(tλu(t)) ∼ φ(tλ)u(t)γ , t →∞,

for each λ ∈ R+ and u(t) ∈ SV ∩ C1(R);
(2.4)
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In other words, the slowly varying part L(x) of φ(x) must satisfy L(tλu(t)) ∼
L(tλ), t →∞, for each slowly varying u(t) ∈ C1(R). It is easy to check that
this is satisfied by for e.g.

L(t) =
N∏

k=1

(logk t)αk , αk ∈ R,

but not by

L(t) = exp
( N∏

k=1

(logk t)βk

)
, βk ∈ (0, 1),

where logk t = log logk−1 t.
For the future analysis we need the following preparatory

Lemma 2.1. Put

Y0(t) = ϕ
( t2q(t)

ρ(ρ− 1)

)
, (2.5)

and

I(t) =

∞∫

t

∞∫

s

q(r)φ(Y0(r)) dr ds, (2.6)

where ϕ(x) is an asymptotic inverse of the function x/φ(x) and ρ is given by

ρ =
σ + 2
1− γ

. (2.7)

If (2.2) a) and (2.1) with σ < −2 hold, then as t →∞
(i) Y0(t) ∈ RV(σ+2

1−γ ) and Y0(t) → 0;

(ii) I(t) ∼ Y0(t).

Proof. Since t2q(t) → 0, t → ∞, by Proposition 1.2-(iii), we conclude that
Y0(t) ∈ RV (ρ), with ρ given by (2.7). Thus, Y0(t) is expressed as Y0(t) =
tρη(t), η(t) ∈ SV and Y0(t) → 0, t →∞, because ρ < 0. Moreover, in view
of (2.5), there follows

Y0(t)
φ(Y0(t))

∼ t2q(t)
ρ(ρ− 1)

, t →∞ . (2.8)

Hence, by writing I(t) in the form

I(t) =

∞∫

t

∞∫

s

q(r)
φ(Y0(r))

Y0(r)
Y0(r) dr ds ∼

∼ ρ(ρ− 1)

∞∫

t

∞∫

s

rρ−2η(r) dr ds, t →∞,

and applying Karamata’s theorem twice on the last integral (Propositi-
on 1.1-(ii)), one obtains the desired result. ¤
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To prove the existence and determine the exact asymptotic behavior of
solutions x(t) ∈ RV(ρ), ρ ∈ R we shall consider the following three cases
separately:

(i) ρ < 0 or ρ > 1,

(ii) ρ = 0,

(iii) ρ = 1.
Note, the case ρ ∈ (0, 1) does not exist due to (1.1)–(1.4).

(i) Regularly varying solution of index ρ < 0 or ρ > 1.

Theorem 2.1. Suppose that (2.1), (2.2) a) and (2.3) hold. Then equa-
tion (A) possesses a decreasing regularly varying solution x(t) of index ρ < 0
if and only if

σ < −2. (2.9)
Also, x(t) satisfies (1.2).

If, on the other hand, (2.1), (2.2) b) and (2.4) hold, then equation (A)
possesses an increasing regularly varying solution x(t) of index ρ > 1 if and
only if

σ > −γ − 1. (2.10)
Also, x(t) satisfies (1.4).

In either case any such solution x(t) has for t →∞ the exact asymptotic
behavior

x(t) ∼ ϕ
( t2q(t)

ρ(ρ− 1)

)
, (2.11)

where ϕ and ρ are as in Lemma 2.1.

Proof. We begin with the proof of the first part of Theorem 2.1, where
ρ < 0. Let (2.1), (2.2) a) and (2.3) hold.

The “only if” part: Let x(t) ∈ RV(ρ), ρ < 0, be a decreasing solution
of (A) on [t0,∞). We express it as x(t) = tρξ(t), ξ(t) ∈ SV. To avoid
ambiguity, notice that ρ ∈ R and has to be determined. Due to Proposition
1.2-(iv) x(t) → 0 as t → ∞, and as is pointed out in the Introduction,
x′(t) → 0 as t →∞. Integrating (A) over (t,∞) and using (1.7), we get for
t ≥ t0

−x′(t) =

∞∫

t

q(s)φ(x(s)) ds =

∞∫

t

sσ+ργ l(s)ξ(s)γL(sρξ(s)) ds. (2.12)

The convergence of the last integral implies that σ + ργ ≤ −1. However,
the possibility σ + ργ = −1 is excluded. In fact, if this were the case, then
(2.12) reduces to

−x′(t) =

∞∫

t

s−1l(s)ξ(s)γL(sρξ(s)) ds,
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and since due to Proposition 1.1-(iii) the last integral is slowly varying, an
integration over [t,∞) gives

x(t) ∼ t

∞∫

t

s−1l(s)ξ(s)γL(sρξ(s)) ds ∈ RV(1), t →∞,

contradicting ρ < 0. Thus, we have σ + ργ < −1. Then, by Karamata’s
integration theorem from (2.12), we obtain

−x′(t) ∼ tσ+ργ+1l(t)ξ(t)γL(tρξ(t))
−(σ + ργ + 1)

, t →∞. (2.13)

Since x(t) → 0 as t →∞, by integration we further get
∞∫

tσ+ργ+1l(t)ξ(t)γL(tρξ(t))
−(σ + ργ + 1)

dt < ∞,

and hence σ + ργ + 1 ≤ −1 i.e. σ + ργ ≤ −2. If σ + ργ = −2, then (2.13)
reduces to

x′(t) ∼ −t−1l(t)ξ(t)γL(tρξ(t)), t →∞,

and integration over [t,∞) yields

x(t) ∼
∞∫

t

s−1l(s)ξ(s)γL(sρξ(s)) ds ∈ SV, t →∞,

which leads to an impossibility that ρ = 0. Therefore, we must have σ+ργ <
−2, in which case, integrating (2.13) over [t,∞), we get for t →∞

x(t) ∼ tσ+ργ+2l(t)ξ(t)γL(tρξ(t))
[−(σ + ργ + 1)] [−(σ + ργ + 2)]

=

=
t2q(t)φ(tρξ(t))

[−(σ + ργ + 1)] [−(σ + ργ + 2)]
(2.14)

implying, in view of Proposition 1.3, that the regularity index of x(t) is
ρ = σ + ργ + 2, i.e. ρ = σ+2

1−γ . Then, since ρ < 0, we conclude that σ < −2.
Since, (σ + ργ + 1)(σ + ργ + 2) = ρ(ρ− 1), (2.14), due to (2.8), becomes

x(t)
φ(x(t))

∼ t2q(t)
ρ(ρ− 1)

∼ Y0(t)
φ(Y0(t))

, t →∞. (2.15)

Because Y0(t) → 0 and x(t) → 0 as t → ∞, (2.15) is, in view of Proposi-
tion 1.6, equivalent to (2.11).

The “if” part: Note that any solution x(t) of the integral equation

x(t) =

∞∫

t

∞∫

s

q(r)φ(x(r)) dr ds, (2.16)
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(if it exists) satisfies (A) and is obviously positive, decreasing and (1.2)
holds. We shall prove that it indeed exists and possesses the properties
stated in the Theorem.

Applying Proposition 1.4 to the function φ(x) ∈ RV(γ) with γ > 0, we
see that there exists a constant A > 1 such that

φ(x) ≤ A φ(y) for each a > y ≥ x > 0. (2.17)

Due to Lemma 2.1, there exists t0 > a so that

Y0(t)
2

≤ I(t) ≤ 2Y0(t), t ≥ t0. (2.18)

In addition, since Y0(t) → 0 as t → ∞ and (1.5) holds uniformly on each
compact λ-set on (0,∞) ([2, Theorem 1.2.1]) there exists t0 > a such that

λγ

2
φ(Y0(t)) ≤ φ(λY0(t)) ≤ 2λγφ(Y0(t)) for t ≥ t0. (2.19)

Choose 0 < k < 1 and K > 1 such that

k1−γ ≤ 1
4A

and K1−γ ≥ 4A, (2.20)

which is possible due to 0 < γ < 1.
Now we choose t0 such that (2.18) and (2.19) both hold and define the

set X to be the set of continuous functions x(t) on [t0,∞) satisfying

kY0(t) ≤ x(t) ≤ KY0(t) for t ≥ t0. (2.21)

It is clear that X is a closed convex subset of the locally convex space
C[t0,∞) equipped with the topology of uniform convergence on compact
subintervals of [t0,∞). We shall show that the integral operator F de-
fined by

Fx(t) =

∞∫

t

∞∫

s

q(r)φ(x(r)) dr ds, t ≥ t0,

is a continuous self-map on X and that F(X ) is a relatively compact subset
of C[t0,∞) and then apply the Schauder–Tychonoff fixed point theorem.
Notice that, in view of Lemma 2.1, the above integral converges on the set
X under consideration.

Let x(t) ∈ X . By using successively (2.17), (2.19) with λ = K and λ = k,
(2.20) and (2.18), one obtains

Fx(t) ≤ A

∞∫

t

∞∫

s

q(r)φ(KY0(r)) dr ds ≤

≤ 2AKγ

∞∫

t

∞∫

s

q(r)φ(Y0(r)) dr ds ≤

≤ 4AKγY0(t) ≤ K Y0(t), t ≥ t0,
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and

Fx(t) ≥ 1
A

∞∫

t

∞∫

s

q(r)φ(kY0(r)) dr ds ≥

≥ kγ

2A

∞∫

t

∞∫

s

q(r)φ(Y0(r)) dr ds ≥

≥ kγ

4A
Y0(t) ≥ kY0(t), t ≥ t0.

Therefore, Fx(t) ∈ X , that is, F maps X into itself.
Furthermore, it can be verified that F is a continuous map and F(X )

is relatively compact in C[t0,∞). Therefore, by the Schauder–Tychonoff
fixed point theorem, there exists a fixed point x(t) of F which satisfies the
integral equation (2.16) and hence equation (A).

Now we prove that any such solution x(t) has the asymptotic behavior
(2.11). Because of (2.21), x(t) satisfies

0 < lim inf
t→∞

x(t)
Y0(t)

≤ lim sup
t→∞

x(t)
Y0(t)

< ∞,

or in view of Lemma 2.1, we have

0 < lim inf
t→∞

x(t)
I(t)

≤ lim sup
t→∞

x(t)
I(t)

< ∞.

Put Y0(t) = tρη(t), η(t) ∈ SV. An application of Lemma 1.1, in view of
assumption (2.3), yields

L = lim sup
t→∞

x(t)
I(t)

≤ lim sup
t→∞

x′′(t)
I ′′(t)

= lim sup
t→∞

q(t)φ(x(t))
q(t)φ(Y0(t))

=

= lim sup
t→∞

φ(tρξ(t))
φ(tρη(t))

= lim sup
t→∞

ξ(t)γφ(tρ)
η(t)γφ(tρ)

= lim sup
t→∞

(x(t)/tρ)γ

(Y0(t)/tρ)γ
=

=
(

lim sup
t→∞

x(t)
Y0(t)

)γ

=
(

lim sup
t→∞

x(t)
I(t)

)γ

= Lγ .

Since γ < 1, from the above we conclude that

0 < L ≤ 1. (2.22)

Similarly, we can see that l = lim inf
t→∞

x(t)
I(t)

satisfies

1 ≤ l < ∞. (2.23)

From (2.22) and (2.23) we obtain that l = L = 1, which means that x(t) ∼
I(t) ∼ Y0(t), t → ∞, i.e. (2.11) holds. This also shows, due to Propositi-
on 1.3, that x(t) is a regularly varying solution of (A) with the requested
regularity index.

We now turn our attention to the second part of Theorem 2.1, where
ρ > 1. Let (2.1), (2.2) b) and (2.4) hold.
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The “only if” part: Suppose that (A) has solution of the form x(t) =
tρξ(t) on [t0,∞) with ρ > 1 and ξ(t) ∈ SV. Note that x′(t) → ∞ and
x(t) →∞ as t →∞. Integrating (A) on [t0, t], we have

x′(t) ∼
t∫

t0

q(s)φ(x(s)) ds =

t∫

t0

sσ+ργ l(s)ξ(s)γL(sρξ(s)) ds, t →∞. (2.24)

The divergence of the last integral as t →∞ means that σ + ργ ≥ −1. But
the possibility σ + ργ = −1 is precluded, because if this was the case, then

t∫

t0

s−1l(s)ξ(s)γL(sρξ(s)) ds ∈ SV,

and hence integration of (2.24) on [t0, t] shows that

x(t) ∼ t

t∫

t0

s−1l(s)ξ(s)γL(sρξ(s)) ds ∈ RV(1),

which contradicts the condition ρ > 1. Thus, σ + ργ > −1. In this case,
applying Karamata’s integration theorem to the last integral in (2.24), we
have

x′(t) ∼ tσ+ργ+1l(t)ξ(t)γL(tρξ(t))
σ + ργ + 1

, t →∞,

and integrating the above relation on [t0, t], we obtain

x(t) ∼ tσ+ργ+2l(t)ξ(t)γL(tρξ(t))
(σ + ργ + 1)(σ + ργ + 2)

∈ RV(σ + ργ + 2), t →∞, (2.25)

which, in view of Proposition 1.3, shows that the regularity index of x(t) is
ρ = σ+2

1−γ . From the requirement ρ > 1 it follows that σ > −γ − 1. Exactly
as when ρ < 0, (2.25) leads to the asymptotic formula (2.11).

The “if” part: It is proved in [9, Lemma 2.1, Theorem 2.1] that if the
regularity index σ of q(t) satisfies σ > −γ − 1, then the function Y0(t) ∈
RV(ρ) satisfies the relation

Y0(t) ∼
t∫

a

s∫

a

q(r)φ(Y0(r)) dr ds, t →∞,

and there exists a positive increasing solution x(t) of equation (A) which
satisfies (1.4) and (2.21). Then, proceeding exactly as when ρ < 0, with
application of Lemma 1.1 and using (2.4), we conclude that x(t) ∼ Y0(t) as
t →∞. This implies x(t) ∈ RV(ρ), with ρ given by (2.7), as before. ¤

(ii) Regularly varying solutions of index ρ = 0.

We distinguish two subcases: x(t) ∈ tr-SV and x(t) ∈ ntr-SV.
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Observe that slowly varying solutions must decrease. For otherwise (1.3)
and (1.4) would hold contradicting Proposition 1.2-(iv).

Theorem 2.2. Suppose that (2.1) and (2.2) a) hold. Equation (A) pos-
sesses a (decreasing) trivial slowly varying solution if and only if

∞∫

t0

sq(s) ds < ∞. (2.26)

Proof. The “only if” part: Suppose that (A) has a decreasing tr-SV-solution
x(t) on [t0,∞) i.e. satisfying x(t) → c, t →∞, c > 0. Integrating (A) over
[t,∞) and observing (1.1), one gets

−x′(t) =

∞∫

t

sσl(s)φ(x(s)) ds, t ≥ t0, (2.27)

implying σ ≤ −1. But the case σ = −1 is impossible since then, by Propo-
sition 1.1-(iii), the integral in (2.27) is an SV function, and another integra-
tion on [t,∞) would give ρ = 1. Thus ρ < −1 and by Karamata’s theorem,
(2.27) leads to

−x′(t) ∼ tσ+1l(t)φ(x(t))
−(σ + 1)

, t →∞, (2.28)

which together with x(t) → c, t →∞ yields

∞∫

t0

tσ+1l(t)φ(x(t))
−(σ + 1)

< ∞,

implying (2.26).

The “if” part: Suppose that (2.26) holds. Then there exists t0 ≥ a such
that

∞∫

t0

tq(t) dt ≤ c

2Aφ(c)
, t ≥ t0, (2.29)

where A > 1 is a constant such that (2.17) holds. Let us now define the
integral operator

Fx(t) =
c

2
+

∞∫

t

∞∫

s

q(r)φ(x(r)) dr ds, t ≥ t0,

and the set

X =
{

x(t) ∈ C[t0,∞) :
c

2
≤ x(t) ≤ c, t ≥ t0

}
.
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If x(t) ∈ X , then clearly, Fx(t) ≥ c/2. Also, due to (2.29), we obtain
∞∫

t

∞∫

s

q(r)φ(x(r)) dr ds ≤ Aφ(c)

∞∫

t

∞∫

s

q(r) dr ds =

= Aφ(c)

∞∫

t

(r − t)q(r)dr ≤ c

2
, t ≥ t0,

and hence Fx(t) ≤ c for t ≥ t0. This shows that Fx(t) ∈ X , and hence F
is a self-map of the closed convex set X . Moreover, we can verify that F
is continuous and F(X ) is relatively compact in the topology of the locally
convex space C[t0,∞). Therefore, by the Schauder–Tychonoff fixed point
theorem, F has a fixed point x0(t) ∈ X , which gives birth to a solution of
equation (A) tending to a positive constant as t →∞. ¤

Remark 2.1. It is clear that (2.26) implies σ < −2, or σ = −2 and
∞∫
t

l(s)
s ds < ∞.

Theorem 2.3. Suppose that (2.1) and (2.2) a) hold. Equation (A) pos-
sesses a (decreasing) nontrivial slowly varying solution if and only if

σ = −2 and

∞∫

t

tq(t) dt < ∞, (2.30)

and any such solution x(t) has the exact asymptotic behavior

x(t) ∼ Φ−1(Q(t)), t →∞, (2.31)

where

Q(t) =

∞∫

t

sq(s) ds, t ≥ a, and Φ(x) =

x∫

0

dv

φ(v)
, x > 0. (2.32)

Proof. The “only if” part: Suppose that (A) has a nontrivial SV-solution
x(t) on [t0,∞), so it has to satisfy (1.2). Then, as in the proof of Theo-
rem 2.2, we get (2.28) and conclude that σ must satisfy σ + 1 ≤ −1. If
σ < −2, integrating (2.28) over [t,∞) and applying Karamata’s integration
theorem, we obtain

x(t) ∼ tσ+2l(t)φ(x(t))
(σ + 1)(σ + 2)

∈ RV(σ + 2), t →∞,

which is impossible because for the regularity index of x(t) we would get
ρ = σ + 2 < 0. Thus, one has σ = −2 and so, integration of (2.28) over
[t,∞) gives

x(t) ∼
∞∫

t

s−1l(s)φ(x(s)) ds, t →∞. (2.33)
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Let the integral in (2.33) be denoted by χ(t). Then, χ(t) → 0, t → ∞ and
satisfies

χ′(t) = −t−1l(t)φ(x(t)) ∼ −t−1l(t)φ(χ(t)), t →∞,

that is
χ′(t)

φ(χ(t))
∼ −tq(t), t →∞.

An integration of the last relation over [t,∞) results in

χ(t)∫

0

du

φ(u)
= Φ(χ(t)) ∼

∞∫

t

sq(s) ds = Q(t), t →∞, (2.34)

or

χ(t) ∼ Φ−1(Q(t)), t →∞,

which is equivalent to (2.31) since by (2.33), x(t) ∼ χ(t) as t →∞.
Observe that because of (2.2) a) and Proposition 1.2-(iv), the left-hand

side integral in (2.34) converges at 0 and the same holds for the right-hand
side one at ∞. Thus, the second condition in (2.30) also holds. In addition,
since Φ is continuous and increasing and φ(x) ∈ RV(1 − γ), its inverse
function exists and

Φ−1(x) ∈ RV
( 1

1− γ

)
. (2.35)

The “if” part: Suppose that (2.30) holds, so that q(t) = t−2l(t), l(t) ∈
SV. We show that Y1(t) defined by

Y1(t) = Φ−1

( ∞∫

t

sq(s) ds

)
, t ≥ a,

satisfies the integral asymptotic relation
∞∫

t

∞∫

s

q(r)φ(Y1(r)) dr ds ∼ Y1(t), t →∞.

Notice that, in view of (2.30), Q(t) ∈ SV and Q(t) → 0, t → ∞, so that
Proposition 1.2-(iii) and (2.35) show that Y1(t) ∈ SV. Also, Y1(t) → 0 as
t →∞, so that φ(Y1(t)) ∈ SV. Since Φ(Y1(t)) = Q(t), we get

tq(t) = −Φ′(Y1(t))Y ′
1(t) = − Y ′

1(t)
φ(Y1(t))

,

implying that Y1(t) is a solution of the differential equation

Y ′
1(t) + tq(t)φ(Y1(t)) = 0.
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Thus, applying Karamata’s integration theorem, we have, due to the pre-
ceding differential equation,

∞∫

t

∞∫

s

q(r)φ(Y1(r)) dr ds =

=

∞∫

t

∞∫

s

r−2l(r)φ(Y1(r)) dr ds ∼
∞∫

t

s−1l(s)φ(Y1(s)) ds =

=

∞∫

t

sq(s)φ(Y1(s)) ds = −
∞∫

t

Y ′
1(s) ds = Y1(t), t →∞.

Then, by replacing in the proof of Theorem 2.1 the function Y0(t) by Y1(t),
an application of the Schauder–Tychonoff fixed point theorem provides the
existence of a decreasing solution x(t) of equation (A) satisfying

x(t) ³ Y1(t). (2.36)

We show that the obtained solution x(t) of (A) is slowly varying and hence
satisfies (2.31). Using (2.36) and (2.17), from equation (A) we get

x′′(t) ³ q(t)φ(Y1(t)) = t−2l(t)φ(Y1(t)).

Integrating over [t,∞), we get

x′(t) ³ t−1l(t)φ(Y1(t)), x(t) ³
∞∫

t

s−1l(s)φ(Y1(s)) ds.

Then

t
x′(t)
x(t)

³ l(t)φ(Y1(t))
[ ∞∫

t

s−1l(s)φ(Y1(s)) ds

]−1

. (2.37)

Application of Karamata’s integration theorem gives

lim
t→∞

l(t)φ(Y1(t))
[ ∞∫

t

s−1l(s)φ(Y1(s)) ds

]−1

= 0,

which implies with (2.37) that tx′(t)/x(t) → 0 as t →∞. Therefore, by [11,
Proposition 10], x(t) is slowly varying and so enjoys the precise asymptotic
behavior (2.31). This completes the proof of Theorem 2.3. ¤

Remark 2.2. If specially φ(x) = xγ , then formulas (2.11) and (2.31) read,
respectively,

x(t) ∼
( t2q(t)

ρ(ρ− 1)

) 1
1−γ

, x(t) ∼
( ∞∫

t

sq(s) ds

) 1
1−γ

, t →∞.
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(iii) Regularly varying solutions of index ρ = 1.

This case is completely resolved by Theorems 3.2 and 3.3 in [9] and we
present it here for the sake of completeness.

Theorem 2.4. Suppose that (2.1) and (2.2) b) hold. Equation (A) pos-
sesses a trivial RV(1) solution if and only if

σ < γ − 1, or σ = −γ − 1 and

∞∫

t0

q(t)φ(t) dt < ∞.

If, in addition, (2.4) holds for λ = 1, equation (A) possesses a nontrivial
RV(1) solution if and only if

σ = −γ − 1 and

∞∫

t0

q(t)φ(t) dt = ∞,

and any such solution has the exact asymptotic behavior

x(t) ∼ t

[
(1− γ)

t∫

a

q(s)φ(s) ds

] 1
1−γ

, t →∞.

Remark 2.3. It is worthwhile mentioning that, due to Proposition 1.3,
our results apply to a very wide class of equations (see Examples 2.1, 2.2).

Example 2.1. Consider differential equation (A) with

φ(x) ∼ xγ log(x + 1) and q(t) ∼ 3r(t)t
γ−5

2 (log t)
1−γ

2

4 log(t−1/2(log t)1/2 + 1)
, (2.38)

t →∞,

where 0 < γ < 1 and r(t) is a continuous function on [e,∞) such that
lim

t→∞
r(t) = 1.

The function q(t) is a regularly varying function of index σ = γ−5
2 ,

which satisfies σ < −2, while φ(x) ∈ RV(γ) fulfills the condition (2.3).
Then ρ = −1/2 and it is easy to check that

t2q(t)
ρ(ρ− 1)

∼ t
γ−1

2 (log t)
1−γ

2

log(t−1/2(log t)1/2 + 1)
, t →∞.

Therefore, it follows from Theorem 2.1 that the equation possesses de-
creasing regularly varying solutions x(t) of index ρ = −1/2, satisfying
x(t) ∼ Y0(t), t →∞ i.e.

x(t)1−γ

log(x(t) + 1)
=

x(t)
φ(x(t))

∼ Y0(t)
φ(Y0(t))

, t →∞.

In view of (2.8), we have

Y0(t)
φ(Y0(t))

∼
( log t

t

) 1−γ
2

[
log

(( log t

t

) 1
2

+ 1
)]−1

, t →∞,
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implying that

x(t) ∼
√

log t

t
, t →∞.

Observe that if in (2.38) instead of “∼” one has “=” and

r(t) = 1− 4
3 log t

− 1
3(log t)2

,

then, x(t) = ( log t
t )

1
2 ∈ RV(−1/2) is an exact solution.

Example 2.2. Consider equation (A) with

φ(x) ∼ xγ log(xδ + 1) and

q(t) ∼ f(t)

2t2(log t)
3−γ

2 log((log t)−δ/2 + 1)
, t →∞,

(2.39)

where γ ∈ (0, 1), δ > 0 and f(t) is a continuous function on [e,∞) such
that limt→∞ f(t) = 1. Clearly, q(t) is a regularly varying function of index
σ = −2 and satisfies

Q(t) =

∞∫

t

sq(s) ds ∼ 1

δ(1− γ)(log t)
1−γ

2 log(log t)−1/2
→ 0, (2.40)

t →∞.

Also, φ(x) ∈ RV(γ) and

Φ(x) =

x∫

0

dv

φ(v)
∼ 1

δ(1− γ)xγ−1 log x
, x → 0. (2.41)

By Theorems 2.2 and 2.3, equation (A) has, along with a trivial slowly
varying solution, a nontrivial SV-solution x(t) whose asymptotic behavior
is given by (2.31) or equivalently

Φ(x(t)) ∼ Q(t) =

∞∫

t

sq(s) ds, t →∞. (2.42)

Using (2.40) and (2.41), (2.42) is reduced to

δ(1− γ)x(t)γ−1 log x(t) ∼ δ(1− γ)
(
(log t)−1/2

)γ−1 log(log t)−1/2,

t →∞,

implying that x(t) ∼ (log t)−1/2 as t → ∞. If in (2.39) instead of “∼” one
has “=” and, in particular, f(t) = 1+3/2 log t, then (A) possesses an exact
nontrivial SV-solution x(t) = (log t).

Example 2.3. Consider equation (A) with

φ(x) = xγ log(x + 1), q(t) =
(
tγ+1(log t)γ log(t log t + 1)

)−1
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with γ ∈ (0, 1). Note that φ fulfills the condition (2.4) with λ = 1. Also,
q(t) ∈ RV(−γ − 1) and satisfies

q(t)φ(t) ∼ t(log t)γ , t →∞
which for t →∞ gives

t∫

t0

q(s)φ(s) ds ∼ (log t)1−γ

1− γ
→∞.

Thus, by Theorem 2.4, the above-considered equation possesses nontrivial
RV(1) solutions all of which have the same asymptotic behavior x(t) ∼
t log t, t →∞. In fact, an exact solution is x(t) = t log t.
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