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Abstract. The Kirsch problem on the tension of an elastic plane with
a circular hole free from external traction is considered. It is assumed
that complementary surface stresses are applied at the boundary. Based
on Kolosov–Muskhelishvili’s method, the solution of the problem is reduced
to the solution of a singular integro-differential equation for an unknown
surface stress. A solution to the obtained equation is derived in an explicit
form and shows that stress concentration at the boundary depends on the
elastic properties of a surface and bulk material, and the radius of a hole as
well if surface stresses are taken into account.

The paper is an example of the modern applications of Muskhelisvili’s
outstanding achievements to the problems of the nanomechanics.
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îâäæñéâ. àŽêýæèñèæŽ çæîöæï ŽéëùŽêŽ áîâçŽáæ òæîòæðæïŽåãæï éîàãŽèæ
ýãîâèæå, îëéâèæù åŽãæïñòŽèæŽ àŽîâöâ úŽèâĲæï äâéëóéâáâĲæïŽàŽê. áŽöãâ-
ĲñèæŽ, îëé ïŽäôãŽîäâ éëáâĲñèæŽ áŽéŽðâĲæåæ äâáŽìæîñèæ úŽĲãâĲæ. çëèë-
ïëã{éñïýâèæöãæèæï éâåëáæï àŽéëõâêâĲæå áŽïéñèæ ŽéëùŽêŽ éæõãŽêæèæŽ ïæê-
àñèŽîñèæ æêðâàîë-áæòâîâêùæŽèñîæ àŽêðëèâĲæï ŽéëýïêŽéáâ ñùêëĲæ äâ-
áŽìæîñè áŽúŽĲñèëĲâĲæï éæéŽîå. éæôâĲñèæ àŽêðëèâĲæï ŽéëýïêŽ øŽûâîæ-
èæŽ ùýŽáæ ïŽýæå, îŽù ïŽöñŽèâĲŽï àãŽúèâãï áŽãæêŽýëå, îëé úŽĲãâĲæï çëê-
ùâêðîŽùæŽ ïŽäôãŽîäâ áŽéëçæáâĲñèæŽ òæîòæðæï âèŽïðæñî åãæïâĲâĲäâ áŽ
éŽïŽèŽäâ, Žàîâåãâ ýãîâèæï îŽáæñïäâ, åñ àŽãæåãŽèæïûæêâĲå äâáŽìæîñè
úŽĲãâĲï.

ïðŽðæŽ ûŽîéëŽáàâêï ê. éñïýâèæöãæèæï àŽéëîøâñèæ éâùêæâîñèæ éæôûâãâ-
Ĳæï àŽéëõâêâĲæï êæéñöï êŽêëéâóŽêæçæï åŽêŽéâáîëãâ ìîëĲèâéâĲöæ.
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It is known, that taking into account surface stresses in rigid bodies [1]–
[4] might be most important for nanoobjects. Here unexpected effects, not
correspond to our traditional representations, may turn out [5], [6].

From these positions the classical Kirsch problem concerning the ten-
sion of an elastic plane weakened by a circular hole will be considered.
Assume that complementary surface stresses occur along the boundary of
the circular hole [1]–[4]. The problem will be treated with the help of the
Kolosov–Muskhelishvili method [7].

According to the Laplace–Young law [1], [4], the boundary conditions in
the absence of external stresses on the circular boundary are given as follows

σrr +
σs

θθ

r
= 0, σrθ − 1

r

∂σs
θθ

∂θ
= 0. (1)

Here σs
θθ is the surface stress, r, θ are the polar coordinates with the center

coinciding with that of the circular hole.
First, we construct a solution for the hole of unit radius and, therefore,

introduce r = 1 in equation (1).
Suppose that the conditions of uniaxial tension along the x1-axis at in-

finity are imposed, i.e.,

σ∞11 = σ, σ∞22 = σ∞12 = ω∞ = 0, (2)

where ω is a turning angle of the material particle.
In the complex writing the conditions (1) for r = 1 take the form

σrr + iσrθ = −σs
θθ + i

∂σs
θθ

∂θ
≡ ts, (3)

where i is the imaginary unit.
To solve the problem, we will apply the Kolosov–Muskhelishvili formulas

[7] which express stresses in the plane σjk and displacements uj (j, k = 1, 2)
in the Cartesian coordinates x1, x2 in terms of complex functions Φ, Ψ
holomorphic for r =

√
x2

1 + x2
2 > 1:

σ11 + σ22 = 4ReΦ(z),

σ22 − σ11 + 2iσ12 = 2 (z̄Φ′(z) + Ψ(z)) ,
(4)

2µ(u1 + iu2) = κ
∫

Φ(z)dz − zΦ(z)−
∫

Ψ(z) dz̄. (5)

Here z = x1 + ix2, κ = 3− 4ν for the plane strain, κ = (3− ν)/(1 + ν)
for the plane stress, ν and µ are, respectively, the Poisson ratio and the
shear modulus of the elastic medium. A quantity with the bar denotes
complex conjugation and the prime denotes the derivative with respect to
the argument.

We will introduce a local orthogonal system of coordinates n, t, rotated
with respect to the system x1, x2 by the angle α−π/2. Then from formulas
(4), (5) we derive the joint expression for the traction σn = σnn + iσnt on
an element of area with the normal vector n and the displacement vector
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u = u1 + iu2 [8]

G(z, z̄) = ηΦ(z) + Φ(z) +
dz̄

dz

(
zΦ′(z) + Ψ(z)

)
, (6)

where G = σn for η = 1 and G = −2µdu/dz for η = −κ. The increment dz
is taken in the direction of the axis t. i.e., along the chosen area element.
Thus in (6), dz = |dz|eiα, dz̄ = dz.

Following N. I. Muskhelishvili’s method [7], we introduce the function
Υ(z), holomorphic in the circle |z| < 1, except the point z = 0, where it
might have a pole up to the second order, inclusive:

Υ(z) = −Φ(z̄−1) + z−1Φ′(z̄−1) + z−2Ψ(z̄−1). (7)

Using equality (7) from (6) we derive the following

G(z, z̄) = ηΦ(z) + Φ(z) +
dz̄

dz

[
1
z̄2

(
Φ(z) + Υ

(1
z̄

))
+

(
z − 1

z̄

)
Φ′(z)

]
, (8)

|z| > 1.

We take the limit z → ζ = eiθ in equation (8) and direct the vector n
towards the center z = 0. Since in this case α = θ+3π/2 and dz = −i|dz|eiθ,
by virtue of conditions (3) from (8) we derive that

Φ(ζ)−Υ(ζ) = ts(ζ). (9)

Here Φ(ζ), Υ(ζ) are the limiting values of the corresponding functions on
the circumference of unit radius γ.

Introducing the function W (z), holomorphic in the complex plane except
the circumference γ,

W (z) =

{
Φ(z), |z| > 1
Υ(z), |z| < 1

. (10)

we reduce equation (9) to the following Hilbert problem

W+(ζ)−W−(ζ) = −ts(ζ), |ζ| = 1. (11)

Taking into account the existence of the pole, a solution to the problem
(11) is written in the form (cf. [7])

W (z) = −I(z) + S(z) + D1, (12)

where

I(z) =
1

2πi

∫

γ

ts(η)
η − z

dη, S(z) =
c1

z
+

c2

z2
(13)

and
D1 = lim

z→∞
Φ(z) = σ/4.

Since the principal vector of forces applied to the boundary of the hole
equals zero we have c1 = 0, c2 = −σ/2.



Solution of the Kirsch Problem in View of Surface Stresses 127

For the problem under consideration the constitutive relation, connecting
the surface stress and the corresponding strain, takes the form (cf. [4])

σs
θθ = (2µs + λs)εs

θθ, z = ζ, (14)

where λs, µs are the modules of the surface elasticity, similar to the Lamé
constants of the bulk material.

We impose the continuity constraint on the displacements vector under
passing from the volume to the boundary

lim
|z|>1

z→ζ

u(z) = us(ζ), ζ ∈ γ, (15)

where us(ζ) is the displacement vector of the boundary point ζ ∈ γ. From
(15) follows the same for the volume deformations εθθ and the deformation
on the boundary εs

θθ, i.e.,

lim
|z|>1

z→ζ

εθθ(z) = εs
θθ(ζ), ζ ∈ γ. (16)

The relations (14)–(16) result in the equation for the surface stress

σs
θθ = (2µs + λs)εθθ, z = ζ. (17)

The expression for the deformation εθθ is derived by using the relation
(8). Putting in (8) successively dz = dx1 and dz = idx2 for η = −κ, and
z = ζ, after some transformations we find expressions for the deformations
εjk in (x1, x2)–system of coordinates. After passing to the polar coordinates
r, θ, we obtain

2µεθθ = Re
[
κΦ(ζ) + Υ(ζ)

]
. (18)

Introducing (18) into (17) and taking into account (10) and (11), we
arrive at the following equation:

σs
θθ = −M Re

[
κI−(ζ) + I+(ζ)

]
+

M(κ + 1)σ
4

(
1− ζ2 − ζ−2

)
, (19)

where M = 2µs+λs

2µ .
Let τ = σs

θθ. Since ∂τ/∂θ = iζ∂τ/∂ζ = iζτ ′(ζ), the Sokhotskii–Plemelj
formulas for the Cauchy type integral I(z) acquire the form

I±(ζ) = ∓τ(ζ)
2

∓ ζτ ′(ζ)
2

− 1
2πi

∫

γ

τ(η) + ητ ′(η)
η − ζ

η, (20)

where the integral is understood in the sense of the Cauchy principal value.
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Introducing I±(ζ) from (20) into (19), we obtain the following integral
equation

τ(ζ)− M(κ + 1)
M(κ − 1) + 2

×

×
[

1
2πi

∫

γ

τ(η) + ητ ′(η)
η − ζ

dη − 1
2πi

∫

γ

τ(η) + ητ ′(η)
η̄ − ζ̄

dη̄

]
=

=
M(κ + 1)σ

2M(κ − 1) + 4
(
1− ζ2 − ζ−2

)
. (21)

Taking into account the relations η̄ = η−1, ζ̄ = ζ−1, τ(η) = τ(η),
ητ ′(η) = −ητ ′(η), dη̄ = −η−2dη, equation (21) for the hole of radius r
transforms into the following singular integro-differential equation

τ(ζ)− M(κ + 1)
M(κ − 1) + 2r

×

×
[

1
2πi

∫

γ

τ(η) + ητ ′(η)
η − ζ

dη − ζ

2πi

∫

γ

η−1τ(η)− τ ′(η)
η − ζ

dη

]
=

=
Mr(κ + 1)σ

2M(κ − 1) + 4r

(
1− ζ2 − ζ−2

)
. (22)

In (22) we denote η = η1/r, ζ = ζ1/r, where η1, ζ1 are points on the
circumference of radius r.

From physical considerations for σ = 0 the surface stress σs
θθ is absent.

This implies that the homogeneous equation corresponding to the integral
equation (21), or (22), has only the trivial solution τ = 0.

A particular solution to equation (22) is sought in the form of infinite
sum

τ =
+∞∑

k=−∞
dkζk. (23)

Introducing (23) into (22), after integration and reduction of similar
terms, we get

d0 =
Mr(κ + 1)
4(r −M)

σ, d2 = d−2 = − Mr(κ + 1)
2[2r −M(κ + 3)]

σ, dk = 0, (24)

k 6= 0,−2, 2.

Find now the hoop stresses σθθ on the boundary. From (8), when z →
ζ = eiθ and dz = dreiθ, we obtain

σθθ(ζ1) + iσrθ(ζ1) = Φ(ζ) + 2Φ(ζ) + Υ(ζ), |ζ1| = r. (25)

Using (10), (11)–(13), in view of (23) and (24), the equality (25) yields

σθθ = d0 + 6d2 cos 2θ + (1− 2 cos 2θ)σ. (26)
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The first two summands in the right-hand side of (26) show the influence
of surface stresses on the hoop stress σθθ on the boundary of the hole. The
tensile stress σθθ in the absence of surface stresses attains its maximum at
the points θ = ±π/2 on the boundary of the hole. In the presence of surface
stresses for the value σθθ we get a different formula, namely,

σθθ

∣∣
θ=π/2 =

M(κ + 1)[14r −M(15 + κ)]
4(r −M)[2r −M(κ + 3)]

σ + 3σ. (27)

It is rather evident from (27) that if M > 0 then for r < M and M(15 +
κ) < 14r < 7M(3+κ) the stress concentration diminishes when the surface
stresses are present, while for 14M < 14r < M(15 +κ) and 2r > M(3 +κ)
the stress concentration increases.

References

1. M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces.
Arch. Rational Mech. Anal. 57 (1975), 291–323.

2. A. I. Murdoch, Some fundamental aspects of surface modelling. J. Elasticity 80
(2005), No. 1-3, 33–52.

3. Ya. S. Podstrigach and Yu. Z. Povstenko, An introduction to the mechanics of
surface phenomena in deformable solids. (Russian) Naukova Dumka, Kiev, 1985.

4. H. L. Duan, J. Wang, and B. L. Karihaloo, Theory of elasticity at the nanoscale.
Adv. Appl. Mechanics 42 (2009), 1–68.

5. V. A. Yeremeyev and N. F. Morozov, On the effective rigidity of a nanoporous
rod. (Russian) Dokl. Akad. Nauk 432 (2010), No. 4, 473–476.

6. P. V. Goldstein, V. A. Gorodtsov, and K. B. Ustinov, Influence of surface resid-
ual stresses and surface elasticity on deformation of spherical inclusions of nanometre
sizes in elastic matrix. (Russian) Phys. Mesomechanics. 13 (2019), No. 5, 127–128.

7. N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity.
Fundamental equations, plane theory of elasticity, torsion and bending. (Russian)
Fifth revised and enlarged edition. With a supplementary chapter by G. M. Baren-
blatt, A. I. Kalandija and G. F. Mandzavidze, Izdat. “Nauka”, Moscow, 1966.

8. M. A. Grekov, A singular plane problem in the theory of elasticity. (Russian) Izda-
tel’stvo Sankt-Peterburgskogo Universiteta, St. Petersburg, 2001.

(Received 06.12.2010)

Authors’ address:

Saint-Petersburg State University
Faculty of Mathematics and Mechanics
Universitetski pr., 28
Saint-Petersburg, 198504
Russia
E-mail: magrekov@mail.ru


