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ON SOME NONLINEAR BOUNDARY VALUE PROBLEMS
FOR HIGH ORDER FUNCTIONAL DIFFERENTIAL

EQUATIONS

Abstract. Sufficient conditions for solvability and unique solvability are
established for the problems of the type
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Let −∞ < a < b < +∞, n be a natural number, Cn be the space of n

times continuously differentiable functions u : [a, b] → R with the norm

‖u‖Cn = max
{ n∑

k=1

|u(k−1)(t)| : a ≤ t ≤ b
}
,
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L be the space of Lebesgue integrable functions v : [a, b] → R with the norm

‖v‖L =

b∫

a

|v(t)| dt,

and g : Cn → L be a continuous operator such that

g∗ρ ∈ L for any ρ ∈ ]0, +∞[ ,

where

g∗ρ(t) = sup
{
|g(u)(t)| : u ∈ Cn, ‖u‖Cn ≤ ρ

}
.

Consider the functional differential equation

u(4n)(t) = g(u)(t) (1)

with the boundary conditions

u(i−1)(a) = u(i−1)(b) = 0 (i = 1, . . . , n),

2n∑

k=1

(
αjk(u)u(n+k−1)(a) + βjk(u)u(n+k−1)(b)

)
= 0 (j = 1, . . . , 2n),

(2)

where αjk : Cn → R, βjk : Cn → R (j, k = 1, . . . , 2n) are functionals
continuous and bounded on every bounded set of the space Cn.

We are interested in the case where for arbitrary v ∈ Cn, xk ∈ R, yk ∈ R

(k = 1, . . . , 2n) the condition

2n∑

j=1

∣∣∣
2n∑

k=1

(
αjk(v)xk + βjk(v)yk

)∣∣∣ > 0

for
n∑

k=1

(y2n−k+1yk − x2n−k+1xk) > 0 (3)

holds.
The particular case of (1) is the differential equation

u(4n)(t) = f
(
t, u(t), . . . , u(n)(t)

)
, (4)

and the particular cases of (2) are the boundary conditions

u(i−1)(a) = u(i−1)(b) = 0, γ1iu
(n+i−1)(a) + γ2iu

(3n−i)(a) = 0,

η1iu
(n+i−1)(b) + η2iu

(3n−i)(b) = 0 (i = 1, . . . , n); (21)

u(i−1)(a) = u(i−1)(b) = 0, u(n+i−1)(a) = γiu
(n+i−1)(b),

u(3n−i)(b) = γiu
(3n−i)(a) (i = 1, . . . , n); (22)

and
u(i−1)(a) = u(i−1)(b) = 0 (i = 1, . . . , n),

u(n+j−1)(a) = u(n+j−1)(b) (i = 1, . . . , n).
(23)
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Here f : [a, b] × Rn+1 → R is a function satisfying the local Carathéodory
conditions, and γ1i, γ2i, η1i, η2i, γi are constants such that

γ1iγ2i ≤ 0, η1iη2i ≥ 0, |γ1i|+ |γ2i| > 0, |η1i|+ |η2i| > 0 (i = 1, . . . , n)

and

γi 6= 0 (i = 1, . . . , n).

By C̃4n−1 we denote the space of functions u : [a, b] → R absolutely
continuous along with their first 4n− 1 derivatives.

By a solution of Eq. (1) we mean a function u ∈ C̃4n−1 satisfying this
equation almost everywhere on [a, b].

A solution of Eq. (1) satisfying the conditions (2) is called a solution
of the problem (1), (2).

Definition 1. We will say that a function u : [a, b] → R belongs to the

set Dn
0 , if u ∈ C̃4n−1 and

u(i−1)(a) = u(i−1)(b) = 0 (i = 1, . . . , n).

Definition 2. We will say that a function u belongs to the set Dn, if
u ∈ Dn

0 and there exists a function v ∈ Cn, such that

2n∑

k=1

(
αjk(v)u(n+k−1)(a) + βjk(v)u(n+k−1)(b)

)
= 0 (j = 1, . . . , 2n).

Theorem 1. Let there exist l ∈ ]0, 1[ and l0 ≥ 0 such that for an arbi-

trary u ∈ Dn the inequality

b∫

a

g(u)(t) u(t) dt ≤ l

b∫

a

[u(2n)(t)]2 dt + l0 (5)

is fulfilled. Then the problem (1), (2) has at least one solution.

Corollary 1. Let for an arbitrary u ∈ Dn
0 the inequality (5) hold, where

l ∈ ]0, 1[ and l0 ≥ 0. Then for every k ∈ {1, 2, 3} the problem (1), (2k) has

at least one solution.

Theorem 2. Let there exist l ∈ ]0, 1[ such that for an arbitrary u and

v ∈ Dn the inequality

b∫

a

(
g(u)(t)− g(v)(t)

)(
u(t)− v(t)

)
dt ≤ l

b∫

a

∣∣u(2n)(t)− v(2n)(t)
∣∣2 dt (6)

is fulfilled. Then the problem (1), (2) has one and only one solution.

Corollary 2. If for arbitrary u and v ∈ Dn
0 the inequality (6) holds,

where l ∈ ]0, 1[, then for every k ∈ {1, 2, 3} the problem (1), (2k) has one

and only one solution.
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Theorems 1 and 2 and their corollaries are new not only in the general
case, but also in the case where g is Nemytski’s operator, i.e., when Eq.
(1) is of the form (4) (see [1]–[5] and the references therein). We will now
proceed to the consideration just of that case.

Theorem 3. Let on the set [a, b]×Rn+1 the inequality

f(t, x1, . . . , xn+1) sgnx1 ≤

n+1∑

k=1

lk|xk |+ h(t) (7)

hold, where h ∈ L and lk (k = 1, . . . , n + 1) are nonnegative constants such

that
n+1∑

k=1

(b− a

π

)4n−k+1

lk < 1. (8)

Then the problem (4), (2) has at least one solution.

Corollary 3. If the conditions of Theorem 3 hold, then for every k ∈
{1, 2} the problem (4), (2k) has at least one solution.

Theorem 4. Let on the set [a, b]×Rn+1 the condition

[
f(t, x1, . . . , xn+1)− f(t, y1, . . . , yn+1)

]
sgn(x1 − y1) ≤

n+1∑

k=1

lk|xk − yk| (9)

hold, where lk (k = 1, . . . , n + 1) are nonnegative constants satisfying the

inequality (8). Then the problem (4), (2) has one and only one solution.

Corollary 4. If the conditions of Theorem 4 hold, then for every k ∈
{1, 2} the problem (4), (2k) has one and only one solution.

The following two theorems deal with the problem (4), (23).

Theorem 5. Let on the set [a, b]×Rn+1 the inequality (7) hold, where

h ∈ L and lk (k = 1, . . . , n + 1) are nonnegative constants such that

n+1∑

k=1

(b− a

π

)4n−k+1

lk < 4n. (10)

Then the problem (4), (23) has at least one solution.

Theorem 6. Let on the set [a, b]×Rn+1 the condition (9) hold, where lk
(k = 1, . . . , n + 1) are nonnegative constants satisfying the inequality (10).
Then the problem (4), (23) has one and only one solution.

As an example, we consider the linear differential equation

u(4n)(t) =

n+1∑

k=1

pk(t)u(k−1)(t) + q(t), (11)

where
pk ∈ L (k = 1, . . . , n), q ∈ L.

From Theorems 4 and 6 we have



163

Corollary 5. Let almost everywhere on [a, b] the inequalities

p1(t) ≤ l1, |pk(t)| ≤ lk (k = 2, . . . , n + 1)

hold, where lk (k = 1, . . . , n + 1) are nonnegative constants satisfying the

inequality (8) (the inequality (10)). Then each of the problems (11), (2);
(11), (21) and (11), (22) (the problem (11), (23)) has one and only one so-

lution.

In the case n = 1 the above theorems and corollaries generalize the results
of the paper [6].
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