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We consider linear systems of the form

ẋ = A(t)x, x ∈ R
n, t ≥ 0, (1A)

with piecewise continuous bounded coefficients (‖A(t)‖ ≤ a for t ≥ 0) and perturbed
systems (1A+Q) with piecewise continuous on the non-negative half-line [0,+∞) pertur-
bations Q satisfying either the condition

‖Q(t)‖ ≤ CQe−σt, σ ≥ 0, t ≥ 0, (2)

or the more general condition

‖Q(t)‖ ≤ Cε
Qe(ε−σ)t, σ ≥ 0, ∀ ε > 0, t ≥ 0, (31)

which is equivalent to the inequality

λ[Q] ≡ lim
t→+∞

t−1 ln ‖Q(t)‖ ≤ −σ ≤ 0. (32)

If σ = 0, then we additionally suppose that

Q(t) → 0 as t → +∞. (4)

A great number of papers (it seems impossible to compile the complete bibliography of
them) are dedicated to the investigation of the classic notion of Lyapunov’s reducibility
(see [1, p. 43]) of linear systems. Here we are interested in properties of the coeffi-

cient of reducibility r2(A) and the exponent of reducibility r3(A) of (1A) with respect to
perturbations (2) and (31)–(32), respectively.

Definition 1 (see [2]). The infimum of the set R2(A) (the set R3(A)) of all values of
σ > 0 such that perturbed system (1A+Q) with any perturbation Q satisfying condition
(2) (conditions (31)–(32)) is reducible to the initial system (1A) is called the coefficient

of reducibility r2(A) (the exponent of reducibility r3(A)) of (1A).

To further investigate the properties of r2(A) and r3(A), we will use the following
definition which is equivalent to Definition 1.

Definition 2. The number r2(A) > 0 (the number r3(A) > 0) is called the coefficient
(the exponent) of reducibility of (1A) if for any 0 < σ1 < r2(A) < σ2 (0 < σ1 < r3(A) <
σ2): 1) there exists a perturbation Q1 satisfying (2) ((31)–(32)) with σ = σ1 such that
(1A) and (1A+Q1

) are not reducible to each other; 2) (1A+Q) is reducible to (1A) for any
perturbation Q satisfying (2) ((31)–(32)) with σ = σ2. We say that (1A) has the zero
coefficient r2(A) = 0 (the zero exponent r3(A) = 0) of reducibility if (1A+Q) is reducible
to (1A) for any perturbation Q satisfying (2) ((31)–(32)) with any fixed σ > 0.
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Now we show that the coefficient and the exponent of reducibility of (1A) are well-
defined.

Let R2(A) be the set of all σ > 0 such that perturbed system (1A+Q) is reducible to
initial system (1A) for any perturbation Q satisfying (2). Show that r2(A) = i2(A) ≡
inf R2(A) ∈ [0, 2a], where the inclusion holds owing to Theorem 1 from [2]. Since any
perturbation Q satisfying (2) with σ = α2 > 0 satisfies (2) with σ = α1 ∈ (0, α2), we
see that the set R2(A) can be represented as R2(A) = |i2(A), +∞). If now the equality
i2(A) = 0 holds, then the necessary condition of the definition of r2(A) = 0 is fulfilled.
In the case i2(A) > 0 for all σ2 > i2(A) Property 2) of the definition of r2(A) is also
fulfilled. Property 1) of this definition is also fulfilled for any σ1 ∈ (0, i2(A)), otherwise
we get i2(A) ≤ σ1 < i2(A) for some σ1 ∈ (0, i2(A)), which is impossible. Therefore the
required equality r2(A) = i2(A) is proved. In the same manner we can show that the
reducibility exponent r3(A) ∈ [0, 2a] exists for any system (1A), ‖A(t)‖ ≤ a for t ≥ 0.

Theorem 1. The coefficient of reducibility r2(A) and the exponent of reducibility

r3(A) are equal for any linear system (1A).

Proof. Suppose, contrary to our claim, that r2(A) 6= r3(A). If 0 ≤ r2(A) < r3(A), then
by definition, 1) there exists a perturbation Q satisfying (32), λ[Q] < −σ1 ≡ −(r2+r3)/2,
σ1 < r3(A), so that (1A) and (1A+Q) are not reducible; 2) this perturbation Q satisfies
the inequality ‖Q(t)‖ ≤ C1 exp(−σ1t), t ≥ 0, thus Q satisfies (2) with σ = σ1 > r2(A) ≥
0, and it follows (the second property of the definition above) that (1A+Q) is reducible
to (1A). This contradiction implies the inequality r2(A) ≥ r3(A).

Similarly, one can show that the inequality r2(A) > r3(A) ≥ 0 is also impossible. The
theorem is proved. �

Now we can define the coefficient of reducibility r(A) of (1A) as the common value of
the reducibility coefficient and the reducibility exponent:

r(A) = r2(A) = r3(A).

Let ω0(A) ≤ Ω0(A) be the general (singular) lower and upper exponents (see [3,
pp. 109–111]) of (1A). The following result is proved in [4].

Theorem 2. If a piecewise continuous matrix Q satisfies (4) and

∥

∥

∥

∥

+∞
∫

t

Q(τ) dτ

∥

∥

∥

∥

≤ CQe−σt, t ≥ 0, (5)

with some σ > Ω0(A) − ω0(A), then systems (1A) and (1A+Q) can be reduced to each

other by Lyapunov’s transformation, i.e., are asymptotically equivalent.

Since the lower and upper general exponents ω0(A) and Ω0(A) of system (1A), defined
in terms of its Cauchy matrix XA(t, τ) by the formulae [3, p. 117]

ω0(A) = lim
T→+∞

1

T
inf
k≥0

ln ‖XA(kT, kT + T )‖−1 ,

Ω0(A) = lim
T→+∞

1

T
sup
k≥0

ln ‖XA(kT + T, kT )‖,

admit the estimates ω0(A) ≥ −a and Ω0(A) ≤ a, we see that Theorem 1 implies the
following assertion.

Corollary. If condition (5) is satisfied for some σ > 2a, then systems (1A) and

(1A+Q) are asymptotically equivalent.

Therefore, the reducibility coefficient r(A) of (1A) belongs to the segment [0, 2a].
Moreover, the following assertion (see [4]) establishes the existence of systems (1A) such
that r(A) = 2a.
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Theorem 3. For each a > 0, there exist a system (1A) with the piecewise continuous

coefficient matrix A, ‖A(t)‖ ≤ a for t ≥ 0, and a piecewise continuous perturbation Q
satisfying the condition

‖Q(t)‖ ≤ CQe−2at, t ≥ 0, (6)

such that the initial and perturbed linear systems (1A) and (1A+Q) are not asymptotically

equivalent.

To prove this theorem, it suffices to consider the two-dimensional system (1A) with
the diagonal matrix A(t) = diag[−a(t), a(t)], where

a(t) = (−1)ia, t ∈ [t2k+i, t2k+i+1), i = 0, 1,

and

t0 = 0, tk+1 = tk + e4atk , k ≥ 0, {tk} ↑ +∞.

It is easy to verify that ω0(A) = −a, Ω0(A) = a for this system. We take the second-order
lower triangular matrix with the entries

qij(t) = 0, i ≤ j, q21(t) = q(t) = e−2at, t ≥ 0,

as the perturbation matrix Q(t) satisfying (6).
Theorem 3 gives the structure of the set R2(A) = (2a, +∞) for system (1A) con-

structed above and, in view of the evident inclusion R3(A) ⊂ R2(A) and the equality
r3(A) = r2(A), it also gives the structure of the set R3(A) = (2a, +∞).

However, in the general case, the sets R2 and R3 do not coincide with each other.
This fact is established by the following theorem.

Theorem 4. For each a > 0, there exists a system (1A) with the piecewise continuous

coefficient matrix A, ‖A(t)‖ ≤ a for t ≥ 0, and with the reducibility coefficient r(A) = 2a
such that system (1A+Q) with any piecewise continuous perturbation Q satisfying the

condition

‖Q(t)‖ ≤ CQe−r(A)t for t ≥ 0 (7)

is reducible to (1A) and is not reducible to (1A) for some perturbation Q satisfying

(31)–(32) with σ = r(A).

To construct the required system, we define two sequences: the sequence (am) of
numbers am = a(1 − 1/m), a0 = 0, m ∈ N, and the time sequence (tm), tm, t1 = 1,
t0 = 0, satisfying the condition

εm ≡ tm/tm+1 ≤ e−2(1 + m)−1 , m ∈ N. (8)

From (8) it follows that the length of each next half-interval [tm, tm+1) is greater than
the previous one [tm−1, tm), m ∈ N, and tm → +∞ as m → +∞.

Using these sequences, we define the entries of the diagonal matrix A(t) =
diag[a1(t), a2(t)]:

a2(t) = −a1(t) = (−1)mam, t ∈ [tm, tm+1), m ∈ N0 = {0} ∪ N.

It is evident that sup
t≥0

‖A(t)‖ = a and the coefficient of reducibility r(A) of this system

is equal to 2a. Furthermore, system (1A+Q) is asymptotically equivalent to system (1A)
for any perturbation Q satisfying (7). To prove the second part of the theorem, that is,
to construct system (1A+Q) which is not asymptotically equivalent to (1A), it suffices to
take the second-order matrix Q with the entries

qij(t) = 0, i ≤ j, q21(t) = exp[−2at + p(t)], t ≥ 0,

where p(t) = 0 for t ∈ [0, 1), p(t) = 4at/m for t ∈ [tm, tm+1), m ∈ N. One can verify that
Q satisfies (31)–(32) with σ = r(A).

Thus, for the piecewise continuous perturbations (2), the reducibility coefficient of
linear systems has the following property of two kinds: there exist a system (1A) and
a perturbation Q satisfying (2) with σ = r(A) such that the perturbed system (1A+Q)
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and the initial system (1A) are not reducible (Theorem 3), as well as there exist systems
(1A) such that perturbed system (1A+Q) with any perturbation Q satisfying the same
condition (2) with σ = r(A) is reducible to (1A) (Theorem 4).

At the same time, Theorem 4 shows the inherent difference between the properties
of the reducibility coefficient with respect to perturbations (2) and with respect to more
general perturbations (31)–(32). Namely, there exist systems (1A) such that perturbed
system (1A+Q): 1) for any perturbation Q satisfying (2) with σ = r(A) is reducible to
(1A); 2) for some perturbation Q satisfying (31)–(32) with the same σ = r(A) is no longer
reducible to (1A).

The following assertion gives the general integral test of reducibility of system (1A+Q)
to system (1A).

Theorem 5. If Q satisfies the condition

lim
t→+∞

+∞
∫

t

∥

∥XA(t, τ)Q(τ)XA(τ, t)
∥

∥ dτ < 1,

where XA(t, τ) is the Cauchy matrix of system (1A), then the system (1A+Q) is reducible

to (1A).

In conclusion, we note that the value of the norm of the coefficient matrix of the linear
system and the value of its reducibility coefficient are independent.

Theorem 6. For any numbers 2a ≥ r ≥ 0 there exists a system (1A) with the

piecewise continuous coefficient matrix A such that r(A) = r and ‖A(t)‖ ≤ a for t ≥ 0.
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