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ON ZAREMBA’S BOUNDARY

VALUE PROBLEM FOR HARMONIC

FUNCTIONS OF SMIRNOV CLASSES



Abstract. Analogously to Smirnov classes of analytic functions, Smirnov
classes of harmonic functions are introduced and mixed Zaremba’s bound-
ary value problem is studed in them, i.e., the problem of constructing a
harmonic function when on a part of the boundary its values are given,
while on the remaining part the values of its normal derivative.
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The Boundary value problems for harmonic functions of two variables
are studied well enough under different assumptions for unknown functions
(see, e.g., [1–6]). Because of the fact that such harmonic functions are
real parts of analytic functions, the properties of the latter often play an
important role in studying boundary value problems. One of the most in-
teresting classes is the set of those functions, analytic in the given domain
D, whose integral p-means along a sequence of curves converging to the
domain boundary are uniformly bounded. These classes are generalizations
of Hardy classes Hp and are called Smirnov classes Ep(D) (see, e.g., [7],
Ch. IX-X, [8]). The functions from these classes are representable for p ≥ 1
by the Cauchy integral and possess a number of various important proper-
ties, so they are frequently encountered in the theory of functions. These
properties are also preserved for harmonic functions from the class ep(D)
which is composed of the real parts of functions from Ep(D). It was that
fact that evoked great interest in the theory of boundary value problems for
harmonic functions from ep(D). The Dirichlet, Neumann and Riemann–
Hilbert problems in domains with arbitrary piecewise smooth boundaries
have been studied in [9–13]. Boundary value problems have also been con-
sidered in those classes which are defined analogously to Smirnov classes,
or represent their generalizations ([14]–[15]).

Our aim is to consider in these classes the problem when some value of
an unknown harmonic function is given on one part of the boundary and
the value of its derivative in the direction of the normal is given on the
supplementary part of the boundary. S. Zaremba [16] was the first who
considered this problem, and that is why the problem is called after his
name, Zaremba’s problem (see, e.g., [17]). This problem is a particular case
of the so-called mixed problems for elliptic equations (see [18], p. 16; ref-
erences concerning these problems can be found on pages 201–202 therein).
The simplest solution of Zaremba’s problem under the assumption that the
boundary function is differentiable along the whole boundary, is given in
[19]. In [20] we can find an explicit solution of the problem for a half-plane
when the boundary functions belong to the Hölder class. The more gen-
eral problem a ∂u

∂n
+ bu = c (or a ∂u

∂x
+ b∂u

∂y
+ cu = d) has been investigated

thoroughly in [2], [3], [24], etc. However, in all those works the assumptions
regarding the coefficients do not cover the problem of our interest.

In the present paper we pose and investigate the problem of Zaremba
in a sufficiently wide weighted Smirnov class e(Γ1p(ρ1),Γ

′
2q(ρ2)), first in a

circle (Sections 30–70) and then in domains bounded by Lyapunov curves
(Section 80). In Section 90 we consider the mixed boundary value problem
in a more narrow (than that mentioned above) class of harmonic functions.

10. Some Definitions.
Let U be the unit circle {z : |z| < 1} bounded by the circumference

γ = {τ : |τ | = 1}, and let γk = [ak, bk], k = 1,m, be arcs separately lying
on it; note that the points a1, b1, a2, b2, . . . , am, bm follow each other in the
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positive direction on γ. Let m1 be an integer from the segment [0, 2m]. We
denote by c1, c2, . . . , c2m the points ak, bk, k = 1,m, taken arbitrarily and

consider in the plane cut along the set of curves Γ1 =
m
∪
k=1

γk the analytic

functions

Π1(z) =

√
m1

Π
k=1

(z − ck), Π2(z) =

√
2m

Π
k=m1+1

(z − ck), (1)

where of the first we take an arbitrary branch and the second function we
choose in such a way that the function

R(z) =
Π1(z)

Π2(z)
(2)

decomposes in the neighborhood of the point z = ∞ as follows:

R(z) = zm−m1 +A1z
m−m1+···

(see [2], p. 277). For z = t ∈ Γ1, under Π1(t), Π2(t), R(t) we will mean the
value which the corresponding function takes on the left of Γ1.

Let q > 1,

ω(t) =
2m

Π
k=1

|t− ck|
αk , −

1

q
< αk <

1

q′
, q′ =

q

q − 1
, (3)

and let Γ be a measurable set on γ. By Lq(Γ;ω) we denote the set of
measurable on Γ (by the arc measure ds) functions f for which

∫

Γ

|f(t)ω(t)|qds <∞.

Suppose Lq(Γ) = Lq(Γ; 1), L(Γ) ≡ L1(Γ).
Next, let [a′k, b

′
k] be the arcs lying on Γk (the point b′k follows a′k in the

direction on γk from ak to bk). Denote

Γ1 =
m
∪
k=1

γk, γ̃ =
m
∪
k=1

[ak, a
′
k]

m
∪
k=1

[b′k, bk], Γ2 = γ\Γ1. (4)

If E ⊂ γ, then we denote by χE the characteristic function of the set E.
Moreover, suppose

Θ(E) = {θ : 0 ≤ θ ≤ 2π, eiθ ∈ E}. (5)

When E is a finite union of closed arcs on γ, by A(E) we denote the set of
functions f(t) = f(eiθ) absolutely continuous on Θ(E), i.e., the functions f
for which for any ε > 0 there exists a number δ > 0 such that if ∪(eiαk , eiβk)
is any union of non-intersecting intervals from E satisfying

∑
(βk−αk) < δ,

then the inequality
∑
|f(eiβk)− f(eiαk )| < ε holds.

Let d1, d2, . . . , dn be different from ck points on γ; note that d1, d2, . . . , dn1

are located on Γ1\γ̃, and dn+1, . . . , dn on Γ2. Assuming that p ≥ 1, and
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q > 1 we put

ω1(z) =
n1

Π
k=1

(z − dk)
αk , −

1

p
< αk <

1

p′
, p′ =

p

p− 1
, (6)

ω2(z) =
m1

Π
k=1

(z − ck)
νk

2m

Π
k=m1+1

(z − ck)
λk

n

Π
k=n1+1

(z − dk)
βk , (7)

−
1

q
< νk < 0, 0 ≤ λk <

1

q′
, −

1

q
< βk <

1

q′
,

where ω1 and ω2 are arbitrary branches of the functions which are analytic
in the plane cut along γ, and for p = 1 we assume that p′ = ∞, 1

p′
= 0.

20. Classes h(Γ1p(ω1),Γ
′
2q(ω2)) and Some of Their Properties.

We say that a harmonic in the circle U function u(z), z = x+ iy = reiϕ

belongs to the class h(Γ1p(ω1),Γ
′
2q(ω2)), p ≥ 0, q ≥ 0, if

sup
0<r<1

[ ∫

Θ(Γ1)

|u(reiθ)ω1(re
iθ)|pdθ+

+

∫

Θ(Γ2)

(∣∣∣∣
∂u

∂x
(reiθ)

∣∣∣∣
q

+

∣∣∣∣
∂u

∂y
(reiθ)

∣∣∣∣
q)
|ω2(re

iθ)|qdθ

]
<∞. (8)

For Γ1 = γ, ω1 = 1 this class coincides with the class hp (see, e.g., [7],
p. 373). For p = 0, ω2 = 1, Γ2 = γ we get the class h′q(U) (see. [10], [11],
p. 169).

For ω1 = 1, instead of h(Γ1p(1),Γ′2q(ω2)) we will write h(Γ1p,Γ
′
2q(ω2)).

Lemma 1. The class h(Γ1p(ω1),Γ
′
2q(ω2)) coincides with the class of those

harmonic in the circle U functions u(reiθ) for which

sup
0<r<1

[ ∫

Θ(γ1)

|u(reiθ)ω1(re
iθ)|pdθ+

+

∫

Θ(Γ2)

∣∣∣∣

√(∂u
∂x

(reiθ)
)2

+
(∂u
∂y

(reiθ)
)2

ω2(re
iθ)

∣∣∣∣
q

dθ

]
<∞. (9)

Proof. The validity of the lemma follows immediately if we apply to the
second summand in (9) the inequality

1

2x
(a+ b)x ≤ ax + bx ≤ 2(a+ b)x, a ≥ 0, b ≥ 0, x > 0, (10)

assuming in it that a =
(
∂u
∂x

)2

, b =
(
∂u
∂y

)2

, x = q
2 .

The validity of the inequality (10) for a = 0, b = 0 is obvious, and for

a+ b > 0 it follows from the equality ax+ bx = (a+ b)x
[(

a
a+b

)x
+

(
b

a+b

)x]
,

if we take into account that 0 ≤ a
a+b ≤ 1 and [max(a, b)](a+ b)−1 ≥ 1

2 . �
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Lemma 2. If u ∈ h(Γ1p,Γ
′
2q(ω2)), p ≥ 1, p ≤ q then u ∈ hp. In

particular, if u ∈ h(Γ11,Γ
′
2q(ω2)), q ≥ 1, then u ∈ h1.

Proof. Let I(r) =
∫ 2π

0 |u(reiθ)|pdθ.
We have

I(r) =

∫

Θ(Γ1)

|u(reiθ)|pdθ +

∫

Θ(Γ2)

∣∣∣∣
r∫

0

∂u(reiθ)

∂r
dr − u(0)

∣∣∣∣
p

dθ ≤

≤M1 + 2p
( ∫

Θ(Γ2)

∣∣∣∣
r∫

0

∂u

∂r
dr

∣∣∣∣
p

dθ + |u(0)|p2π

)
=

= M2 + 2p
∫

Θ(Γ2)

∣∣∣∣
r∫

0

∂u

∂r
dr

∣∣∣∣
p

dθ = M2 + 2pI1(r). (11)

Since
∣∣∣∂u∂r

∣∣∣ ≤
∣∣∣∂u∂x

∣∣∣ +
∣∣∣∂u∂y

∣∣∣,

I1(r) =

∫

Θ(Γ2)

∣∣∣∣
r∫

0

∂u

∂r
dr

∣∣∣∣
p

dθ ≤

∫

Θ(Γ2)

( r∫

0

∣∣∣∣
∂u

∂x

∣∣∣∣ +

∣∣∣∣
∂u

∂y

∣∣∣∣
)
dr

)p

dθ. (12)

If q = 1, then p = 1, and |ω2| =
∏m1

k=1 |z − ck|
νk

∏n
k=n1+1 |z − dk|

βk ,

−1 < νk < 0, −1 < βk ≤ 0 (since q′ = ∞, λk = 0). Therefore the function
1
ω2

is bounded.

By virtue of the above-said, it follows from (12) that

I1(r) =

∫

Θ(Γ2)

r∫

0

(∣∣∣∂u
∂x

∣∣∣ +
∣∣∣∂u
∂y

∣∣∣
)
drdθ ≤

≤M3

r∫

0

dr

r∫

Θ(Γ2)

(∣∣∣∂u
∂x

∣∣∣ +
∣∣∣∂u
∂y

∣∣∣
)
|ω2(re

iθ)|dθ max
Θ(Γ2)

1

|ω2(reiθ)|
≤

≤M4 sup
0<r<1

∫

Θ(Γ2)

(∣∣∣∂u
∂x

(reiθ)
∣∣∣ +

∣∣∣∂u
∂y

(reiθ)
∣∣∣
)
|ω2(re

iθ)|dθ <∞.

This implies that u ∈ h1.
Let now q > 1. Using Hölder’s inequality, the expression (12) results in

I1(r) ≤

∫

Θ(Γ2)

( r∫

0

(∣∣∣∂u
∂x

∣∣∣
q

+
∣∣∣∂u
∂y

∣∣∣
q)
|ω2|

qdr

) p
q
( r∫

0

dr

|ω2|q
′

) p

q′

dθ. (13)

But
1

|ω2|q
′ ≤

M5∏2m
k=m1+1 |re

iθ − ck|
λk
2 q′

1
∏
βk>0 |re

iθ − dk |
βk
2 q

′
.
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Suppose α = supk(λkq
′, βkq

′). Then from the assumptions (7) regarding
λk, βk it follows that α < 1. Taking now into account the obvious inequality
|reiθ − ck| ≥ |1− r|, we obtain

sup
Θ(Γ2)

( r∫

0

dr

|ω2(reiθ)|q
′

) p

q′

≤ sup
k

sup
θ∈Θ((βk,ak+1))

( r∫

0

dr

|ω2(reiθ)|q
′

) p

q′

≤

≤

[ 1∫

0

M6dr

(1− r)α

] p

q′

= M7, (14)

M6 =
(

sup
k

1

|zk − zk+1|

)2m−1

, {zk} = ∪{ck} ∪ {dk}.

Since p
q
≤ 1, it follows from (13) that

I1(r) ≤M8

∫

Θ(Γ2)

r∫

0

(∣∣∣∂u
∂x

∣∣∣
q

+
∣∣∣∂u
∂y

∣∣∣
q)
|ω2|

qdθ =

= M8

r∫

0

∫

Θ(Γ2)

(∣∣∣∂u
∂x

∣∣∣
q

+
∣∣∣∂u
∂y

∣∣∣
q)
|ω2|

qdθ.

Consequently, by (8) we have sup
r
I1(r) < ∞, and the expression (11)

allows us to conclude that u ∈ hp. �

Corollary 1. If u ∈ h(Γ1p,Γ
′
2q(ω2)), p ≥ 1, q ≥ 1 then u ∈ hs, where

s = min(p, q).

Indeed, if q ≥ p, then in this case s = p and, according to the lemma,
u ∈ hp. If p > q, then s = q.

We can easily verify that for p1 < p2 the embedding h(Γ1p2 ,Γ
′
2q(ω2)) ⊂

h(Γ1p1 ,Γ
′
2q(ω2)) is valid, and therefore the function u(reiθ), being of the

class h(Γ1p,Γ
′
2q(ω2)), belongs to the class h(Γ1q ,Γ

′
2q(ω2)) as well. But then

u belongs to hq (= hs), by our lemma.

Corollary 2. If u ∈ (Γ1p,Γ
′
2q(ω2)), p > 1, q > 1, then u(z) possesses

for almost all t ∈ γ the angular boundary values u+(t) = u+(eiθ) ≡ u+(θ),
u+ ∈ Ls(γ), s = min(p, q), and u(z) is representable by the Poisson integral

u(z) = u(reiϕ) =
1

2π

2π∫

0

u+(θ)P (r, θ − ϕ)dθ,

P (r, x) =
1− r2

1 + r2 − 2r cosx
.

(15)

Indeed, under the adopted assumptions s > 1, and for the functions from
hs, s > 1, the statements of the lemma are valid (see, e.g., [7], Ch. IX).
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Remark. If the function u ∈ h(Γ11,Γ
′
2q(ω2)), q ≥ 1, then u ∈ h1. There-

fore it has almost everywhere on γ angular boundary values and is repre-
sentable by the Poisson–Stieltjes integral (see [7], p. 374).

Lemma 3. If u ∈ h(Γ1p(ω1),Γ
′
2q(ω2)), p > 1, q > 1, then there exists a

number σ > 1 such that u ∈ hσ. If v is the function conjugate harmonically

to u, then v ∈ h(Γ1p1(ω1),Γ
′
2q(ω2)), p1 = pσ

p+σ .

Proof. By the conditions αk ∈ (− 1
p
, 1
p′

) (see (6)), it follows that 1
ω1
∈ Hp′+ε,

(0 < ε < 1
α
− p′, α = maxαk), where Hx is the class of Hardy (for the

definition of Hx see, e.g., [8]). Therefore there exists η(> 0) such that

sup
0<r<1

∫

Θ(Γ1)

|u(reiθ)|1+ηdθ <∞. (16)

Thus u ∈ h(Γ1 1+η ,Γ
′
2q(ω2)) and, according to Corollary 1 of Lemma 2,

we conclude that u ∈ hσ , σ = min(1 + η, q).
By the M. Riesz theorem (see [21] and also [8], p.54), it follows that

v ∈ hσ . Therefore the function φ(z) = u(z)+ iv(z) belongs to the class Hσ.
Since ω1 ∈ H

p, the function φ(z)ω1(z) belongs to Hp1 , p1 = pσ
p+σ . Con-

sequently,

sup
0<r<1

∫

Θ(Γ1)

|v(reiθ)ω1(re
iθ)|p1dθ <∞. (17)

Next, by the Riemann–Cauchy conditions, (8) implies that

sup
τ

∫

Θ(Γ2)

(∣∣∣∂v
∂x

(reiθ)
∣∣∣
q

+
∣∣∣∂v
∂y

(reiθ)
∣∣∣
q)
|ω2(re

iθ)|qdθ <∞,

which together with (17) yields v ∈ h(Γ1p1(ω1),Γ
′
2q(ω2)). �

Remark. The index p1 in fact, can be replaced by the number p2 = pασ
pα+σ ,

where pα = min
αk<0

1
|αk |

, and now from (6) it follows that pα > p1 and hence

p2 > p1.

Corollary 1. If u ∈ h(Γ1p(ω1),Γ
′
2q(ω2)), p > 1, q > 1 then u(reiϕ) is

representable by the Poisson integral (15) with the function u+ ∈ Lσ(γ).

Corollary 2. If u ∈ h(Γ1p(ω1),Γ
′
2q(ω2)), p > 1, q > 1 and φ(z) =

u(z) + iv(z), then φ ∈ Hσ and

sup
0<r<1

∫

Θ(Γ2)

|Φ′(reiθ)|q |ω2(re
iθ)|qdθ <∞. (18)

Let now ~n = ~nθ be an interior normal to the circumference γ at the point
t = eiθ. We calculate the derivative of the function u along the vector ~n at
the point reiθ . Denote this derivative by ∂u

∂u
(reiθ). Thus

(∂u
∂n

)
(reiθ) =

∂u

∂~nθ
(reiθ) =

∂u

∂x
(reiθ) cos(~n, x)+
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+
(∂u
∂y

)
(reiθ) cos(~n, y) =

∂u

∂x
(reiθ)(− sin θ) +

(∂u
∂y

)
(reiθ) cos θ. (19)

Sometimes, instead of
(
∂u
∂~nθ

)
(reiθ) we will write ∂u

∂n
, assuming that if

that value is calculated at the point reiθ, then n = ~n = ~nθ.

If
(
∂u
∂x

)
(reiθ) and

(
∂u
∂y

)
(reiθ) have limits

(
∂u
∂x

)+

and
(
∂u
∂y

)+

as r → 1,

then we put
(∂u
∂n

)+

(eiθ) =
(∂u
∂x

)+

(− sin θ) +
(∂u
∂y

)+

cos θ

(cf. [2], p. 243).

Lemma 4. If u ∈ h(Γ1p(ω1),Γ
′
2q(ω2)), p > 1, q > 1 and u+ is absolutely

continuous on Γ2, then the function ∂u
∂ϕ

(reiϕ) has angular boundary values

almost everywhere on Γ2 and the equality

lim
reiϕ→̂eiϕ0

∂u

∂ϕ
(reiϕ) =

∂u+

∂ϕ
(eiϕ0), eiϕ0 ∈ Γ2

holds.

Proof. Since p > 1, q > 1, according to Corollary 1 of Lemma 2, the equality
(15) holds. Therefore

∂u

∂ϕ
(reiϕ) =

1

2π

∫

Θ(Γ1)

u+(θ)
∂

∂ϕ
P (r, θ − ϕ)dθ+

+
1

2π

∫

Θ(Γ2)

u+(θ)
∂

∂ϕ
P (r, θ − ϕ)dθ =

=
1

2π

∫

Θ(Γ1)

u+(θ)
(1− r2)2r sin(θ − ϕ)

[1 + r2 − 2r cos(θ − ϕ)]2
dθ−

−
1

2π

∫

Θ(Γ2)

u+(θ)
∂

∂θ
P (r, θ − ϕ)dθ =

= u1(re
iϕ)− u2(re

iϕ).

Let eiϕ0 ∈ Γ2. Then there exists a number δ > 0 such that for θ ∈ Θ(Γ1)
we have δ < |θ − ϕ0| < 2π − δ, and therefore

lim
reiϕ→̂eiϕ0

u1(re
iϕ) = 0. (20)

As regards u2(re
iϕ), the density u+ in the integral which represents this

function is absolutely continuous, and hence partial integration is quite
admissible here. As a result, we obtain

u2(re
ϕ) = u+(θ)P (r, θ − ϕ)|Γ2 −

∫

Θ(Γ2)

∂u+

∂θ
P (r, θ − ϕ)dθ.
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Passing in this equality to the limit, we get

lim
reiϕ→̂eiϕ0

u2(re
iϕ) = −

∂u+

∂θ
(eiϕ0),

which together with (20) provides us with the equality being proved. �

Lemma 5. If u ∈ h(Γ1p(ω1),Γ
′
2q(ω2)), p > 1, q > 1 and u+ is absolutely

continuous on Γ2, then the function
(
∂u
∂ϕ

)+

belongs to the class Lq(Γ2;ω2).

Proof. Since
∂u

∂ϕ
(reiϕ) = −

∂u

∂x
r sinϕ+

∂u

∂y
r cosϕ,

we have ∣∣∣∂u
∂ϕ

∣∣∣
q

≤ 2q
(∣∣∣∂u
∂x

∣∣∣
q

+
∣∣∣∂u
∂y

∣∣∣
q)
,

and from (8) it follows that
∫

Θ(Γ2)

∣∣∣∂u
∂ϕ

∣∣∣
q

|ω2|
qdθ ≤ 2q

( ∫

Θ(Γ2)

∣∣∣∂u
∂x

∣∣∣
q

+
∣∣∣∂u
∂y

∣∣∣
q
)
|ω2|

qdθ < M8.

Using Lemma 4, for almost all t = eiϕ0 ∈ Γ2 we obtain

lim
reiϕ→̂eiϕ0

∂u

∂ϕ
(reiϕ) = −

∂u+

∂θ
ω2(e

iϕ0).

According to Fatou’s lemma, the last equality and the previous inequality
allow us to conclude that∫

Θ(Γ2)

∣∣∣∂u
+

∂θ
ω2(e

iθ)
∣∣∣
q

dθ =

∫

Θ(Γ2)

∣∣∣∂u
+

∂θ
ω2

∣∣∣
q

dθ ≤M8. �

Corollary. Under the conditions of the lemma, the function
(
∂u
∂ϕ

)+

(or,

what comes to the same thing, the function ∂u+

∂ϕ
) belongs to the class L(Γ2).

Indeed, by the conditions (7) regarding the weight ω2 we find that 1
ω2
∈

Lq
′

(Γ2), and the statement of the corollary follows from the equality ∂u+

∂ϕ
=(

∂u+

∂ϕ
ω2

)
1
ω2

.

Lemma 6. Let

u(reiϕ) =
1

2π

2π∫

0

f(θ)P (r, θ − ϕ)dθ,

where f ∈ Lp(Γ1\γ̃, (ω1)), p > 1, f ∈ A(Θ(Γ2 ∪ γ̃)), f
′ ∈ Lq(Γ2;ω2), q > 1,

Then

u ∈ h(Γ1p(ω1),Γ
′
2q(ω2)).



On Zaremba’S Boundary Value Problem 39

Proof. In the circle U we consider the function

φ(z) =
1

2π

2π∫

0

f(θ)
eiθ + z

eiθ − z
dθ =

1

2π

2π∫

0

f1(θ)
eiθ + z

eiθ − z
dθ+

+
1

2π

2π∫

0

f2(θ)
eiθ + z

eiθ − z
dθ = φ1(z) + φ2(z),

where f1(θ) = χ
Γ1\γ̃

(θ)f(θ), f2(θ) = χ
Γ2∪γ̃

(θ)f(θ) and by the condition

f ′ ∈ Lq(Γ2;ω2) we have f ′2 ∈ L
q(Γ2;ω2).

Because of the fact that the Cauchy type integral in the case of a circum-
ference belongs to the set ∩

δ<1
Hδ (see, e.g., [8], p.39), we can easily show

that φj ∈ ∩
δ<1

Hδ, j = 1, 2.

Performing partial integration, we write φ′2 in the form

φ′2(z) =
1

2π

2π∫

0

f2(θ)
2eiθdθ

(eiθ − z)2
=

1

πi

f2(θ)

eiθ − z
|Γ2∪γ̃ −

1

πi

2π∫

0

f ′2(θ)dθ

eiθ − z
=

=

m∑

k=1

1

πi

( f(b′k)

b′k − z
−

f(a′k)

a′k − z

)
−

1

πi

2π∫

0

f ′2(θ)dθ

eiθ − z
. (21)

Density of the latter integral belongs to Lq(γ;ω2) and the Cauchy singular
integral of such a function belongs to Lq(γ;ω2) (see, e.g., [23], p.79).

Since ω2(z) ∈ H
q , the function

ω2(z)

πi

2π∫

0

f ′2(θ)dθ

eiθ − z

belongs to Hη for some η > 0, and the limit function

(
ω2(z)
πi

∫ 2π

0
f ′2(θ)dθ
eiθ−z

)+

,

as is just said, belongs to Lq(γ). But then the function itself belongs to Hq

(by virtue of the well-known Smirnov theorem which states that if F (z) ∈
Hη and F+ ∈ Lη+ε(γ), ε > 0, then F ∈ Hε+η (see, e.g., [7], p. 393)).
Consequently,

sup
0<ρ<1

2π∫

0

∣∣∣∣ω2(ρe
iθ)

2π∫

0

f ′2(θ)

eiθ − ρeiϕ

∣∣∣∣
q

dϕ <∞.

As far as a′k, b
′
k∈Γ2 on the basis of (21), we can conclude that

sup
0<ρ<1

∫

Θ(Γ2)

∣∣∣∣φ′2(ρeiθ)
∣∣∣∣
q

|ω2(ρe
iθ)|qdθ <∞. (22)
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The function f2 on Γ2 ∪ γ̃ is absolutely continuous and its derivative
belongs to Lq(Γ2;ω2). Since 1

ω2
∈ Lq

′+ε(γ), ε > 0, the function f ′2 ∈

L1+η(Γ2 ∪ γ̃), η > 0. Therefore it is not difficult to establish that f satisfies
Hölder’s condition. On the basis of that fact, φ2(z) may have at the end
points a′k, b

′
k only logarithmic singularity (see [2], p.75). Hence on Γ1 we

have

|φ2(z)ω1(z)| ≤Mg |ω1(z)|

( m∑

k=1

| ln |z − a′k||+ | ln |z − b′k||

)
.

Moreover, even if the points dk in the product (6) coincide with some
points a′k, b

′
k, we will have

sup
|z|<1

2π∫

0

|ω1(z)|
p

( m∑

k=1

| ln |z − a′k||+ | ln |z − b′k||

)p
dθ <∞.

Consequently,

sup
0<ρ<1

∫

Θ(Γ1)

|φ2(ρe
iθ)ω1(ρe

iθ)|pdθ <∞,

which together with (22) yields

sup
0<r<1

[ ∫

Θ(Γ1)

|φ2(re
iθ)ω1(re

iθ)|pdθ+

+

∫

Θ(Γ2)

|φ′2(re
iθ)ω2(re

iθ)|qdθ

]
<∞. (23)

Density of the integral φ1 belongs to Lp(Γ1;ω1), and thus, as above, for
φ′2 we establish that

sup
0<r<1

∫

θ(Γ1)

|φ1(re
iθ)ω1(re

iθ)|pdθ <∞.

The inequality

sup
0<r<1

∫

θ(Γ2)

|φ′1(re
iθ)ω2(re

iθ)|qdθ <∞

is obvious because the distance from Γ1\γ̃ to Γ2 is positive and ω2 ∈ H
q.

The last two inequalities result in

sup

[ ∫

Θ(Γ1)

|φ1(re
iθ)ω1(re

iθ)|pdθ +

∫

Θ(Γ2)

|φ′1(re
iθ)ω2(re

iθ)|qdθ

]
<∞. (24)

Since u(reiϕ) = Reφ(reiθ), we have

|u(reiϕ)ω1(re
iϕ)| ≤ |φ1(re

iϕ)ω1(re
iϕ)|+ |φ2(re

iϕ)ω2(re
iϕ)|,
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and ∣∣∣∂u
∂x

∣∣∣ ≤ |φ′1|+ |φ′2|,
∣∣∣∂u
∂y

∣∣∣ ≤ |φ′1|+ |φ′2|.

Taking into account the above-said and also the inequalities (23) and
(24), we conclude that u ∈ h(Γ1p(ω1),Γ

′
2q(ω2)). �

30. Statement of the Mixed Problem and Scheme of Its Solu-
tion.

Let Γ1, Γ2, γ̃ be the sets defined in Section 10, and let ω1, ω2 be given
by the equalities (6)–(7). Consider the following boundary value problem:
find a harmonic function in the class h(Γ1p(ω1),Γ

′
2q(ω2)) such that (i) its

angular boundary values coincide almost everywhere on Γ1\γ̃ with the given
function f , f ∈ Lp(Γ1\γ̃;ω1); (ii) the boundary values on Γ2 ∪ γ̃ form an
absolutely continuous function on γ̃ and u+ = ψ, ψ′ ∈ Lq(γ̃, ω2); (iii) the
boundary value of the normal derivative on Γ2 coincides with the function
g, g ∈ Lq(Γ2;ω2).

Thus it is required to find the function u satisfying the following condi-
tions: 




∆u = 0, ∈ h(Γ1p(ω1),Γ
′
2q(ω2)), p > 1 q > 1,

u+|Γ1\γ̃ = f, f ∈ Lp(γ1\γ̃, ω1); u+A(Γ2 ∪ γ̃),

u+|γ̃ = ψ, ψ ∈ A(γ̃), ψ′ ∈ Lq(γ̃;ω2);(
∂u
∂n

)+

|Γ2 = g, g ∈ Lq(Γ2;ω2).

(25)

Here we present a brief scheme of solving the problem formulated above.
If a solution u of the problem (25) does exist, then according to Lemma

3 and its Corollary 1, this solution belongs to the class hσ, σ > 1 and it is
representable by the equality (15) with the function u+, u+ ∈ Lσ(γ), σ > 1.
The function v conjugate harmonically to the function u also belongs to hσ,
and

v(reiϕ) =
1

2π

2π∫

0

u+(θ)Q(r, θ − ϕ)dθ, Q(r, x) =
2r sinx

1 + r2 − 2r cosx

(see, e.g., [8], p. 54). Moreover, since

∂u

∂n
(reiϕ) = −

∂u

∂r
(reiϕ)

and
∂u

∂r
=

1

r

∂v

∂ϕ
,

we find that
∂u

∂n
(reiϕ) = −

1

r

∂v

∂ϕ
(reiϕ).
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Taking this into account, we obtain

∂u

∂n
= −

1

2πr

2π∫

0

u+ ∂

∂ϕ
Q(r, θ − ϕ)dθ = −

1

2πr

∫

Θ(Γ1)

u+ ∂

∂ϕ
Q(r, θ − ϕ)dθ−

−
1

2πr

∫

Θ(Γ2)

u+ ∂

∂ϕ
Q(r, θ − ϕ)dθ = v1(re

iϕ) + v2(re
iϕ). (26)

For eiϕ ∈ Γ2, in the integral with v1(re
iϕ) we can pass to the limit under

the integral sign, i.e.,

lim
r→1

v1(re
iϕ) = −

1

2π

∫

Θ(Γ1)

u+(θ)
dθ

2 sin2 θ−ϕ
2

.

We write v2 in the form

v2(re
iϕ) = −

1

2πr

∫

Θ(Γ2)

u+(θ)
∂

∂ϕ
Q(r, θ − ϕ)dθ =

=
1

2πr

∫

Θ(Γ2)

u+(θ)
∂

∂θ
Q(r, θ − ϕ)dθ.

In this integral, u+ is absolutely continuous on Q(Γ2), and hence partial
integration is quite admissible here. This yields

v2(re
iϕ) =

1

2πr
u+(θ)Q(r, θ − ϕ)|Γ2 −

1

2πr

∫

Q(Γ2)

∂u+

∂θ
Q(r, θ − ϕ)dθ.

Passing to the limit as r → 1 and using the property of the integral with
the kernel Q(r, x) (see [8], p. 62), we obtain

lim
r→1

v2(re
iϕ) =

1

2π
u+(θ) ctg

θ − ϕ

2
|Γ2−

−
1

2π

∫

Θ(Γ2)

∂u+

∂θ
ctg

θ − ϕ

2
dθ, eiϕ ∈ Γ2.

If we take into account the above-obtained expression for limiting values
v1 and v2, then from (26) for eiϕ ∈ Γ2 we get

(∂u
∂n

)+

(eiϕ) = −
1

2π

∫

Θ(Γ1)

u+ dθ

2 sin2 θ−ϕ
2

+
1

2π
u+(θ) ctg

θ − ϕ

2

∣∣∣
Γ2

−

−
1

2π

∫

Θ(Γ2)

∂u+

∂ϕ
ctg

θ − ϕ

2
dθ.
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As far as u is a solution of the problem (25), we arrive at the equality

1

2π

∫

Θ(Γ2)

∂u+

∂θ
ctg

θ − ϕ

2
dθ =

= −g(eiϕ)−
1

2π

∫

Θ(Γ1\γ̃)

f(θ)
dθ

2 sin2 θ−ϕ
2

−
1

2π

∫

Θ(γ̃)

ψ(θ)
dθ

2 sin2 θ−ϕ
2

+

+
1

2π

m∑

k=1

[
ψ(ak+1) ctg

αk+1 − ϕ

2
− ψ(bk) ctg

βk − ϕ

2

]
, eiϕ ∈ Γ2,

where ak = eiαk , bk = eiβk , am+1 = a1.

Thus if u(reiϕ) is a solution of the problem (25), then the function ∂u+

∂θ

belongs to Lq(Γ2;ω2) (by Lemma 5) and is a solution of the integral equation

1

2π

∫

Θ(Γ2)

∂u+

∂θ
ctg

θ − ϕ

2
dθ = µ(ϕ), eiϕ ∈ Γ2, (27)

where

µ(ϕ) = −g(eiϕ)−
1

2π

∫

Θ(Γ1\γ̃)

f(θ)
dθ

2 sin2 θ−ϕ
2

−

−
1

2π

∫

Θ(γ̃)

ψ(θ)
dθ

2 sin2 θ−ϕ
2

+

+
1

2π

m∑

k=1

[
ψ(ak+1) ctg

αk+1 − ϕ

2
− ψ(bk) ctg

βk − ϕ

2

]
. (28)

Let us show that under the adopted assumptions regarding the functions
f , ψ and g, the function in the right-hand side of the equality (27) belongs
to Lq(Γ2;ω2).

Indeed, we have

1

2π

∫

Θ(γ̃)

ψ(θ)
dθ

2 sin2 θ−ϕ
2

= −ψ(θ) ctg
θ − ϕ

2

∣∣∣
γ̃

+
1

2π

∫

Θ(γ̃)

∂ψ

∂θ
ctg

θ − ϕ

2
dθ =

= −
1

2π

m∑

k=1

[
ψ(bk) ctg

βk − ϕ

2
− ψ(b′k) ctg

β′k − ϕ

2

]
−

−
1

2π

m∑

k=1

[
ψ(a′k) ctg

α′k − ϕ

2
− ψ(ak) ctg

αk − ϕ

2

]
+

+
1

2π

∫

Θ(γ̃)

∂ψ

∂θ
ctg

θ − ϕ

2
dθ, a′k = eiα

′
k , b′k = eiβ

′
k .
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Here the last summand can be written as

ψ̃1(ϕ) =
1

2π

∫

Θ(γ̃)

∂ψ

∂θ
ctg

θ − ϕ

2
dθ =

1

2π

2π∫

0

χγ̃(θ)
∂ψ

∂θ
ctg

θ − ϕ

2
dθ.

Since ∂ψ
∂θ
∈ Lq(γ̃;ω2), the function ψ1(θ) = χγ̃(θ)

∂ψ
∂θ

belongs to Lq(γ;ω2).

But then the function ψ̃1 likewise belongs to Lq(γ;ω2) (see, e.g., [24], p.24).

Inserting the expression for ψ̃1 into (28), we obtain

µ(ϕ) = −g(eiϕ) +

m∑

k=1

[
ψ(a′k) ctg

α′k − ϕ

2
− ψ(b′k) ctg

β′k − ϕ

2

]
−

−
1

2π

∫

Θ(Γ1\γ̃)

f(θ)
dθ

2 sin2 θ−ϕ
2

− ψ̃1(ϕ).

By virtue of what has been said about ψ̃1, we can conclude that µ ∈
Lq(Γ2;ω2).

Consequently, (27) is the singular integral equation with respect to ∂u+

∂θ

in the class Lq(Γ2;ω2), where Γ2 is the union of the arcs (bk, ak+1), k = 1,m,
am+1 = a1 and ω2 is given by the equality (7). This equation can easily be
reduced to the equation with the Cauchy kernel; the latter has been solved
in [24] for a particular case with the weight ω2.

On the basis of the results obtained in [24] (pp. 35-46; see also [23], pp.
104-108), we will be able to find conditions for the solvability of the above
equation and to construct its solution in the case of more general weights
(below, see the conditions (32) regarding νk and λk).

All this will be done in Section 40. We will prove there that the equation
(27) is, undoubtedly, solvable for m1 ≤ m and the solution contains an
arbitrary polynomial of order r − 1 = m −m1 − 1. If, however, m1 > m,
then it is solvable provided that m1 − m integral conditions are fulfilled
(see the equalities (57) below). Solutions, if they exist, are written out in
quadratures.

Having known ∂u+

∂θ
, we can find the values u+ on Γ2 to within constant

summands Bk, k = 1,m, on (bk, ak+1). The condition of absolute continuity
of the functions u+ on Γ2 ∪ γ̃ results in the equalities u+(ak) = ψ(ak) and
u+(bk) = ψ(bk). This allows us to get conditions for the solvability of the
problem (25) and to find specific values for Bk. As a result, we find the
values of u+ on the whole circumference γ and construct solutions of the
problem (25).

40. On the Inversion Formula of the Cauchy Singular Integral
in Lebesgue Classes with Power Weight.

Let Lk = (Ak , Bk), k = 1,m be the arcs lying separately on the oriented
Lyapunov curve L, and let m1 be an integer from the segment [0, 2m]. We
denote by C1, C2, . . . , C2m the points Ak, Bk, k = 1,m taken arbitrarily in
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any order. Let q > 1,

ρ(t) =
2m∏

k=1

|t− Ck|
αk , Γ =

m
∪
k=1

Lk,

and f ∈ L(Γ) ∩ Lq(Γ; ρ). Consider the Cauchy singular integral

(SΓf)(t) =
1

πi

∫

Γ

f(ζ)dζ

ζ − t
, t ∈ Γ.

As is known, the Cauchy singular operator SΓ : f → SΓf is continuous
in the space Lq(Γ; ρ) if and only if

−
1

q
< αk <

1

q′
(29)

(see, e.g., [23], [25]).
Consider now in Lq(Γ; ρ) the integral equation

SΓϕ = f. (30)

If we wish a solution ϕ to be ”bounded” in the neighborhood of the points
c1, c2, . . . , cm1 and ”free” in the neighborhood of the remaining points cm1+1,

. . . , c2m, we assume that

ρ(t) =

m1∏

k=1

|t−Ck|
νk

2m∏

k=m1+1

|t−Ck|
λk , −

1

q
< νk < 0, 0 ≤ λk <

1

q′
. (31)

Under these conditions SΓ acts from Lq(Γ; ρ) to Lq(Γ; ρ) and thus we
assume that f ∈ Lq(Γ; ρ).

Suppose (following [2], p.279, or [23], p.104) that

(UΓϕ)(t) =
R(t)

πi

∫

Γ

1

R(ζ)

ϕ(ζ)

ζ − t
dζ,

where R(z) is the function defined by the equalities (2)–(1).
It is easy to verify that the operator UΓ is continuous in Lq(Γ; ρ) if and

only if the operator

UΓ,ρ : ϕ→ UΓ,ρ(ϕ), UΓ,ρ(ϕ) =
R(t)ρ(t)

πi

∫

Γ

1

R(ζ)ρ(ζ)

ϕ(ζ)dζ

ζ − t

is continuous in Lq(Γ).
Since

|R(t)ρ(t)| =

m1∏

k=1

|t− Ck|
1
2+νk

2m∏

k=m1+1

|t− Ck|
λk−

1
2 ,

it follows from (29) that for the operator UΓ,ρ to be continuous in Lq(Γ), it
is necessary and sufficient that

−
1

q
<

1

2
+ νk <

1

q′
, −

1

q
< λk −

1

2
<

1

q′
.
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By virtue of the above said and together with the conditions (31) we can
conclude that:

– if the weight ρ is given by the equality (31), then the operator UΓ is
continuous in Lq(γ; ρ), if

−
1

q
< νk < min(0;

1

q′
−

1

2
), max

(
0;

1

2
−

1

q

)
≤ λk <

1

q′
. (32)

In particular,
(a) if 1 < q ≤ 2, then

−
1

q
< νk <

q − 2

2q
; 0 ≤ λk <

1

q′
, (321)

(b) if q > 2, then

−
1

q
< νk < 0,

q − 2

2q
≤ λk <

1

q′
. (322)

Taking this statement into account and following the reasoning from [23]
(pp.106-108), we establish the following

Theorem A. If for the weight

ρ(t) =

m1∏

k=1

|t− Ck|
νk

2m∏

k=m1+1

|t− Ck|
λk

the conditions (32) are fulfilled, then for m1 ≤ m the equation (30) is solv-

able in Lq(Γ; ρ), and all its solutions are given by the equality

ϕ(t) = (UΓf)(t) +R(t)Pr−1(t), r = m−m1,

where Pr−1(t) is an arbitrary polynomial of order r − 1, and if m1 = m,

then Pr−1 = 0. However, if m1 > m, then the equation (30) is solvable the

if and only if the conditions∫

Γ

tkR(t)f(t)dt = 0, k = 0, l− 1, l = m1 −m, (33)

are fulfilled and if they are fulfilled we obtain the unique solution given by

the equality ϕ = UΓf .

Remark 1. The condition that Lk, k = 1,m, lie on a Lyapunov curve
has been adopted for the sake of simplicity (this condition is sufficient for
applications; Theorem A will be used below in case L is a circumference).
Theorem A remains also valid in the case of curves Γ for which the operator
SΓ is continuous in the space Lq(Γ; ρ) with all the power weights ρ satisfying
the condition (29).

Remark 2. It is not difficult to see that Theorem A remains valid if
instead of the weight ρ we take the weight

r(t) = ρ(t)
n∏

k=1

|t−Dk|
αk , −

1

q
< αk <

1

q′
,



On Zaremba’S Boundary Value Problem 47

where Dk are arbitrary points on Γ, different from the ends Lk.

Remark 3. In [23] and [24], the equation (30) is solved for the particular
case in which νk = − 1

2q and λk = 1
2q .

50. Determination of Function ∂u+

∂θ
on Γ2.

To apply Theorem A to the equation (27), it is necessary to make use of
the fact that for τ = eiθ, t = eiϕ we have

dτ

τ − t
=

(1

2
ctg

θ − ϕ

2
+
i

2

)
dθ, (34)

and we write the equation (27) in the form

1

πi

∫

Γ2

∂u+

∂θ

dτ

τ − eiϕ
−

1

2π

∫

Θ(Γ2)

∂u+

∂θ
dθ = iµ(ϕ).

Putting here 1
2π

∫
Γ2

∂u+

∂θ
= a, we obtain

1

πi

∫

Γ2

∂u+

∂θ

dτ

τ − eiϕ
= iµ(ϕ) + a. (35)

Since u+ is the boundary value of the solution of the problem (25),

a =
1

2π

m∑

k=1

[ψ(ak+1)− ψ(bk)], am+1 = a1, (36)

and finally we have

1

πi

∫

Γ2

∂u+

∂θ

dτ

τ − eiϕ
= iµ(ϕ) +

1

2π

m∑

k=1

[ψ(ak+1)− ψ(bk)], (37)

which, according to Theorem A, allows us to conclude that for m1 ≤ m,

∂u+

∂θ
= WΓ2(e

iθ) =
R(eiθ)

πi

∫

Γ2

iµ(τ) + a

R(τ)

dτ

τ − eiθ
+R(eiθ)Pr−1(e

iθ), (38)

r = m−m1, τ = eiα,

and for m1 > m, the equation (37) (and hence the equation (27)) is solvable
if and only if the conditions

∫

γ2

iµ(τ) + a

R(τ)
τkdτ = 0, k = 0, l − 1, l = m1 −m, (39)

are fulfilled. If these conditions are fulfilled, then

∂u+

∂θ
=
R(eiθ)

πi

∫

Γ2

iµ(τ)dτ

R(τ)(τ − eiθ)
(381)

(here we have taken into account the fact that for m1 > m the equality
1
πi

∫
Γ2

1
R(τ)

dτ
τ−eiθ = 0 holds (see [23], p. 105)).
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If WΓ2 is the function defined by the equality (38), then

1

πi

∫

Γ2

WΓ2(τ)
dτ

τ − eiϕ
= iµ(ϕ) + a,

and hence from (34) we find that

1

2π

∫

Γ2

WΓ2(e
iθ) ctg

θ − ϕ

2
dθ =

= i

(
1

πi

∫

Γ2

WΓ2

dτ

τ − eiϕ
−

1

2π

∫

Θ(Γ2)

WΓ2(e
iθ)dθ

)
=

= −µ(ϕ) + i

(
a−

1

2π

∫

Θ(Γ2)

WΓ2(e
iθ)dθ

)
.

Consequently, the function WΓ2(e
iθ) is a solution of the equation (27) if

and only if
1

2π

∫

Θ(Γ2)

WΓ2(e
iθ)dθ = a,

i.e. if

1

2πi

∫

Θ(Γ2)

[
R(eiθ)

πi

∫

Γ2

iµ(τ) + a

R(τ)

dτ

τ − eiθ
+R(eiθ)Pr−1(e

iθ)

]
dθ = a. (40)

If the conditions (40) are fulfilled, then

1

2π

∫

Θ(Γ2)

WΓ2(e
iθ) ctg

θ − ϕ

2
dθ = µ(ϕ).

As far as we are interested only in real solutions of the equation (27),
this means that for m1 ≤ m the solution is the function

W ∗
Γ2

(eiθ) = ReWΓ2(e
iθ) =

= Re

[
R(eiθ)

πi

∫

Γ2

iµ(τ) + a

R(τ)

dτ

τ − eiθ
+R(eiθ)Pr−1(e

iθ)

]
, (41)

while for m1 > m, if the conditions (39) are fulfilled, such solution is the
function

W ∗
Γ2

(eiθ) = Re

[
R(eiθ)

πi

∫

Γ2

µ(τ) + a

R(τ)

dτ

τ − eiθ

]
. (411)

Thus we have proved the following

Lemma 7. If the functions f , ψ, g, from the boundary conditions (25) are

such that the function µ defined by means of these functions (by the equality

(28)) and the constant a defined by the equality (36) satisfy the condition
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(40), then the function W ∗
Γ2

given by the equality (41) is the solution of

the equation (27) for m1 ≤ m. If, however, m1 > m, and along with

(40) the conditions (39) are fulfilled, then the solution of the equation under

consideration is the function given by the equality (411). In both cases W ∗
Γ2

provides us with the sought for value of ∂u+

∂θ
on Γ2.

60. Solution of Homogeneous Mixed Problem.
In this case f = 0, ψ = 0, g = 0 and hence µ = 0, a = 0.
First, let m1 > m. Then the conditions (39) are fulfilled and by (381) we

have ∂u+

∂θ
= 0 on Γ2. Thus u+(θ) = Ak, e

iϕ ∈ [bk, ak+1] where Ak are the
real constants, and only the functions

u(reiϕ) =

m∑

k=1

Ak

∫

Θ([bk ,ak+1])

1− r2

1 + r2 − 2r cos(θ − ϕ)
dθ, eiϕ ∈ γ, (42)

may be a solution of the homogeneous problem (25).
The condition u+ ∈ A(Γ2 ∪ γ̃) implies that for eiϕ ∈ [bk, ak+1], we have

Ak = ψ(b−k ) = 0, k = 1,m. Hence for m1 > m, the homogeneous problem
(25) has only the zero solution.

If m1 ≤ m, then the conditions (40) take the form
∫

Θ(Γ2)

R(eiθ)Pr−1(e
iθ)dθ = 0, (401)

and if these conditions are fulfilled, then

u+(eiθ)=

θ∫

β1

χ
Θ(Γ2)(α) Re[R(eiα)Pr−1(e

iα)]dα+Ak, eiθ∈(bk, ak+1). (43)

It is not difficult to see that u+ is absolutely continuous on Γ2 ∪ γ̃ if and
only if

αk+1∫

β1

χ
Θ(Γ2)(α) Re[R(eiα)Pr−1(e

iα)]dα+Ak = 0

k = 1,m, eiαk = ak, eiβk = bk, (44)

βk∫

β1

χ
Θ(Γ2)

(α) Re[R(eiα)Pr−1(e
iα)]dα+Ak = 0.

The above conditions are compatible only if

αk+1∫

βk

Re[R(eiα)Pr−1(e
iα)]dα = 0. (45)
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If these conditions are fulfilled, then

Ak = −

αk+1∫

βk

Re[R(eiα)Pr−1(e
iα)]dα. (46)

Let us find for which polynomials Pr−1 the conditions (401) (and hence
the conditions (45)) are fulfilled.

Suppose R(t) = R1(t) + iR2(t), and let

Pr−1(t) =
r−1∑

j=0

(xj + iyj)t
j , t = eiθ. (47)

Then the conditions (45) take the form





r−1∑
j=0

∫ αk+1

βk
[xjR1(e

iθ) cos jθ− yjR2(e
iθ) sin jθ]dθ = 0,

k = 1,m, r = m−m1,
r−1∑
j=0

∫ αk+1

βk
[xjR2(e

iθ) cos jθ+ yjR1(e
iθ) sin jθ]dθ = 0.

(48)

Thus we have obtained a linear system with respect to the unknowns x0,
x0, xr−1, y0, y1, . . . , yr−1. The determining matrix of the system (48) is the
matrix

A = (aij)i,j=1,m,

aij=





αi+1∫
βi

R1(θ) cos(j − 1)θdθ, i=1,m, j=1, r,

−

αi+1∫

βi

R2(θ) sin(j − r − 1)θdθ, i=1,m, j=r + 1, 2r,

αi+1∫

βi

R2(θ) cos(j − 1)θdθ, i=m+ 1, 2m, j=1, r,

αi+1∫
βi

R1(θ) sin(j − r − 1)θdθ, i=m+ 1, 2m, j=r + 1, 2r.

(49)

The matrix A has 2m rows and 2r = 2(m−m1) columns.
Let

ν = rankA. (50)

(Obviously, ν ≤ 2r). The system (48) has a solution which depends on 2r−ν
real constants. Inserting the values of these solutions in the expression Pr−1

from (47) and substituting the obtained polynomials into (41), we define
W ∗

Γ2
. Next, from (46) we can find the values of Ak. Having obtained W ∗

Γ2
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and Ak, by the formula (43) we can find u+ on Γ2. Let

u+(θ) =

{
0, eiθ ∈ Γ1,∫ θ
β1
χΘ(Γ2)(α)W ∗

Γ2
(θ)dθ +Ak, eiθ ∈ Γ2.

(51)

Then the formula (15) provides us with a possible solution. By Lemma 6,
the obtained function belongs to h(Γ1p(ω1),Γ

′
2q(ω2)).

We can easily verify the fulfilment of all boundary conditions. Thus we
have proved the following

Theorem 1. For m1 > m, the homogeneous boundary value problem

(25) has only the zero solution. For m1 ≤ m, the problem has the solution

depending on 2(m−m1)− ν arbitrary real constants, where ν is the rank of

the matrix A defined by (50) in which R1 and R2 are, respectively, the real

and imaginary parts of the function R(t) given by the equality (2). All the

solutions are represented by the Poisson integral (15) with density u+ given

by (51) in which W ∗
Γ2

is defined by the formula (41) with the polynomial

Pr−1 whose coefficients xj + iyj are defined from the system (48) and the

constants Ak by the equality (46).

70. Solution of Problem (25).
We will now proceed to the investigation of the non-homogeneous prob-

lem.
Towards this end, we construct a particular solution.

As is seen, for m1 ≤ m, the function ∂u+

∂θ
on Γ2 is defined by the equality

(41), while when m1 > m and the conditions (39) are fulfilled, then this
function is defined by the equality (411) (see Lemma 7). Taking in these
formulas Pr−1 ≡ 0 and integrating with respect to θ, we find u+ on Γ2,

u+(θ) = WΓ2(θ) =

=

θ∫

β1

χ
Θ(Γ2)

(α) Re

[
R(eiα)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα+Bk, e

iθ∈(bk, ak+1). (52)

This function on Γ2 belongs to Lq(Γ2;ω2) for any µ ∈ Lq(Γ2;ω2) if m1 ≤
m. However, if m1 > m, then u+ belongs to Lq(Γ2;ω2) only for those µ for
which the equalities (39) are valid.

Consider on γ the function

u+(θ) =





ψ(eiθ), eiθ ∈ γ̃,

f(eiθ), eiθ ∈ Γ1\γ̃,

WΓ2(θ), eiθ ∈ Γ2.

(53)

The functions u(reiϕ) constructed by the formula (15) with that density
are candidates for being a particular solutions of the problem (25). It is
not difficult to notice that only absolute continuity of the function u+(θ)

on Γ2 ∪ (̃γ) needs checking, hence it is necessary and sufficient that this
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function be continuous (since it is absolutely continuous on the parts γ̃ and
Γ2, coincides on γ̃ with ψ, ψ ∈ A(γ̃) and on Γ2 it has the form (52)).

Thus it is necessary to fulfill the conditions

WΓ2(αk+1) = ψ(ak+1), WΓ2(βk) = ψ(bk), (54)

i.e. we have to choose in (52) the constants Bk such that
αk+1∫

β1

χ
Θ(Γ2)

(α) Re

[
R(eiα)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα+Bk =ψ(ak+1), (55)

k = 1,m,

βk∫

β1

χ
Θ(Γ2)

(α) Re

[
R(eiα)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα+Bk =ψ(bk). (56)

The numbers Bk in the equalities (55) are defined uniquely. Next, for
(56) to be valid, it is necessary and sufficient that the conditions

αk+1∫

βk

Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα =

= ψ(ak+1)− ψ(bk), k = 1,m, (57)

be fulfilled. Moreover, the condition (40) must also be fulfilled, but as far
as Γ2 = ∪(bk, ak+1), the equalities (57) imply that (40) is fulfilled.

If the conditions (57) are fulfilled, and if the equalities (39) are fulfilled
for m > m1, then the solution of the problem (25) is the function

u∗(reiϕ) =
1

2π

∫

Θ(γ̃)

ψ(eiθ)P (r, θ − ϕ)dθ+

+
1

2π

∫

Θ(Γ1\γ̃)

f(eiθ)P (r, θ − ϕ)dθ +
1

2π

∫

Θ(Γ2)

WΓ2(θ)P (r, θ − ϕ)dθ, (58)

where WΓ2(θ) is defined by the equality (52) in which the constants Bk are
calculated by virtue of (55), i.e.,

Bk = ψ(αk+1)−

αk+1∫

β1

χ
Θ(Γ2)

(α) Re

[
R(t)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα. (59)

The consequence of our reasoning in Sections 40–70 is the following

Theorem 2. Let U be the unit circle with the boundary γ, Γ1 =
m
∪
k=1

[ak, bk]

be the union of the arcs γk = (ak, bk), ak = eiαk , bk = eiβk lying separately

on γ, γ̃ =
m
∪
k=1

[ak, a
′
k]

m
∪
k=1

[b′k, bk], where [a′k, b
′
k] are the arcs on γk, a

′
k =

eiαk , b′k = eiβ
′
k , Γ2 = γ\Γ1. Moreover, let c1, c2, . . . , c2m be the points
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a1, . . . , am, b1 . . . , bm taken arbitrarily, m1 be an integer satisfying 0 ≤ m1 ≤
2m, R, ω1, ω2 be the functions defined respectively by the equalities (2), (6),
(7) and let the conditions (32) be fulfilled.

For the problem (25) to be solvable:

(I) if m1 ≤ m, it is necessary and sufficient that the conditions

αk+1∫

βk

Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα =

= ψ(eiαk+1)− ψ(eiβk ), k = 1,m, (57)

be fulfilled, where

µ(ϕ) = −g(eiϕ) +
1

2π

m∑

k=1

[
ψ(eiαk+1) ctg

αk+1 − ϕ

2
− ψ(eiβk ) ctg

βk − ϕ

2

]
−

−
1

2π

∫

Θ(Γ1\γ̃)

f(θ)
dθ

2 sin2 2θ−ϕ
2

−
1

2π

∫

Θ(γ̃)

ψ(θ)
dθ

2 sin2 θ−ϕ
2

, (29)

a =
1

2π

m∑

k=1

[ψ(eiαk+1)− ψ(eiβk)]; (36)

(II) if m1 > m, it is necessary and sufficient that the condition (57) and

∫

Γ2

iµ(τ) + a

R(τ)
τkdτ = 0, k = 0, l − 1, l = m1 −m,

be fulfilled;

(III) if the above-given conditions are fulfilled, then the solution of the

problem is given by the equality

u(reiϕ) = u∗(reiϕ) + u0(re
iϕ),

where

u∗(reiϕ) =
1

2π

∫

Θ(γ̃)

ψ(θ)P (r, θ − ϕ)dθ +
1

2π

∫

Θ(Γ1\γ̃)

f(eiθ)P (r, θ − ϕ)dθ+

+
1

2π

∫

Θ(Γ2)

WΓ2(θ)P (r, θ − ϕ)dθ.

Here

WΓ2(θ) =

θ∫

β1

χ
Θ(Γ2)

(α)

[
R(eiα)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα+Bk (52)

r = m−m1,
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Bk=ψ(eiαk+1)−

αk+1∫

β1

χ
Θ(Γ2)

(α) Re

[
R(eiα)

πi

∫

Γ2

iµ(τ) + a

R(τ)(τ − eiα)
dτ

]
dα, (59)

and

u0(z) =





0, for m1 > m,
1
2π

∫ 2π

0
W ∗

Γ2
(θ)P (r, θ − ϕ)dθ,

W ∗
Γ2

(θ) =
∫ θ
β1
χΘ(Γ2)(α) Re[R(eiα)Pr−1(e

iα)]dα +Ak,

eiθ ∈ (bk, ak+1) for m1 ≤ m

where Ak are defined by (46); if, however, m1 < m, then Pr−1(e
iθ) =∑r−1

j=0(xj + iyj)e
ijθ is the polynomial whose coefficients xj , yj, j = 0, r − 1

are solutions of the system (48). Note that if ν = rankA, where A is the ma-

trix given by the equality (49), then among the numbers x0, x1, . . . , xr−1, y0,

y1, . . . , yr−1, there are 2(m−m1)− ν arbitrary parameters.

80. A Mixed Problem in Domains with Lyapunov Curves.
Let D be a simply connected finite domain bounded by a simple oriented

Lyapunov curve L. Let Lk = (Ak , Bk), k = 1,m, be arcs lying separately
on that curve. Moreover, let [A′

k, B
′
k] be arcs lying on Lk. We denote

L1 =
m
∪
k=1

Lk, L̃ =
m
∪
k=1

[Ak, A
′
k]

m
∪
k=1

[B′
k, Bk], L2 = L\L1. (60)

Let z = z(w) be a conformal mapping of the unit circle U onto the
domain D and let w = w(t) be an inverse mapping. Suppose

Γ1 = w(L1), γ̃ = w(L̃), Γ2 = w(L2),

Γj(r) = {w : w = reiθ , θ ∈ Θ(Γj)}, Lj(r) = z(Γj(r)).

Let C1, C2, . . . , C2m be the points of A1, A2, . . . , Am, B1, B2, . . . , Bm
taken arbitrarily, and let D1, D2, . . . , Dn be points on L are different from
Ck; the points D1, D2, . . . , Dn1 lie on L1, and the points Dn1+1, . . . , Dn on
L2.

Suppose

ρ1(z) =

n1∏

k=1

(z −Dk)
αk , −

1

p
< αk <

1

p′
, (61)

ρ2(z)=

m1∏

k=1

(z−Ck)
νk

2m∏

k=m1+1

(z−Ck)
λk

n∏

k=n1+1

(z−Dk)
βk , −

1

q
<βk<

1

q′
. (62)

We say that the function u(z), z = x + iy, harmonic in the domain D

belongs to the class e(L1p(ρ1), L
′
2q(ρ2)) if

sup
0<r<1

[ ∫

L1(r)

|u(z)ρ1(z)|
p|dz|+

∫

L2(r)

(∣∣∣∂u
∂x

∣∣∣
q

+
∣∣∣∂u
∂y

∣∣∣
q)
|ρ2(z)|

q |dz|

]
<∞. (63)
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Lemma 8. If U(z) = U(x, y) ∈ L(L1p(ρ1), L
′
2q(ρ2)), then the function

u(w) = U(z(w)) = U(x(ξ, η), y(ξ, η)) = u(ξ, η) belongs to the class

h(Γ1p(ρ1(z(w))) p
√
|z′(w)|), Γ′2q(ρ2(z(w)) q

√
|z′(w)|).

Indeed, taking into account the Cauchy–Riemann conditions, we can eas-

ily verify that
(
∂U
∂x

)2

+
(
∂U
∂y

)2

=
(
∂u
∂ξ

)2

+
(
∂u
∂η

)2

. Hence the validity of

the lemma follows from (9) if we transform the variable z by the equality
z = z(w) and take into account that (9) is equivalent to (8).

Consequently, transforming z = z(w), from the function of the class
e(L1p(ρ1), L

′
2q(ρ2)) we obtain the function of the class h(L1p(w1), L

′
2q(w2)),

where

ω1(w) = ρ1(z(w)) p
√
|z′(w)|, (64)

ω2(w) = ρ2(z(w)) q
√
|z′(w)|. (65)

If f(z) is the function defined on a finite union of arcs E = L2 ∪ L̃, and
z = z(s) is the equation of the curve L with respect to the arc abscissa s,
then we say that it is absolutely continuous on E, if the function f(z(s)) is

absolutely continuous on the set {s : z(s) ∈ E}, and we write f ∈ A(L2∪L̃).

Lemma 9. If f(z) ∈ A(L2 ∪ L̃), then the function f(z(τ)), where z(τ)
is the restriction on γ of the conformal mapping z(w) of the circle U on D,

belongs to A(Γ2 ∪ γ̃), and vice versa, if ϕ(w) ∈ A(Γ2 ∪ γ̃), then ϕ(w(t)) ∈

A(L2 ∪ L̃).

This lemma is the consequence of the fact that under the conformal
mapping z = z(w) of the circle onto finite domain which is bounded by
a simple rectifiable curve, the functions z = z(eiθ) and w = w(z(s)) are
absolutely continuous with respect to the arguments θ and s, respectively
(see, e.g., [7], pp.405-407).

Let us consider the following mixed boundary value problem: find in the
domain D the function U , satisfying the following conditions:




∆U = 0, U ∈ e(L1p(ρ1), L′2q(ρ2)), p > 1, q > 1.

U+|
L1\L̃

= F, F ∈ Lp(L1\L̃; ρ1); U+ ∈ A(L2 ∪ L̃),

U+|
L̃

= Ψ, Ψ′ ∈ Lq(L̃; ρ2);
(
∂U
∂n

)+

|L2 = G, G ∈ Lq(L2; ρ2).

(66)

Since L is the Lyapunov curve, the functions |z′(w)| and |w′(z)| are
continuous respectively in U and D and different from zero. If we put

z(Ck) = ck, then such will be the functions z(w)−z(ck)
w−ck

, k = 1,m. Therefore

the classes h(Γ1p(ω1),Γ
′
2q(ω2)) with the weights (64) and (65) coincide with

the same class with the weights defined by the equalities (6) and (7). Taking
into account Lemma 9 and putting

f(t) = F (z(t)), ψ(t) = Ψ(z(t)), g(t) = G(z(t)), t ∈ γ, (67)
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we easily see that problem (66) is equivalent to the problem (25) with the
boundary data (67). Applying to the latter Theorem 2, we state that the
following theorem is valid.

Theorem 3. If L is the Lyapunov curve, ρ1 and ρ2 are the weight

functions defined by the equalities (61) and (62) in which νk and λk satisfy

the conditions

−
1

q
< νk < min

(
0;

1

q′
−

1

2

)
, max

(
0;

1

2
−

1

q

)
≤ λk <

1

q′
,

then for the solution U of the problem (66) the statements (I)-(III) of The-

orem 2, in which f , ψ, g are given by the equalities (67), are valid.

90. The Mixed Boundary Value Problem in the Class e′q(D;ω).
Let D be the domain bounded by a simple Lyapunov curve L, and let

ω = ω2 be the weight function given by the equality (7) with the values
νk and λk for which the conditions (32) are fulfilled. Consider the mixed
boundary value problem in the class e′q(D,ω) (somewhat narrower than the
class e(L1p(ρ1), L

′
2q(ω))):

e′q(D;ω) =

{
u : ∆u = 0, sup

0<r<1

∫

Γr

(∣∣∣∂u
∂x

∣∣∣
q

+
∣∣∣∂u
∂y

∣∣∣
q)
|ωq(z)||dz|

}
<∞,

where Γr is the of the image circumference of radius r under the conformal
mapping of U onto D.

If q > 1, and v is the function, harmonically conjugate to u, u ∈ e′q(D),
then by the Cauchy–Riemann conditions we have v ∈ e′q(D). Therefore if
φ(z) = u(z) + iv(z), then ω(z)φ′(z) ∈ Eq(D). But then φ(z) is continuous
in D, absolutely continuous on L (see, e.g., [7], p.395), and φ′(t) ∈ Lq(L;ω).

Consider the problem for a circle.

Let Γ1 =
m
∪
k=1

γk, where γk = (ak, bk) are arcs lying separately on the unit

circumference γ, Γ2 = Γ\Γ1. It is required to find a function u for which




∆u = 0, u ∈ e′q(U ;ω), q > 1, u+ ∈ C(γ)

u+|Γ1 = ψ, ψ ∈ A(Γ1), ψ′ ∈ Lq(Γ1;ω);(
∂u
∂n

)+

|Γ2 = g, g ∈ Lq(Γ2;ω).

(68)

It can be easily verified that if u is a solution of the problem (68), then it
is represented by the formula (15) in which u+ ∈ A(γ).

Reasoning just in the same way as in Sections 40 − 70, we arrive at the
conclusion that the following theorem is valid.

Theorem 4. For the problem (68) the statements (I)-(III) of Theorem

2, in which we assume that γ̃ = Γ1 and

µ(ϕ) = g(eiϕ) +
1

2π

∫

Θ(Γ1)

ψ(eiθ) ctg
θ − ϕ

2
dϕ+
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+

m∑

k=1

[
ψ(bk) ctg

βk − ϕ

2
− ψ(ak+1) ctg

αk+1 − ϕ

2

]

are valid.

For the domain D bounded by the Lyapunov curve in the class e′q(D;ω),
the statement analogous to Theorem 4 is true.

Note that general boundary value problems, including mixed type prob-
lems, have been considered by many authors in different classes of functions
(see, e.g., [26–28]).
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