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Abstract. We discuss some aspects of the non-Abelian version of Stokes
theorem in two and three dimensions. In particular, the existence of isotopy
for practical implementation of the non-Abelian Stokes theorem for topolog-
ically nontrivial knots, possibly with self-intersections, in three-dimensional
Euclidean space is proved. A generalization to the case of a more gen-
eral 3-manifold M3 is proposed and some results concerned with the issues
of links and stability are presented. A 2-dimensional version of the non-
Abelian Stokes theorem is also established and its generalization to the case
of a real analytic surface with isolated singularities is formulated in the
setting of square-integrable forms.
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1. Introduction

The (Abelian, i.e. classical) Stokes theorem is one of the central points
of analysis on manifolds. The formula

∫

∂M

ω =

∫

M

dω,

where ω is a differential (d − 1)-form on d-dimensional compact oriented
manifold M with boundary ∂M , is well-known. The lowest-dimensional
(non-trivial) version of the Stokes theorem reads

∮

C

A =

∫

S

F, (1)

where S is a two-dimensional surface, A is a connection 1-form, F = dA is
its curvature 2-form, and C = ∂S is a closed contour (loop). It is some-
times called the (proper) Stokes theorem and appears extremely useful in
applications (e.g. in Abelian gauge theory).

Formula (1), which may be considered as the Abelian Stokes theorem can
be generalized to the non-Abelian case [1], [2]. There are several practical
approaches to the non-Abelian Stokes theorem (NAST) [1], [2], [3], [4], and
a lot of various aspects of the NAST have been already discussed [5]. One
of them, initiated in [6], concerns NAST for a knot C (and also possibly
for links). In particular, in the 3-dimensional case (i.e. when the ambient
manifold is three dimensional), it may happen that C is knotted (or linked,
for a multi-component C), and a direct application of NAST is impossible.

A typical situation of such kind arises when one wishes to calculate or
estimate some physical quantities associated with a knotted or linked object,
e.g., a loop of wire C in three-dimensional Euclidean space. To do that, it
is often natural to consider a two-dimensional surface which spans C (in the
sense that ∂S = C) and satisfies certain physically meaningful conditions
(equations). For example, one may wish to take the soap film S spanning C

(i.e., the solution of Plateau problem with boundary C) and estimate the
tension in it or the force acting upon the wire on the side of the film. Notice
that for a knotted C the corresponding soap film is necessarily singular and
one has to invent a version of Stokes theorem appropriate for such situation.

Another sort of obstacle for using the classical Stokes theorem arises in
the case when one deals with analytic or algebraic surfaces with isolated
singularities, i.e., when the integration contour bounds a singular two-
dimensional surface. This, as usual, means that the tangent plane is not
well-defined at all points of the surface (like, e.g., in the case of a usual
quadratic cone in three-dimensional space). Differential geometry of such
surfaces suggests several issues in the spirit of the Stokes theorem. In such
instances one has to look for more general formulations and procedures some
of which are proposed in the sequel.
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Symbolically, e.g., in the language of product integration [1], we can
write the NAST for a disk S as

P exp



i

∮

C=∂S

A



 = P exp



i

∫

S

F



 , (2)

where P and P are appropriately defined orderings, and F is the “twisted”
non-Abelian curvature F of the Lie algebra valued connection A, F = dA+
1

2
A ∧ A (see [1], [2], [3], [4], for details). If C bounds a disk S, equation

(2) is directly applicable, but if C is, e.g., a non-trivial knot, one should
resort to [6], where a version of the NAST for knots and links has been
formulated. Another challenging situation arises if one considers a two-
dimensional surface with an isolated singularity and looks for a version of
NAST for the integral over the link of the singularity.

The aim of this paper is to clarify some of these issues, namely: to
reformulate the procedure of [6] more explicitly, to allow intersecting knots,
to generalize NAST to a more general 3-manifoldM3, to work out the issues
of links and of stability, and to present a version of NAST for 2-manifolds
M2, including the case of a real-analytic surface with an isolated singularity.

2. NAST for Knots in R3

The essential step of the standard NAST is a decomposition of the initial
C = ∂S into “lassos” bounding disks of infinitesimal areas. If S is a disk,
the procedure is straightforward and well-known but for a knotted C the
decomposition is non-trivial. An elegant solution of the problem has been
proposed in [6], where the authors have found a general decomposition of
C suitable for a direct application of the NAST. The starting point of their
analysis is an arbitrary compact connected oriented 2-dimensional surface
Sc given in a canonical form (see, [7] page 209). Since a knot is always a
boundary of a 2-dimensional surface, the Seifert surface Ss (a connected ori-
entable surface), the problem is solved once an appropriate decomposition
for this surface is found. But for practical purposes and for implementa-
tion of the theorem in [6] it is not obvious how one can actually relate the
decomposition of [6] for the surface Sc given in a canonical form and de-
composition of the actual Seifert surface Ss. To fill the gap, we propose a
theorem establishing an appropriate isotopy explicitly (see [8], [9], [10], for
a related material).

To begin with, following [7] we are recalling the construction of the Seifert
surface Ss for a knot C. Let us assign C an orientation, and examine its
regular projection. Near each crossing point, let us delete the over- and
under-crossings, and replace them by “short-cut” arcs. We now have a dis-
joint collection of closed curves bounding disks, possibly nested. These disks
can be made disjoint by pushing their interiors slightly off the plane. Then,
let us connect them together at the old crossings with half-twisted strips to
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form Ss. In the case of a multi-component C (link), we join components by
tubes, if necessary.

Theorem 1. There exists, in an explicit form, an (ambient) isotopy

connecting the Seifert surface Ss for a knot C (for a link, in fact) and

the 2-dimensional surface given in the canonical form Sc. Actually, the

isotopy is valid for any two compact connected orientable homeomorphic

2-dimensional surfaces.

To prove Theorem 1, we will explicitly present all components of the
isotopy. The starting point are disks (0-handles) connected with strips (1-
handles). Shortening a strip, and bringing any two connected by them 0-
handles together we join them reducing their number by one. Let us repeat
this procedure until we end up with a single disk with a bunch of strips.
Next, let us concentrate on the first two strips. They can be “crossed” or
“nested”. In the case of nested strips, we can “decouple” them sliding the
first one over the second one. In the case of crossed strips, we slide together
the whole two bunches of all interior strips (“counterclockwise”) over the
two crossed strips separating the bunches from them. Let us keep repeating
this procedure until we end up with a sequence of “decoupled” single strips
and single pairs of crossed strips. Of course, the decoupling takes place
only on the boundary of the disk, and the strips can be intertwined in a
very complicated way. For a link, it may happen that the initial Seifert
surface is disconnected. In such a case, after obtaining a single disk for each
component, let us join the disks by tubes. Before we engage in ordering of
strips we should cancel the tubes. Reducing the “size” of the first disk and
shortening the first tube, and next bringing the two first disks together we
join them decreasing their number by one. Each such an operation creates a
hole with strips inside the second disk. Pushing the hole out of the interior
of the disk we obtain a standard disk with a larger number of strips. Let us
keep on repeating the procedure until all the tubes disappear and return to
disentangling strips described earlier for a (single) knot C.

The method used for proving the theorem can also be used to extend the
NAST to the case of self-intersecting knots (links). Let us return to the
construction of the Seifert surface Ss. Now, some of the crossing points of a
regular projection are “true” crossing points (intersection points). Splitting
the intersection points arbitrarily (in one of the two ways) we get rid off
the true crossing points, and the procedure of the previous section becomes
fully applicable. However the memory about the intersections should remain
encoded in the form of “pinching” lines identifying the intersection points.
These lines lie on strips, and in the course of all necessary rearrangements
they persist in lying on the Seifert surface. After joining all the disks ac-
cording to the procedure described in Theorem 1 all the lines fall in the final
disk. The ordering procedure consisting in sliding the strips drags the lines
inside the strips. Therefore, the Seifert surface brought to the canonical
form Sc is covered by two independent systems of curves. The first, very
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regular one follows from the procedure of [6] and is responsible for cutting
Sc into simply connected surfaces (disks). The second system of curves,
possibly complicated, generated by the present recipe, indicates necessary
pinching and identification of points. Each disk created by the first system
of curves should now be pinched by curves of the second system becoming
a finer bunch of disks, and the standard NAST becomes applicable.

3. Multi-Component Links and Stability

It is possible to easily generalize the NAST to the case of a more general
ambient 3-dimensional manifold M3 in the framework of surgery. Both
Dehn surgery and handle surgery [7] are relevant in this context. In the
following theorem we assume that the surgery used to construct a 3-manifold
considered, is defined by combinatorial data called surgery coefficients [7].

Theorem 2. Let {C, C1, C2, . . . , Cn} be a link, where C is a knot, and Ci

define surgery prescription for a 3-manifold M3 together with their surgery

coefficients ri. For a homologically trivial knot C, i.e., when C is a bound-

ary, there exists a corresponding (generalized) Seifert surface Ss.

In the first step we construct the Seifert surface Ss for C ignoring Ci.
Thus, Ci can pierce Ss in several points. Thickened Ci (linked tori) cut
small disks Dia (a = 1, 2, . . . , ni) out of Ss. What to do with these holes in
Ss depends crucially on Ci and its ri. Only ri = ∞ means triviality of the
surgery operation along Ci (regluing back the same torus), and no disk is
actually cut out. For ri 6= ∞ we should mark all the circles Bia (boundaries
Bia of the removed disks Dia, i.e. Bia = ∂Dia) corresponding to Ci. In the
identified (glued back) solid torus each Bia lies on its surface, homologically
non-trivially. Cutting the torus along a meridian we can see all Bia on its
section as points Pia. The points Pia should be connected in pairs with
intervals which should be prolonged to bands in the interior of the solid tori
and finally closed forming short tubes. The assignment of the pairs to the
points enters as additional and arbitrary information in our construction.
Now we return back to the original Seifert surface Ss with holes, and cancel
the holes by simply connecting them with the tubes. In case the number ni

is odd for some i one Bia leaves unpaired, and this simply means that the
knot can be homologically non-trivial. The Seifert surface Ss modified by
the surgery, i.e. with several tubes added, is also a Seifert surface, possibly
non-minimal, and the general decomposition procedure applies.

As for the issue of multiple loops and stability, our approach corrects and
differs from that proposed in [6]. First of all we observe that for a (genuine)
link one should treat its components independently, i.e. to consider only one
of them at a time forgetting the rest.

It follows from the fact that different components represent different oper-
ators, and no mixing them takes place anywhere. Application of the NAST
for an N -component link means that we cover appropriate Seifert surface(s)
with N independent nets of small lassos. They can intersect or may not,
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they can overlap or may not, but they are always independent. In other
words, if we consider a common surface for several loops we must decree ar-
eas for particular components anyway, and the approach effectively decays
onto independent treatment of single components. Obviously, in general
case, Seifert surfaces corresponding to different components can intersect.

Another closely issue is concerned with the NAST for stably equiva-
lent surfaces, i.e. for Seifert surfaces differing by a handle, which of course
changes the topology of an initial Seifert surface.

Proposition. Any two connected Seifert surfaces of a knot C are stably

equivalent to each other.
In fact, this exactly corresponds to addition of two crossed strips, as

it could be represented by addition of (connected sum with) a torus (see
e.g. [10], Chapter 5 A). For this new surface the NAST dictates another
decomposition which is still equivalent to the former one. This follows from
the fact that different families of the lassos in 3-dimensional M3 are (and
must be), by the very construction of the NAST, still isotopic to the initial
knot.

4. NAST in Two Dimensions

In two dimensions the NAST assumes a non-trivial form. Therefore we
have to invent a new formulation of the main result.

Theorem 3. Let M2 be a compact connected orientable 2-manifold with

boundary, and C be a homologically trivial cycle on M2. In this case the

NAST can be written in the form

C = S ckB−1
k c−1

k . . . c1B1c−1
1 bnan . . . b1a1, (3)

where ai, bi, Bj, cj, C denote operators of parallel transport (or global

connection) in an irreducible representation R of the Lie group G, and S is

given by the right hand side of (2).

To prove the theorem we use a general classification of compact connected
2-manifolds with boundary. According to [8] (Ch. 1, Sect. 10), the normal
form for M2 is given by a polygon with 4n + 3k sides (n – the genus, k –
number of holes) which are identified as follows:

a1b1a
−1

1
b−1

1
· · ·anbna−1

n b−1

n c1B1c
−1

1
· · · ckBkc−1

k , (4)

where ai, bi correspond to the properly identified sides of the polygon rep-
resenting a genus n 2-manifold in a standard fashion, and ci are cuts to the
boundary components Bi corresponding to the k holes. C is an additional
hole which can be placed, for example, in front of (4). Now the standard
NAST (2) can be applied. After necessary rearrangements we arrive at the
formula (3).

Another non-trivial aspect of NAST in two-dimensional case is related
with consideration of surfaces with isolated singular points. The geometric
structure of a real analytic surface near its isolated singular points is known
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in great detail (see, e.g., [11]), which makes it possible to analyze the be-
havior of both sides of NAST near the singular point and find a formulation
appropriate to this case.

Let X be a real analytic surface with isolated singular points pj , j =
1, . . . , n. As was shown in [11], all these singularities are of the so-called
horn type, which means that locally the induced metric is quasi-isometric
to the metric of the form (dr)2 + r2γ(dφ)2 on S1 × [0, δ). If γ = 1, then a
singular point is said to be of a cone type. With each of those singular points
pj on can associate a real number rj , which describes the behavior of the
induced metric on X near point pj . Namely, the number rj is defined as the
leading coefficient in the asymptotic expansion of the arc length function
l(δ) on a small link X ∩B2

δ [11]. Let the singular points pj be numbered in
such way that all singular points of cone type are the points p1, . . . , ps.

Consider now a circle bundle E over X which is locally trivial over the
regular part of X . Then, as is well known, there exists a connection ω on E

and one can consider its curvature form Ω. In order to formulate a version
of Stokes theorem in this situation, one considers a surface with boundary
Y which is obtained by intersecting X with the union of small balls Bj

around singular points, and compares the integral of ω over the boundary
C = X ∩ (∪Bj) of Y , with the integral of Ω over Y . It turns out that there
appears a correction term as compared with the usual Stokes theorem and
this correction term is completely determined by the geometric structure of
singular points.

Theorem 4. With the assumptions and notation as above, the curvature

form Ω is integrable on Y and one has the equality:
∫

C

ω =

∫

Y

Ω +
1

2π

s
∑

j=1

rj − n. (5)

The proof of this theorem can be easily obtained by passing to the vector
bundle associated with E and applying the Gauss-Bonnet theorem from [11].
The result itself is not surprising in view of [11], but it seems useful since it
suggests what can be form of NAST for surfaces with isolated singularities.
Namely, it becomes clear that one should introduce a correction term of
the above type. However, in non-abelian case one has to properly modify
the definition of path integral of curvature form and establish its basic
properties. We were not able to find such discussion in the existing literature
so we plan to consider it in full detail in a forthcoming publication and
present a rigorous version of NAST for singular surfaces.

Notice that the dimensions 2 and 3 are the only dimensions of real in-
terest in the context of NAST as in higher dimensions there are no topo-
logically non-trivial configurations of closed curves. Thus the settings and
results presented above seem to adequately match some non-trivial physical
phenomena of essentially topological nature which one encounters in gauge
theory, like the Aharonov-Bohm effect and its various manifestations. It
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seems plausible that further research in this direction may lead to better
understanding of those phenomena.

Summing up, in this article we have shown how the theorem proposed
in [6] for the application of the NAST to topologically nontrivial knots
can be effectively implemented. As a by-product of our construction, we
have extended the main result to knots with intersections. Next, we have
proposed a generalization of the NAST to a more general 3-manifold defined
by surgery, and settled the issue of links and of stability under the addition
of a handle. Finally, the NAST for a 2-manifold M2 has been formulated
in such a form which permits generalization to the case of surface with
isolated singularities. In forthcoming publications we intend to discuss some
straightforward applications of our results to certain situations arising in
non-abelian gauge theory and differential geometry.
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