I. Kiguradze

ON THE SOLVABILITY OF NONLINEAR OPERATOR EQUATIONS IN A BANACH SPACE

(Reported on July 7, 2003)
Let \mathcal{B} be a Banach space with a norm $\|\cdot\|_{\mathcal{B}}$ and $h: \mathcal{B} \rightarrow \mathcal{B}$ be a completely continuous nonlinear operator. In this paper, we give theorems on the existence of a solution of the operator equation

$$
\begin{equation*}
x=h(x), \tag{1}
\end{equation*}
$$

which generalize the results of [1]-[4] concerning the solvability of boundary value problems for systems of nonlinear functional differential equations.

The use will be made of the following notation.
Θ is the zero element of the space \mathcal{B}.
\bar{D} is the closure of the set $D \subset \mathcal{B}$.
$\mathcal{B} \times \mathcal{B}=\{(x, y): x \in \mathcal{B}, y \in \mathcal{B}\}$ is the Banach space with the norm

$$
\|(x, y)\|_{\mathcal{B} \times \mathcal{B}}=\|x\|_{\mathcal{B}}+\|y\|_{\mathcal{B}} .
$$

$\Lambda(\mathcal{B} \times \mathcal{B})$ is the set of completely continuous operators $g: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ such that:
(i) $g(x, \cdot): \mathcal{B} \rightarrow \mathcal{B}$ is a linear operator for every $x \in \mathcal{B}$;
(ii) for any x and $y \in \mathcal{B}$ the equation

$$
z=g(x, z)+y
$$

has a unique solution z and

$$
\|z\|_{\mathcal{B}} \leq \gamma\|y\|
$$

where γ is a positive constant, independent of x and y.
$\Lambda_{0}(\mathcal{B} \times \mathcal{B})$ is the set of completely continuous operators $g: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ such that:
(i) $g(x, \cdot): \mathcal{B} \rightarrow \mathcal{B}$ is a linear operator for any $x \in \mathcal{B}$;
(ii) the set

$$
\left\{g(x, y): x \in \mathcal{B},\|y\|_{\mathcal{B}} \leq 1\right\}
$$

is relatively compact;
(iii) $y \notin \overline{\{g(x, y): x \in \mathcal{B}\}}$ for $y \in \mathcal{B}$ and $y \neq \Theta$.

Let $g_{0} \in \Lambda_{0}(\mathcal{B} \times \mathcal{B})$. We say that a linear bounded operator $\bar{g}: \mathcal{B} \rightarrow \mathcal{B}$ belongs to the set \mathcal{L}_{g} if there exists a sequence $x_{k} \in \mathcal{B}(k=1,2, \ldots)$ such that

$$
\lim _{k \rightarrow \infty} g\left(x_{k}, y\right)=\bar{g}(y) \text { for } y \in \mathcal{B}
$$

Along with \mathcal{B}, we consider a partially ordered Banach space \mathcal{B}_{0} in which the partial order is generated by a cone \mathcal{K}, i.e., for any u and $v \in \mathcal{B}_{0}$, it is said that u does not exceed v, and is written $u \leq v$ if $v-u \in \mathcal{K}$.

A linear operator $\eta: \mathcal{B}_{0} \rightarrow \mathcal{B}_{0}$ is said to be positive if it transforms the cone \mathcal{K} into itself.

An operator $\nu: \mathcal{B} \rightarrow \mathcal{B}_{0}$ is said to be positively homogeneous if $\nu(\lambda x)=\lambda \nu(x)$ for $\lambda \geq 0, x \in \mathcal{B}$.

By $r(\eta)$ we denote the spectral radius of the operator η.

[^0]Lemma 1. $\Lambda_{0}(\mathcal{B} \times \mathcal{B}) \subset \Lambda(\mathcal{B} \times \mathcal{B})$.
Theorem 1 (A priori boundedness principle). Let there exist an operator $g \in \Lambda(\mathcal{B} \times \mathcal{B})$ and a positive constant ρ_{0} such that for any $\left.\lambda \in\right] 0,1[$ an arbitrary solution of the equation

$$
x=(1-\lambda) g(x, x)+\lambda h(x)
$$

admits the estimate

$$
\begin{equation*}
\|x\|_{\mathcal{B}} \leq \rho_{0} \tag{2}
\end{equation*}
$$

Then the equation (1) is solvable.
Corollary 1. Let there exist a linear completely continuous operator $g: \mathcal{B} \rightarrow \mathcal{B}$ and a positive constant ρ_{0} such that the equation

$$
y=g(y)
$$

has only a trivial solution, and for any $\lambda \in] 0,1[$ an arbitrary solution of the equation

$$
x=(1-\lambda) g(x)+\lambda h(x)
$$

admits the estimate (2). Then the equation (1) is solvable.
On the basis of Lemma 1 and Theorem 1 we prove the following theorem.
Theorem 2. Let there exist an operator $g \in \Lambda_{0}(\mathcal{B} \times \mathcal{B})$, a partially ordered Banach space \mathcal{B}_{0} with a cone \mathcal{K} and positively homogeneous continuous operators μ and $\nu: \mathcal{B} \rightarrow \mathcal{K}$ such that

$$
\mu(y)-\nu(y-z) \notin \mathcal{K} \text { for } y \neq \Theta, \quad z \in \overline{\{g(x, y): x \in \mathcal{B}\}}
$$

and

$$
\begin{equation*}
\nu\left(h(x)-g(x, x)-h_{0}(x)\right) \leq \mu(x)+\mu_{0}(x) \text { for } x \in \mathcal{B} \tag{3}
\end{equation*}
$$

where $h_{0}: \mathcal{B} \rightarrow \mathcal{B}$ and $\mu_{0}: \mathcal{B} \rightarrow \mathcal{K}$ satisfy the conditions

$$
\begin{equation*}
\lim _{\|x\|_{\mathcal{B}} \rightarrow \infty} \frac{\left\|h_{0}(x)\right\|_{\mathcal{B}}}{\|x\|_{\mathcal{B}}}=0, \quad \lim _{\|x\|_{\mathcal{B}} \rightarrow \infty} \frac{\left\|\mu_{0}(x)\right\|_{\mathcal{B}_{0}}}{\|x\|_{\mathcal{B}}}=0 \tag{4}
\end{equation*}
$$

Then the equation (1) is solvable.
Corollary 2. Let there exist an operator $g \in \Lambda_{0}(\mathcal{B} \times \mathcal{B})$, a partially ordered Banach space \mathcal{B}_{0} with a cone \mathcal{K}, a positively homogeneous operator $\nu: \mathcal{B} \rightarrow \mathcal{K}$ and a linear bounded positive operator $\eta: \mathcal{B}_{0} \rightarrow \mathcal{K}$ such that

$$
r(\eta)<1
$$

$\|\nu(x)\|_{\mathcal{B}_{0}}>0$ for $x \neq \Theta$ and

$$
\nu\left(h(x)-g(x, x)-h_{0}(x)\right) \leq \eta(\nu(x))+\mu_{0}(x) \text { for } x \in \mathcal{B}
$$

where $h_{0}: \mathcal{B} \rightarrow \mathcal{B}$ and $\mu_{0}: \mathcal{B} \rightarrow \mathcal{K}$ are operators satisfying (4). Then the equation (1) is solvable.

Corollary 3. Let there exist an operator $g \in \Lambda_{0}(\mathcal{B} \times \mathcal{B})$ such that

$$
\begin{equation*}
\lim _{\|x\|_{\mathcal{B}} \rightarrow 0} \frac{\|h(x)-g(x, x)\|_{\mathcal{B}}}{\|x\|_{\mathcal{B}}}=0 \tag{5}
\end{equation*}
$$

Then the equation (1) is solvable.
Theorem 3. Let the space \mathcal{B} be separable. Let, moreover, there exist an operator $g \in \Lambda_{0}(\mathcal{B} \times \mathcal{B})$, a partially ordered Banach space \mathcal{B}_{0} with a cone \mathcal{K}, and positively homogeneous continuous operators μ and $\nu: \mathcal{B} \rightarrow \mathcal{K}$ such that for every $\bar{g} \in \mathcal{L}_{g}$ the inequality

$$
\nu(y-\bar{g}(y)) \leq \mu(y)
$$

has only a trivial solution and the condition (3) is fulfilled, where $h_{0}: \mathcal{B} \rightarrow \mathcal{B}$ and $\mu_{0}: \mathcal{B} \rightarrow \mathcal{K}$ are operators satisfying (4). Then the equation (1) is solvable.

Corollary 4. Let the space \mathcal{B} be separable, let there exist an operator $g \in \Lambda_{0}(\mathcal{B} \times \mathcal{B})$ such that the condition (5) hold, and let for every $\bar{g} \in \mathcal{L}_{g}$ the equation

$$
y=\bar{g}(y)
$$

have only a trivial solution. Then the equation (1) is solvable.
Theorem 1 implies a priori boundedness principles proved in [1] and [4], while Theorems 2 and 3 imply the Conti-Opial type theorems proved in [2] and [3].

We give one more application of Theorem 1 concerning the existence of an ω-periodic solution of the functional differential equation

$$
\begin{equation*}
u^{(n)}(t)=f(u)(t)+f_{0}(t) \tag{6}
\end{equation*}
$$

Here $n \geq 1, \omega>0, f_{0} \in L_{\omega}, f: C_{\omega} \rightarrow L_{\omega}$ is a continuous operator, C_{ω} is the space of continuous ω-periodic functions $u: \mathbb{R} \rightarrow \mathbb{R}$ with the norm

$$
\|u\|_{C_{\omega}}=\max \{|u(t)|: 0 \leq t \leq \omega\}
$$

and L_{ω} is the space of integrable on $[0, \omega] \omega$-periodic functions $v: \mathbb{R} \rightarrow \mathbb{R}$ with the norm

$$
\|v\|_{L_{\omega}}=\int_{0}^{\omega}|v(t)| d t
$$

By an ω-periodic solution of the equation (6) we understand an ω-periodic function $u: \mathbb{R} \rightarrow \mathbb{R}$ which is absolutely continuous together with $u^{(i)}(i=1, \ldots, n-1)$ and almost everywhere on \mathbb{R} satisfies the equation (6).

On the basis of Corollary 1 we prove the following theorem.
Theorem 4. Let there exist $q \in L_{\omega}, \sigma \in\{-1,1\}$ and a positive constant ρ such that

$$
0 \leq \sigma f(x)(t) \operatorname{sgn} x(t) \leq q(t) \text { for } x \in C_{\omega}, \quad t \in \mathbb{R}
$$

and for any $x \in C_{\omega}$, satisfying the inequality

$$
|x(t)|>\rho \text { for } t \in \mathbb{R}
$$

the condition

$$
\int_{0}^{\omega} f(x)(t) d t \neq 0
$$

is fulfilled. Let, moreover,

$$
\begin{equation*}
\int_{0}^{\omega} f_{0}(t) d t=0 \tag{7}
\end{equation*}
$$

Then the equation (6) has at least one solution.
As an example, consider the differential equation

$$
\begin{equation*}
u^{(n)}(t)=\sum_{k=1}^{m} f_{k}(t) \frac{\left|u\left(\tau_{k}(t)\right)\right|^{\lambda_{k}} \operatorname{sgn} u\left(\tau_{k}(t)\right)}{1+\left|u\left(\tau_{k}(t)\right)\right|^{\mu_{k}}}+f_{0}(t) \tag{8}
\end{equation*}
$$

where

$$
f_{k} \in L_{\omega} \quad(k=0, \ldots, n), \quad \mu_{k} \geq \lambda_{k}>0 \quad(k=1, \ldots, n)
$$

and $\tau_{k}: \mathbb{R} \rightarrow \mathbb{R}(k=1, \ldots, n)$ are measurable functions such that the fraction

$$
\frac{\tau_{k}(t+\omega)-\tau_{k}(t)}{\omega}
$$

is an integral number for any $t \in \mathbb{R}$ and $k \in\{1, \ldots, n\}$.

Corollary 5. Let there exist a number $\sigma \in\{-1,1\}$ such that

$$
\sigma f_{k}(t) \geq 0 \text { for } t \in \mathbb{R} \quad(k=1, \ldots, n)
$$

and

$$
\sigma \sum_{k=1}^{n} \int_{0}^{\omega} f_{k}(t) d t>0
$$

Let, moreover, the condition (7) hold. Then the equation (8) has at least one ω-periodic solution.

Acknowledgment

This work was supported by GRDF (Grant No. 3318).

References

1. I. Kiguradze and B. PŮŽa, On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12(1997), 106-113.
2. I. Kiguradze and B. PŮŽa, Conti-Opial type theorems for systems of functional differential equations. (Russian) Differentsial'nye Uravneniya 33(1997), No. 2, 185-194; English transl.: Differ. Equations 33(1997), No. 2, 184-193.
3. I. Kiguradze and B. PŮŽa, Conti-Opial type existence and uniqueness theorems for nonlinear singular boundary value problems. Funct. Differ. Equ. 9(2002), No. 3-4, 405-422.
4. I. Kiguradze, B. PůŽa, and I. P. Stavroulakis, On singular boundary value problems for functional differential equations of higher order. Georgian Math. J. 8(2001), No. 4, 791-814.

Author's address:

A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: kig@rmi.acnet.ge

[^0]: 2000 Mathematics Subject Classification. 47H10, 34K13.
 Key words and phrases. Nonlinear operator equation in a Banach space, a priori boundedness principle, functional differential equation, periodic solution.

