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The proposed note deals with the asymptotic properties of solutions of the differential
equation (

r(t)u′′
)
′

= p0(t)u + p1(t)u
′ + q(t), (1)

where r : [0, +∞[→ ]0,+∞[ , pi : [0,+∞[→ R (i = 1, 2) and q : [0,+∞[→ R are
continuous functions.

The following theorem is valid.

Theorem. Let

+∞∫

0

t

r(t)
dt < +∞,

+∞∫

0

|pi(t)| dt < +∞ (i = 0, 1),

+∞∫

0

|q(t)| dt < +∞.

(2)

Then an arbitrary oscillatory solution of the equation (1) satisfies the conditions

lim
t→+∞

u(t) = lim
t→+∞

u′(t) = lim
t→+∞

r(t)u′′(t) = 0. (3)

Proof. Let the sequence (tk)+∞
k=1 be such that

u(tk) = 0, 1 < tk < tk+1 (k = 1, 2, . . .).

Then for each natural k there exists t̃k ∈ ]tk, tk+2[ such that

u′′(t̃k) = 0.

Hence (1) implies

u′′(t) =
1

r(t)

t∫

t̃k

[
p0(s)u(s) + p1(s)u

′(s) + q(s)
]
ds.

If now we set

ρik = max
{
|u(i)(t)| : tk ≤ t ≤ tk+2

}
(i = 0, 1),

ρ2k = max
{
r(t)|u′′(t)| : tk ≤ t ≤ tk+2

}

and

εk =

tk+2∫

tk

( t

r(t)
+ |p0(t)| + |p1(t)| + |q(t)|

)
dt,
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then from the latter identity we find that

|u′′(t)| ≤
1

r(t)
εk(ρ0k + ρ1k + 1) for tk ≤ t ≤ tk+2 (4)

and

ρ2k ≤ εk(ρ0k + ρ1k + 1) for tk ≤ t ≤ tk+2. (5)

On the other hand, by virtue of conditions (2) we have

lim
k→+∞

εk = 0. (6)

Therefore without loss of generality it can be assumed that

εk <
1

2
(k = 1, 2, . . .). (7)

By the Green formula, for each natural k we have

u(t) =

tk+2∫

tk

Gk(t, s)u′′(s) ds, u′(t) =

tk+2∫

tk

∂Gk(t, s)

∂s
u′(s) ds (8)

for tk ≤ t ≤ tk+2,

where

Gk(t, s) =






(t− tk)(s − tk+2)

tk+2 − tk
for t < s,

(t− tk+2)(s − tk)

tk+2 − tk
for t > s.

Moreover,

|Gk(t, s)| ≤ s− tk < s,
∣∣∣
∂Gk(t, s)

∂t

∣∣∣ ≤ 1 for tk ≤ t, s ≤ tk+2.

By virtue of these estimates and inequalities (4), from (8) we find that

ρ0k ≤ εk(ρ0k + ρ1k + 1)

tk+2∫

tk

s

r(s)
ds ≤ ε2

k
(ρ0k + ρ1k + 1),

ρ1k ≤ εk(ρ0k + ρ1k + 1)

tk+2∫

tk

ds

r(s)
≤

≤ εk(ρ0k + ρ1k + 1)

tk+2∫

tk

s ds

r(s)
≤ ε2

k
(ρ0k + ρ1k + 1).

Therefore

ρ0k + ρ1k ≤ 2ε2
k
(ρ0k + ρ1k) + 2ε2

k
.

Hence by (5)–(7) it follows that

ρ0k + ρ1k ≤ 4ε2
k
, ρ2k ≤ 2εk (k = 1, 2, . . .)

and

lim
k→+∞

ρik = 0 (i = 0, 1, 2).

Therefore equalities (3) are fulfilled. �

The proven theorem completes the previously known results on asymptotic behavior
of solutions of liner differential equations of third order (see [1]–[9] and the references
cited therein).
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