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Consider the differential equation

u(2n) = f(t, u, . . . , u(n−1)) (1)

with the boundary conditions

u(i−1)(a) = 0 (i = 1, . . . , n), u(k−1)(b) = 0 (k = 1, . . . , n) (2)

or

u(i−1)(a) = 0 (i = 1, . . . , n), u(k−1)(b) = 0 (k = n + 1, . . . , 2n). (3)

Here n ≥ 1, −∞ < a < b < +∞ and the function f : ]a, b[×R
n → R satisfies the local

Carathéodory conditions, i.e. f(t, ·, . . . , ·) : R
n → R is continuous for almost all t ∈ ]a, b[ ,

f(·, x1, . . . , xn) : ]a, b[→ R is measurable for every (x1, . . . , xn) ∈ R
n, and the function

f∗(t, ρ) = max

{∣∣f(t, x1, . . . , xn)
∣∣ :

n∑

i=1

|xi| ≤ ρ

}
(4)

is integrable in the first argument on [a + ε, b − ε] for arbitrary ρ ∈ [0,+∞[ and ε ∈
]0, (b− a)/2[ .

Of special interest for us is the case where the function f (and therefore the function
f∗) is non-integrable in the first argument on [a, b], having singularities at the ends of
this segment. In this sense the problems (1), (2) and (1), (3) are singular ones.

Singular boundary value problems for ordinary differential equations (including the
problems (1), (2) and (1), (3)) have been intensively studied from the 60s of the last
century up to the present time (see, e.g., [1]–[19] and the references cited therein). In
[11], the problems (1), (2) and (1), (3) are studied in the case where the function f admits
the one-sided estimate

(−1)nf(t, x1, . . . , xn) sgn x1 ≤
n∑

i=1

hi(t)|xi|+ h0(t),

where hi : ]a, b[→ [0,+∞[ (i = 0, . . . , n) are measurable functions satisfying either the
conditions

b∫

a

(s− a)2n−i(b− s)2n−ihi(t) dt < +∞ (i = 1, . . . , n),

b∫

a

(t− a)n− 1

2 (b − t)n− 1

2 h0(t) dt < +∞,

(5)
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or the conditions

b∫

a

(t− a)2n−ihi(t) dt < +∞ (i = 1, . . . , n),

b∫

a

(t − a)n− 1

2 h0(t) dt < +∞. (6)

In the present paper we consider the case where either

hi(t) =
`i

(t− a)2n+1−i(b− t)2n+1−i
(i = 1, . . . , n),

b∫

a

(t− a)2n(b− t)2nh0(t) dt < +∞,

or

hi(t) =
`i

(t− a)2n+1−i
(i = 1, . . . , n),

b∫

a

(t − a)2nh2
0(t) dt < +∞,

and, consequently, the conditions (5) and (6) are violated.
Along with (4), the following notation will be used.
R is the set of real numbers, R

n is the n-dimensional real Euclidean space.
If x ∈ R, then

[x]+ =
x + |x|

2
.

L2(]a, b[) is the space of square integrable on [a, b] functions h : ]a, b[→ R with the
norm

‖h‖
L2

=

( b∫

a

|h(t)|2 dt

)1/2

.

L2
α,β(]a, b[) is the space of square integrable on [a, b] with the weight (t− a)α(b− t)β

functions h : ]a, b[→ R with the norm

‖h‖
L2

α,β

def
=

( b∫

a

(t− a)α(b− t)βh2(t) dt

)1/2

.

Lloc(]a, b[) (Lloc(]a, b])) is the space of functions h : ]a, b[→ R which are integrable on

[a + ε, b− ε] (on [a + ε, b]) for any ε ∈ ]0, b−a
2

[ .

C̃m
loc(]a, b[) (C̃m

loc(]a, b])) is the space of functions u : ]a, b[→ R (of functions u : ]a, b] →
R) which are absolutely continuous together with u(i) (i = 1, . . . ,m) on [a + ε, b− ε] (on

[a + ε, b]) for any ε ∈ ]0, b−a
2

[ .

C̃m
2 (I) is the space of functions u ∈ C̃m

loc(I) satisfying the condition
∫

I

|u(m)(t)|2 dt < +∞.

If u ∈ C̃m
2 (]a, b[), then the functions u(i) (i = 0, . . . , m − 1) at the points a and b,

respectively, have the right and the left limits which in the sequel will be accepted as
u(i)(a) and u(i)(b) (i = 0, . . . ,m− 1).

A solution of the problem (1), (2) will be sought in the space

C̃2n−1
loc (]a, b[) ∩ C̃n

2 (]a, b[),

while a solution of the problem (1), (3) will be sought in the space

C̃2n−1
loc (]a, b]) ∩ C̃n

2 (]a, b]).
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Let either h ∈ L2
2n,2n(]a, b[) or h ∈ L2

2n,0(]a, b[). Consider the perturbed differential
equation

u(2n) = f(t, u, . . . , u(n−1)) + h(t) (7)

and introduce the following definitions.

Definition 1. The problem (1), (2) is called stable with respect to a small perturbation
of the right-hand member of the equation (1) if there exists a positive constant ρ0 such
that for any h ∈ L2

2n,2n(]a, b[) the problem (7), (2) is uniquely solvable in the space

C̃2n−1
loc (]a, b[) ∩ C̃n

2 (]a, b[), and

∥∥u
(n)
h − u

(n)
0

∥∥
L2

≤ ρ0‖h‖
L2

2n,2n

, (8)

where u0 and uh ∈ C̃2n−1
loc (]a, b[) ∩ C̃n

2 (]a, b[) are solutions of the problems (1), (2) and
(7), (2).

Definition 2. The problem (1), (3) is called stable with respect to a small perturba-
tion of the right-hand member of the equation (1) if there exists a positive constant ρ0

such that for any h ∈ L2
2n,0(]a, b[) the problem (1), (3) is uniquely solvable in the space

C̃2n−1
loc (]a, b]) ∩ C̃n

2 (]a, b]), and

∥∥u
(n)
h − u

(n)
0

∥∥
L2

≤ ρ0‖h‖
L2

2n,0

, (9)

where u0 and uh ∈ C̃2n−1
loc (]a, b]) ∩ C̃n

2 (]a, b]) are solutions of the problems (1), (3) and
(7), (3).

It should be noted that in view of (2) (in view of (3)) from the inequality (8) (from
the inequality (9)) we obtain the following inequalities:

∣∣u(i−1)
h (t) − u

(i−1)
0 (t)

∣∣ ≤ ρi(h)(t − a)n−i+ 1

2 (b− t)n−i+ 1

2 for a < t < b (i = 1, . . . , n)
( ∣∣u(i−1)

h (t)−u
(i−1)
0 (t)

∣∣ ≤ ρi(h)(t − a)n−i+ 1

2 for a<t<b (i=1, . . . , n)

)
,

where

ρi(h) =
1

(n− i)!
√

2n− 2i + 1

( 2

b− a

)n−i+ 1

2
ρ0‖h‖

L2
2n,2n(

ρi(h) =
1

(n− i)!
√

2n− 2i + 1
ρ0‖h‖

L2
2n,0

)
.

Theorem 1. Let there exist non-negative constants `i (i = 1, . . . , n) and a function

` ∈ L2
2n,2n(]a, b[) such that on the domain ]a, b[×R

n the condition

(−1)nf(t, x1, . . . , xn) sgn x1 ≤
n∑

i=1

`i|xi|
(t − a)2n+1−i(b− t)2n+1−i

+ `(t)

holds and
n∑

i=1

µin`i

(b− a)2n+1−i
< 1, (10)

where

µin = 22n+1−i
( n∏

k=1

(4k − 3)
)
−

1

2

( n−i+1∏

k=1

(4k − 3)
)
−

1

2
.

Then the problem (1), (2) has at least one solution in the space C̃2n−1
loc (]a, b[)∩ C̃n

2 (]a, b[).
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Theorem 1′. Let there exist non-negative constants `i (i = 1, . . . , n) satisfying the

inequality (10) such that on the domain ]a, b[×R
n the condition

(−1)n
[
f(t, x1, . . . , xn)− f(t, y1, . . . , yn)

]
sgn(x1 − y1) ≤

≤
n∑

i=1

`i|xi − yi|
(t − a)2n+1−i(b− t)2n+1−i

holds. Let, moreover,

b∫

a

(t − a)2n(b − t)2n
∣∣f(t, 0, . . . , 0)

∣∣2 dt < +∞.

Then the problem (1), (2) is uniquely solvable in the space C̃2n−1
loc (]a, b[)∩ C̃n

2 (]a, b[) and

stable with respect to a small perturbation of the right-hand member of the equation (1).

Theorem 2. Let there exist non-negative constants `i (i = 1, . . . , n) and a function

` ∈ L2
2n,0(]a, b[) such that on the domain ]a, b[×R

n the condition

(−1)nf(t, x1, . . . , xn) sgn x1 ≤
n∑

i=1

`i|xi|
(t − a)2n+1−i

+ `(t)

holds and
n∑

i=1

νin`i < 1, (11)

where

νin = 22n+1−i
( n∏

k=1

(2k − 1)
)
−1( n−i+1∏

k=1

(2k − 1)
)
−1

.

Let, moreover,

f∗(·, ρ) ∈ Lloc(]a, b]) for 0 < ρ < +∞. (12)

Then the problem (1), (3) has at least one solution in the space C̃2n−1
loc (]a, b])∩ C̃n

2 (]a, b]).

Theorem 2′. Let there exist non-negative constants `i (i = 1, . . . , n) satisfying the

inequality (11) such that on the domain ]a, b[×R
n the condition

(−1)n
[
f(t, x1, . . . , xn) − f(t, y1, . . . , yn)

]
sgn(x1 − y1) ≤

n∑

i=1

`i|xi − yi|
(t − a)2n+1−i

holds. Let, moreover, along with (12) the condition

b∫

a

(t − a)2n
∣∣f(t, 0, . . . , 0)

∣∣2 dt < +∞

be fulfilled. Then the problem (1), (3) is uniquely solvable in the space C̃2n−1
loc (]a, b]) ∩

C̃n
2 (]a, b]) and stable with respect to a small perturbation of the right-hand member of

the equation (1).

Let us consider the differential equations

u(2n) =
n∑

i=1

pi(t)u
(i−1) + q(t, u) (13)

and

u(2n) =
n∑

i=1

pi(t)|u(i−1)|λi sgn u(i−1) + q(t, u), (14)

where pi : Lloc(]a, b[), 0 < λi < 1 (i = 1, . . . , n), and q : ]a, b[×R → R is the function
satisfying the local Carathéodory conditions.
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Suppose

q∗(t, ρ) = max
{
|q(t, x)| : |x| ≤ ρ

}
for a < t < b, 0 < ρ < +∞.

From the above theorems we have the following corollaries.

Corollary 1. Let there exist non-negative constants `i (i = 1, . . . , n), satisfying the

inequality (10), and a function ` ∈ L2
2n,2n(]a, b[) such that

(−1)np1(t) ≤
`1

(t− a)2n(b− t)2n
,

|pi(t)| ≤
`i

(t − a)2n+1−i(b− t)2n+1−i
(i = 2, . . . , n) for a < t < b

(15)

and

(−1)nq(t, x) sgn x ≤ `(t) for a < t < b, x ∈ R. (16)

Then the problem (13), (2) has at least one solution in the space C̃2n−1
loc (]a, b[)∩C̃n

2 (]a, b[).

Corollary 1′. Let there exist non-negative constants `i (i = 1, . . . , n) satisfying the

inequality (10) such that the functions pi (i = 1, . . . , n) satisfy the conditions (15). Let,

moreover,

(−1)n
[
q(t, x)− q(t, y)

]
sgn(x− y) ≤ 0 for a < t < b, x ∈ R, y ∈ R (17)

and
b∫

a

(t − a)2n(b− t)2n |q(t, 0)|2 dt < +∞. (18)

Then the problem (13), (2) is uniquely solvable in the space C̃2n−1
loc (]a, b[) ∩ C̃n

2 (]a, b[)
and stable with respect to a small perturbation of the right-hand member of the equation

(13).

Corollary 2. Let there exist non-negative constants `i (i = 1, . . . , n), satisfying the

inequality (11), and a function ` ∈ L2
2n,0(]a, b[) such that

(−1)np1(t) ≤
`1

(t − a)2n
, |pi(t)| ≤

`i

(t− a)2n+1−i
(i = 2, . . . , n) for a < t < b (19)

and the condition (16) holds. Let, moreover,

p1 ∈ Lloc(]a, b]), q∗ ∈ (·, ρ) ∈ Lloc(]a, b]) for 0 < ρ < +∞. (20)

Then the problem (13), (3) has at least one solution in the space C̃2n−1
loc (]a, b])∩C̃n

2 (]a, b]).

Corollary 2′. Let there exist non-negative constants `i (i = 1, . . . , n) satisfying the

inequality (11) such that the functions pi (i = 1, . . . , n) satisfy the conditions (19). Let,

moreover, along with (17) and (20) the condition

b∫

a

(t− a)2n |q(t, 0)|2 dt < +∞

be fulfilled. Then the problem (13), (3) is uniquely solvable in the space C̃2n−1
loc (]a, b]) ∩

C̃n
2 (]a, b]) and stable with respect to a small perturbation of the right-hand member of

the equation (13).

Corollary 3. Let

b∫

a

(
(t− a)2nλ1 (b− t)2nλ1

[
(−1)np1(t)

]
+

) 1

1−λ1 dt < +∞,

b∫

a

(
(t− a)(2n+1−i)λi (b− t)(2n+1−i)λi |pi(t)|

) 1

1−λi dt < +∞ (i = 2, . . . , n),



106

and there exist a function ` ∈ L2
2n,2n(]a, b[) such that the condition (16) holds. Then the

problem (14), (2) has at least one solution in the space C̃2n−1
loc (]a, b[) ∩ C̃n

2 (]a, b[).

Corollary 4. Let

b∫

a

(
(t − a)2nλ1

[
(−1)np1(t)

]
+

) 1

1−λ1 dt < +∞,

b∫

a

(
(t − a)(2n+1−i)λi |pi(t)|

) 1

1−λi dt < +∞ (i = 2, . . . , n),

and there exist a function ` ∈ L2
2n,0(]a, b[) such that the condition (16) holds. Let,

moreover, the conditions (20) be fulfilled. Then the problem (14), (3) has at least one

solution in the space C̃2n−1
loc (]a, b]) ∩ C̃n

2 (]a, b]).

Finally, we give two examples

u(n) = α0(t)u +
n∑

i=1

αiu
(i−1)

(t − a)2n+1−i(b− t)2n+1−i
+

+
γ(t)

(t − a)n+ 1

2 (b− t)n+ 1

2 (1 + | ln(t − a)(b − t)|)
(21)

and

u(n) = β0(t)u +
n∑

i=1

βiu(i−1)

(t− a)2n+1−i
+

γ(t)

(t − a)n+ 1

2 (1 + | ln(t − a)|)
, (22)

where γ : ]a, b[→ R is a bounded measurable function,

α0 ∈ Lloc(]a, b[), β0 ∈ Lloc(]a, b]), (−1)nα0(t) ≤ 0, (−1)nβ0(t) ≤ 0 for a < t < b,

and αi, βi (i = 1, . . . , n) are real constants satisfying the inequalities

n∑

i=1

µin|αi|
(b− a)2n+1−i

< 1,
n∑

i=1

νin|βi| < 1.

According to Corollary 1′ (Corollary 2′), the problem (21), (2) (the problem (22), (3))

is uniquely solvable in the space C̃2n−1
loc (]a, b[) ∩ C̃n

2 (]a, b[) (in the space C̃2n−1
loc (]a, b]) ∩

C̃n
2 (]a, b])) and stable with respect to a small perturbation of the right-hand member of

the equation (21) (of the equation (22)).
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