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In the present work we mention more or less noteworthy results obtained
by the Georgian mathematicians in the last decade of the past century.

The basis for application of the theory of analytic functions to the plane
theory of elasticity is formed by the well-known Kolosov-Muskhelishvili for-
mulas which express stress and displacement components through two func-
tions analytic in the domain occupied by a body. Using these formulas,
boundary value problems of the plane theory of elasticity are reduced to
the boundary value problems of the theory of analytic functions. This en-
ables one to employ various methods of the theory of analytic functions for
solving boundary value problems of the plane theory of elasticity. Using
Cauchy type integrals, the first and the second boundary value problems
for domans mapped onto a disk by means of a rational function are ex-
plicitly solved in a simple way. However, in the case of multiply connected
domans with a smooth enough boundary the first and the second boundary
value problems are reduced to Fredholm integral equations, and existence
of solutions is proved.

Investigation of the basic mixed and contact problems turned out to be
more complicated, since they are reduced to boundary value problems with
discontinuous coefficients. When the conformal mapping function onto the
disk is rational, the problems are reduced to those of linear conjugation
with discontinuous coefficients. These problems have been solved by N.
Muskhelishvili and his pupils early in the 40s of the last century. The
basic mixed problem in the general case has been reduced by D.I. Sherman
to singular integral equations with discontinuous coefficients and studied
subsequently by G.F. Manjavidze.

Thus the classical theory has in a certain sense got a completed form.
Early in the 60s, for the investigation of mixed problems of elasticity the
use was made of integral transformations. Applying these transformations,
certain classes of problems of the theory of elasticity, such as plane, spatially
statistical and dynamical, are reduced to the boundary value problems of
the theory of analytic functions. The obtained problem is the problem of
linear conjugation whose solution is given in quadratures.

Thus the use of the integral transformation has extended a class of elas-
ticity problems, solvable by the method of the theory of analytic functions.

Starting from the 60s, one of the most important classes of contact
problems of elasticity dealing with the interaction of thin-shelled elements
(stringers) and inclusions with massive bodies received primary attention.
The fundamental work in this direction belongs to E. Melan. Unlike classical
problems of elasticity, boundary conditions in this case involve a combina-
tion of boundary values of an unknown function and of its derivative.

These problems in the general case are reduced either to an integral dif-
ferential equation or to a system of integral differential equations. Different
methods of approximate and effective solutions have been developed. A
general enough method of effective construction of a solution is based on
the application of integral transformations and of the apparatus of the the-
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ory of analytic functions. Using the Fourier or Melin transform, a wide
class of problems is reduced to the following boundary value problem of the
theory of analytic functions: find in the strip 0 < Im z < β an analytic func-
tion φ(z), satisfying the boundary condition φ(x+a) = −G(x)φ(x)+F (x),
where G(x) 6= 0, G(∞) = G(−∞) = 1, IndG(x) = 0, F (x) and G(x) are
given functions from the class H ,

φ(z)e−µ|z| → 0, z →∞, µ <
2πβ

α2 + β2
, a = α+ iβ.

The solution of the problem has the form

φ(z) =
X(z)

2a

∫ ∞

−∞

F (t)dt

X(t) sh p(t− z)
,

where

X(z) = exp

[

ch pz

2a

∫ ∞

−∞

lnG(t)dt

ch pt sh p(t− z)

]

, p =
πi

a
.

This problem is called the Carleman type problem.
The same period is noticeable by investigation of the so-called inverse

problem in the theory of elasticity and plate bending.
In such kind of problems shape of holes in the infinite plane and their lo-

cation at infinity are unknown, when the hole boundary is free or under the
action of constant normal pressure, and at infinity stretching or contracting
forces are assumed to act. To find unknown holes the tangential normal
stress is required to take constant values (the problems of plate bending
are formulated analogously). Such holes are called equistrengthened. It is
proved that Kolosov-Muskhelishvili’s potential φ(z) is constant. If we map
the given domain into a multiply connected region, then the problem is re-
duced for the given domain to two Dirichlet problems from which one can
determine the second Kolosov-Muskhelishvili potential ψ and the conformal
mapping function. If the domain is finite with exterior boundary prescribed,
while interior contours are equistrengthened, the study of the problem be-
comes complicated and is reduced to a non-linear boundary value problem
which fails to be studied. It has been shown in the works of R. D. Bantsuri
and R. S. Isakhanov that if the exterior boundary of the doubly connected
domain is a convex broken line, the interior boundary is equistrengthened,
and the normal displacement on the exterior boundary is constant, while
tangential stresses are equal to zero, then the Kolosov–Muskhelishvili po-
tential φ is constant. This problem is reduced to the Riemann–Hilbert
problem for an annulus. This makes it possible to define the conformal
mapping function of the unknown region and the complex potential ψ.

1. In contact problems of the plane theory of elasticity the elastic thin-
shelled elements are represented in terms of thin elastic supports or in-
clusions of constant rigidity. The contact problems of the plane theory of
elasticity as well as of the theory of plate bending have been considered. In
the plane theory of elasticity, the contact tangential stresses at the ends of
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elastic elements have integrable singularities (of the order 1/2), i.e., there
takes place concentration of stresses. In the theory of plate bending, a jump
of cutting forces in the neighborhood of the inclusion ends has a noninte-
grable singularity (of the order 3/2). Therefore there naturally arises the
problem on reducing or eliminating of these singularities.

The works of N. Shavlakadze deal mainly with the contact problems of in-
teraction between elastic, isotropic or anisotropic plates and other elements
of variable rigidity. Under conditions of continuity of contact deformations
with respect to unknown contact stresses or their jumps integral differential
equations with continuous coefficients are obtained. When the rigidity of
elastic supports changes qualitatively and correspondingly the coefficient of
the singular operator in the integral differential equation turns at the ends
of integration interval to zero of higher order, then the equation varies qual-
itatively. Specifically, it reduces equivalently to a singular integral equation
of the third kind.

Works [17, 18] deal with the contact problems of interaction between
semi-infinite stringers or inclusions and another plane or a half-plane. Using
the methods of the theory of analytic functions and integral transformations,
these problems are solved explicitly. Paper [22] investigates the contact
problem of interaction of an elastic plate and a finite inclusion when the
inclusion rigidity varies according to the law E(x) = xαb(x), (b(x) > 0,
α ≥ 0, 0 < x < 1). The plate is under stretching forces at infinity.

The basic equations are of the form

E(x)
d2u0(x)

dx2
= τ−(x)− τ+(x), q−(x) = q+(x) ≡ q(x),

∫ 1

0

(τ+(t)− τ−(t))dt = p1 − p2, εx(x) = ε(0)x (x), 0 < x < 1,

where q±(x) and τ±(x) are, respectively, unknown normal and tangential
contact stresses on the upper (with the index “+”) and on the lower (with
the index the “−”) contours of the inclusion, u0(x) is horizontal displace-

ment of its points, εx(x) and ε
(0)
x (x) are, horizontal deformations of the

points of ox-axis and the points of the inclusion, respectively, E(x) =
E0(x)h0(x)

1−v0
, (E0(x), h0(x) and v0 are, respectively, elasticity modulus, thick-

ness and Poisson coefficient for the inclusion material), p1 and p2 are un-
known axial forces at the ends x = 0 and x = 1, respectively.

As for the jump τ(x) = τ+(x)−τ−(x) and axial forces p1 and p2, we have
the following Prandtl type integral differential equation:

∫

h0(x)

2

−
h0(x)

2

σx(0, y)dy = p1,

∫

h0(x)

2

−
h0(x)

2

σx(1, y)dy = p2.

Investigation of the above-obtained equations shows that the jump of
tangential contact stresses in the vicinity of the inclusion end x = 0 is of
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the form

τ(x) =



















O(x−
1
2 ), 0 ≤ α < 1,

O(x−1+δ0 ), α = 1, δ0 >
1
2 ,

O(1), 1 < α ≤ 2,

O(xα−2), α > 2.

The contact problem of bending of a plate, fastened across a finite portion
with inclusion of varying bending rigidity D(x), has been studied in the
same paper. The plate bending ω(x, y), satisfying the biharmonic equation
in the given region, cut along the segment (0, 1), satisfies on that segment
the following boundary conditions:

〈ω〉 = 〈ω′y〉 = 〈My〉 = 0, 〈Ny〉 = µ(x),

ω(x, 0) = ω0(x),

d2

dx2
D(x)

d2ω0(x)

dx2
= −µ(x), 0 < x < 1,

D(x)ω′′0 (x)|x=0 = M1, D(x)ω′′0 (x)|x=1 = M2,

[D(x)ω′′0 (x)]′x=0;1 = 0,

∫ 1

0

µ(t)dt = 0,

∫ 1

0

tµ(t)dt = −M1 −M2.

Here the use is made of the notation 〈f〉 = f(x,−0)− f(x,+0), My and

Ny are, respectively, the bending moment and force, D(x) =
E0(x)h3

0(x)
12 , M1

and M2 are unknown moments at the ends x = 0 and x = 1, respectively.
The behavior of the unknown transversal force in the neighborhood of

the point x = 0 is given by the formula

〈Ny〉 =



















O(x−
3
2 ), 0 ≤ α < 1,

O(x−2+δ0 ), α = 1, δ0 >
1
2 ,

O(x−1), 1 < α ≤ 2,

O(xα−3), α > 2.

The contact problem of interaction between a piecewise homogeneous
plate and an elastic inclusion across the line of contact of two elastic mate-
rials is investigated in [20]. The inclusion undergoes tangential and normal
loads. For unknown tangential and normal stresses the following system of
integral differential equations is obtained

−Aψ′′(x) +
B

π

∫ ∞

0

ϕ′(t)dt

t− x
=
ϕ(x)

E(x)
−
f1(x)

E(x)
,

Aϕ′(x) +
B

π

∫ ∞

0

ψ′′′(t)

t− x
=
ψ(x)

D(x)
−
f2(x)

D(x)
, x > 0,

ϕ(0) = 0, ϕ(∞) = T0, ψ(0) = 0, ψ(∞) = M0, ψ′(0) = 0, ψ′(∞) = p0.

The problem of interaction between a piecewise homogeneous plate and
a semi-infinite inclusion under the normal load is solved in [21]. In the
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same work, for a jump of transversal force an integral differential equation
is obtained which is solved explicitly, as well as asymptotic estimates.

In [24] one can find investigation of the contact problem of plate bend-
ing, fastened across a finite portion with an inclusion of varying rigidity:
D(x) = (a2 − x2)n+1/2p(x) (n is a positive integer, p(x) is a polynomial,
|x| < a). The Prandtl integral differential equation is obtained, which for
n = 0 is investigated by many authors. Effective and approximate solutions
are obtained therein. The methods applied earlier for any positive inte-
ger n turned out to be useless, therefore it became necessary to carry out
more complex investigations based on the modification of already available
methods of the theory of analytic functions. The behavior of an unknown
transversal force in the neighborhood of the points x = ±a has the form
〈Ny〉 = O((a2 − x2)n−3/2), x→ ±a.

The paper [25] is devoted to the investigation of contact problems of
finite, isotropic and infinite anisotropic plate, as well as of the problems
with circular holes. The obtained integral differential equation has in the
general case the form

ϕ(x)−D(x)

∫ a

−a

ϕ′(t)dt

t− x
+D(x)

∫ a

−a

K(x, t)ϕ(t)dt = D(x)f(x), |x| < a,

where K(x, t) is a function infinitely differentiable in the square, whose
presence is specified by the plate finiteness, while for an infinite plate only
characteristic part of that equation remains. In the general case this equa-
tion is reduced to a Fredholm integral equation of the second kind, which
in its turn is reduced to the equivalent infinite system of linear algebraic
equations by using the methods of orthogonal polynomals. The question on
the regularity and solvability of such systems is studied.

The paper [23] considers the contact problem of interaction between an
elastic plate and elastic, located periodically, inclusions of variable rigidity.
The effective solutions are obtained.

The contact problem on discrete interaction between an infinite wedge-
shaped plate and an elastic strengthening is investigated in [19]. The inter-
action is realized discretely by clamps located according to the exponential
step law. For unknown concentrated forces in the paper an infinite system
of algebraic equations of special type is obtained:

∞
∑

j=−∞

Γk−jbj = akbk + fk,

where Γ = {Γk}
∞
−∞, f = {fk}

∞
−∞ are the known and b = {bk}

∞
−∞ are the

unknown vectors from the space l1. Using the Fourier discrete transforma-
tion, the above system is reduced to the Carleman boundary value problem
for an annulus.

2. In studying boundary value problems, the formulas obtained by
Lekhnitskĭı for anisotropic bodies turned out to be less effective. When
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the characteristic equation has simple roots, the components of the stress
and displacement vectors are defined by means of two analytic functions
φ1(z1) and φ2(z2), where zk = xk + iyk; xk = x − αk, yk = βky and (x, y)
are the points of a physical domain. Therefore, to solve boundary value
problems there arises the necessity in considering three domains.Then the
investigation of these problems is reduced to the problems of displacement.
However, investigation of such problems is connected with great difficulties.
Effective solution of the problems can be obtained only in the half-plane,
interior and exterior domain of the ellipse and in the infinite plane with cuts
located along one straight line. Constants appearing in Lekhnitskĭı’s for-
mulas, which are expressed by roots of the characteristic equation of fourth
order and by Hook’s coefficients, are of special difficulty for the investigation
of boundary value problems. Therefore one fails to study them completely,
in particular, an exact asymptotics of solutions in the vicinity of the points,
at which the boundary conditions are changed, is not studied completely
for the mixed problems.

M. Basheleishvili introduced four new constants which depend both on
the roots of the characteristic equation and on the Hook’s coefficient. Using
these constants, it became possible to represent components of the stress and
displacement vectors for any values of the root of the characteristic equation
in a more simple way characteristic equation, than Lekhnitskĭı’s formulas.
The above-mentioned constants enable one to get effective solutions of sim-
ple boundary value problems for specific domains. A new relation between
the roots of the characteristic equation and Hook’s constants is written out.
This dependence is very important in defining pseudo-energies which are
most significant for investigation of boundary value problems. The obtained
results can be found in the monograph due to M. Basheleishvili [4].

In their work, M. Bashaleishvili and Sh. Zazashvili [8] have studied
the basic mixed problem of anisotropic bodies for finite simply connected
domains.

The solution of the problem is given in terms of the double layer potential
of second kind with a real-valued density. The problem is reduced to a
Sherman type singular integral equation with the regular part containing
an unknown function and its complex conjugate.

Such type of equations for an isotropic body have been obtained by D.
Sherman. A complete investigation of Sherman’s equations is given in the
works by G. Manjavidze and treated in N. Muskhelishvili’s monograph ”Sin-
gular Integral Equations”.

On the basis of the results obtained by G. Manjavidze and M. Bashelei-
shvili, the above-mentioned singular integral equation has been studied for
anisotropic bodies.

In the work of M. Basheleishvili and Sh. Zazashvili [7] it is presented
an effective solution of the basic mixed problem of anisotropic body for an
exterior domain of an ellipse. The exact asymptotics of solutions is obtained
in the neighborhood of the point at which the boundary conditions change.
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Sh. Zazashvili [32, 33] investigates boundary contact problems for a
piecewise homogeneous plane composed of different anisotropic half-planes,
when across the contact line there is a finite number of cuts. By this is meant
that the differences of limiting values of the displacement and stress vectors
are given outside of the cuts, while at the cut ends are given either limiting
values of the displacement vector (the first boundary value problem) or the
limiting values of the stress vector (the second boundary value problem), or
the limiting values of the displacement vector are given at one end of the
cut and those of the stress vector at the other end (the mixed problem).

D. Natroshvili and Sh. Zazashvili [14] have studied the boundary contact
problem formulated by M. Komninu for a piecewise homogeneous anisotro-
pic plane composed of two different anisotropic half-planes with cuts along
the contact line. It is assumed that in a sufficiently small neighborhood of
cut ends the cut is not open, and between the cut ends there is a contact free
from friction; the remaining part of the cut is open. It turns out that under
such a statement of the problem the cut ends have no stress oscillations.

L. Gogolauri [9] investigated the contact problem of the plane theory
of elasticity for an elastic orthotropic half-plane fastened by (an infinite
number of) periodically situated stringers of equal resistance. Using the
methods of the theory of functions of a complex variable, the problem is
reduced to the M. Keldysh and L. Sedov problem for a circle and the solution
of the problem is constructed.

The problem of a semi-infinite crack distribution with constant velocity
along the interface of a piecewise homogeneous orthotropic plane is studied
by R. Bantsuri [1]. The obtained dynamical equation, written in the moving
coordinate system which is immovably connected with the crack end, is
elliptic, if the velocity V satisfies the following conditions:

V 2 < G/ρ,

where G
ρ = min

(

G1

ρ1
; G2

ρ2

)

, G1 and G2 are displacement moduli of different

half-planes, ρ1 and ρ2 are densities of the corresponding half-planes.

The effective solutions are constructed with the help of the methods of
analytic functions and the behavior of stresses in the vicinity of the crack
end is established.

In her monograph E. Obolashvili [16] considered problems of the plane
theory of elasticity for domains with cuts. Using the Riemann-Schwarz
symmetry principle proven in the theory of elasticity, the following problem
is solved effectively: the half-plane x > 0 has cuts [ak, bk], k = 1, . . . , n,
along the ox-axis or cuts along arcs of the circumference |z| = 1, x > 0.
Normal displacements and tangential stresses on the axis x = 0 are equal
to zero, and along the cuts one of the following conditions

1. 2µ[u+(x, 0)+ iv+(x, 0)] = f+(x), v−(x, 0) = g(x), X−
n = g1(x), x ∈ L.

2. 2µ[u±(x, 0) + iv±(x, 0)] = f±(x), x ∈ L1, v
±(x, 0) = g±(x), X±

n =
g1(x), x ∈ L2 is fulfilled, where L1 ∪ L2 = L, L1, L2 are segments of the
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ox-axis.
The conditions prescribed on the oy-axis allow one to apply the Riemann-

Schwarz symmetry principle, and the problem is reduced to the problem on
the infinite plane which is cut along segments of the ox-axis or along the
arcs of the circumference |z| = 1. The effective solutions are constructed.

For the wave equation in the theory of elasticity, a solution is given on the
half-plane, cut along a half-line. The solution is constructed in quadratures.

Using the method of analytic continuation, G. Kutateladze [13] solved the
problem of torsion for a prismatic bar having the semi-circular cross-section
with cuts.

3. R. Bantsuri [2] investigated the problem on plate bending for a doubly
connected region whose exterior boundary is the union of a given broken line
and unknown arcs. The interior boundary is an unknown smooth contour.

The angle of rotation on the boundary segments is required to be piece-
wise constant, the cross-cutting force to be equal to zero, and the acting
bending moments on the unknown parts of the boundary to be constant. It
is required to define unknown parts of the boundary, if tangential normal
moments take constant values. In this case it is proved that the complex
potential φ is constant. If the region occupied by the body is mapped con-
formally onto a circular ring, and segments of the broken line are mutually
perpendicular, then the solution of the problem is reduced to the Carleman
type problem for a circular ring:

ϕ(R2σ) = G(σ)ϕ(σ) + g(σ), σ ∈ γ, γ = {σ : |σ| = 1},

where

G(σ) = −1, g(σ) = 1/2g0(σ), σ ∈ γ1, γ1 ⊂ γ,

G(σ) = 1, g(σ) = 0, σ ∈ γ/γ1, γ\γ1.

Here γ1 is the part of γ which corresponds to parallel segments of the ox-
axis. The solution of the problem is given in quadratures. This allows one to
determine the unknown parts of the boundary and the complex potentials.

G. Kapanadze [10, 11] investigated the problem of bending for finite
and infinite doubly connected plates, when the plate boundary is hinged
and represents convex broken lines. By means of a conformal mapping the
problem on a circular ring is reduced to the Riemann-Hilbert problem for a
circular ring. The effective solutions are constructed.

4. Nonlocal boundary value problems for the plane theory of elasticity
and polyharmonic functions have been investigated by E. Obolashvili [15].
Let D be a half-plane, y > 0, x ∈ R, D1 be the quarter-plane x > 0,
y > 0 and u(x, y), v(x, y) are the components of elastic displacement. An
infinitely decreasing displacement on the half-plane y > 0 is defined from
the following problems:

a) u(x, 0) = g1(x) x < 0; u(x, 0) = λu(x, h) + g(x), x > 0,

v(x, 0) = g2(x), x ∈ R, 0 < λ ≤ 1;
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b) u(x, 0)=λ1u(x, h1) + g1(x), x>0; u(x, 0)=λ2u(x, h2) + g2(x), x<0,

v(x, 0) = g3(x), x ∈ R, 0 < λ1 6= λ2 ≤ 1, h1 6= h2;

c) u(x, 0) = u(x, h1) +mu(−x, h1) + g1(x), x > 0,

u(x, 0) = u(x, h2) +mu(−x, h2) + g2(x), x < 0,

v(x, 0) = g(x), x ∈ R, h1 6= h2.

These problems are reduced to the Wiener-Hopf integral equation, to
dual integral equation and also to such dually-integral equations, whose
kernels require the sum kj(x − t) + kj(x+ t), j = 1, 2.

5. For a nonhomogeneous, isotropic body of special type, O. Shin-
jikashvili obtained a complex representation of stress and displacement vec-
tor components by means of two analytic functions, when

a) µ = const, 1
κ+1 = A0(1 + βeαy),

b) µ = const, 1
κ+1 =

∑n
k=0(Ak cos kαy +Bk sin kαy),

where Ak, Bk, α, β are well-defined real constants, µ is the displacement
module, and 1

κ+1 = 1+σ
4 for a generalized plane stressed state, 1

1+κ
= 1

4(1−σ)

for plane deformation and σ is the Poisson coefficient.
On the basis of the above representations, the following problems have

been investigated: the first and the second boundary value problems for
the half-plane [26]; the problem of rigid punch pressure on the half-plane
boundary [27, 28]; the problem of interaction of the half-plane and a stringer
[29, 30]; the problem of linear cut for the infinite plane [31].

All the above-mentioned problems are reduced to the problem of linear
conjugation and the solution is given explicitly.

G. Kutateladze [12] investigated for an annulus composed of three het-
erogeneous concentric rings inserted successively one into another, and for
unbounded elastic isotropic plane with a circular hole and a supporting ring
soldered in it , consisting of two concentric elastic rings with different elastic
characteristics. Using the method of the theory of analytic functions and
applying analytic continuation of the unknown function, the solution of the
problem is obtained in the form of series.

6. M. Basheleishvili [5] generalized the known common representations of
Kolosov-Muskhelishvili in the elastic mixture theory of statics of an isotropic
elastic body. While in Kolosov-Muskhelishvili’s representations there ap-
pear two analytic functions, in the theory of mixture statics the vectors of
the partial displacement u and of the stress Tu are expressed in terms of
four functions.

Basic equations of isotropic, elastic mixture statics have the form

a1∆u
′ + b1 graddiv u′ + c∆u′′ + d graddiv u′′ = 0,

c∆u′ + d graddiv u′ + a2∆u
′′ + b2 gradu′′ = 0,

where u′ = (u′1, u
′
2) and u′′ = (u′′1 , u

′′
2) are the vectors of partial displace-

ment, a1, b1, c, d, a2, b2 are constants characterizing physical properties of
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the mixture.

Let (u′, u′′) ≡ (u1, u2, u3, u4). Introducing the vector u =

(

u1 + iu2

u3 + iu4

)

,

we can write

u = mϕ(z) +
l

2
zϕ′(z) + ψ(z),

where

m =

[

m1 m2

m2 m3

]

, l =

[

l4 l5
l5 l6

]

, z = x1+ix2, ϕ(z) =

(

ϕ1

ϕ2

)

, ψ(z) =

(

ψ1

ψ2

)

,

and

Tu =
∂

∂s(x)
[(A− 2E)ϕ(z) +Bzϕ′(z) + 2µψ(z)];

E is the unit matrix, A = 2µm, B = 2µm, µ =

[

µ1 µ3

µ3 µ2

]

, ∂
∂s(x) = n1

∂
∂x2

−

n2
∂

∂x1
, n = (n1, n2) is an arbitrary unit vector.

Using these representations, in the works [3, 5], the basic plane boundary
value problems are reduced to the first and the second problems of statics
of an isotropic elastic body. Thus it is shown that the results obtained
for equations of statics of isotropic body can be obtained in the theory of
elasticity of mixtures as well.

In [6], the basic boundary value problems for equations of the theory of
elastic mixtures are effectively solved both in the interior and in the exterior
domain of an ellipse (by series inside, and by integrals outside of the ellipse).

References

1. R. Bantsuri, Crack distribution in a piecewise homogeneous or-
thotropic plane. Proc. A. Razmadze Math. Inst. 100(1992), 3–9.

2. R. Bantsuri, Boundary value problems of plate bending with par-
tially unknown boundary. Proc. A. Razmadze Math. Inst. 110(1994),
19–26.

3. M. Basheleishvili, Analogues of the Kolosov–Muskhelishvili general
representation formulas and Cauchy-Riemann conditions in the theory of
elastic mixtures. Georgian Math. J. 4(1993), No. 3, 223–242.

4. M. Basheleishvili, Two-dimensional problems of elasticity of an-
isotropic bodies. Mem. Differential Equattions Math. Phys. 16(1999),
9–140.

5. M. Basheleishvili, Application of analogues of general Kolosov–
Muskhelishvili representation in the theory of elastic mixtures. Georgian

Math. J. 6(1999), No. 1, 1–18.
6. M. Basheleishvili, Solutions of the basic boundary value problems

of elastic mixtures for the interior and exterior elliptic domains. Reports

of Enlarged Session of the Seminar of I. Vekua Institute of Appl. Math.

14(1999), No. 3, 3–6.



15

7. M. Basheleishvili and Sh. Zazashvili Effective solution of the
mixed boundary value problem for an infinite anisotropic plane with an
elliptic hole. (Russian) Trudy Inst. Prikl. Mat. im. I. Vekua 46(1992),
24–31.

8. M. Basheleishvili and Sh. Zazashvili, The basic mixed problems
for an anisotropic elastic body. Georgian Math. J. 6(1999), No. 3, 233–250.

9. L. Gogolauri, The contact problem for an elastic orthotropic plate
supported by periodically located bars of equal resistance. Georgian Math.

J. 5(1998), No. 3, 243–250.
10. G. Kapanadze, Problem of bending of a plate bounded by two

convex polygons. Reports of Enlarged Session of the Seminar of I. Vekua

Inst. of Appl. Math. 13(1998), No. 1, 17–21.
11. G. Kapanadze, Boundary value problems of bending of a plane for

an infinite doubly connected domain bounded by broken lines. Georgian

Math. J. 7(2000), No. 3, 513–521.
12. G. Kutateladze, On the plane problem of elasticity for a piecewise

homogeneous medium. (Russian) Inst. Vychisl. Mat., Trudy XXIX(1990),
No. 1, 152–164.

13. G. Kutateladze, On one boundary problem of theory of holomor-
phic functions and its application to the theory of elasticity. Reports of

Enlarged Session of the Seminar of I. Vekua Inst. of Appl. Math. 14(1999),
No. 2, 23–26.

14. D. Natroshvili and Sh. Zazashvili, Mixed boundary value prob-
lems for two-dimensional anisotropic bodies with cuts of arbitrary shape.
The 10th conference on problems and methods in mathematical physics.

September 13–17, Chemnitz, Germany, 1998, 127–133.
15. E. Obolashvili, Effective solutions of some dual integral equations

and their applications. Banach Center Publ. 37(1996), 251–257.
16. E. Obolashvili, PDE in Clifford analysis. Add. Wesley Longmann,

England, 1998.
17. N. Shavlakadze, Investigation of one type of integral differential

equation and contact problems of the theory of elasticity connected with
them. Reports of Enlarged Session of I. Vekua Inst. of Appl. Math. 8(1993),
No. 2, 81–85.

18. N. Shavlakadze, The investigation of one integral differential equa-
tion and its application for the contact problems in the elasticity theory.
(Russian) Proc. A. Razmadze Math. Inst. 105(1995), 98–107.

19. N. Shavlakadze, The contact interaction of the elastic wedge with
the elastic fastener. Bull. Georg. Acad. Sci. 156(1997), No. 3, 361–365.

20. N. Shavlakadze, On some contact problems for bodies with elastic
inclusion. Georgian Math. J. 5(1998), No. 3, 285–300.

21. N. Shavlakadze, Contact problems of the interaction of semi-finite
inclusion with a plate. Georgian Math. J. 6(1999), No. 5, 489–500.

22. N. Shavlakadze, On singularities of contact stress upon tension
and bending of plates with elastic inclusions. Proc. A. Razmadze Math.



16

Inst. 120(1999), 135–147.
23. N. Shavlakadze, Contact problems of an elastic plate strengthened

by periodic system of inclusions of variable rigidity. Proc. A. Razmadze

Math. Inst. 123(2000), 135–146.
24. N. Shavlakadze, Contact problem on bending of a plate with a

thin support. (Russian) Izv. Ross. Akad. Nauk Mekh. Tverd. Tela 3(2001),
144-150.

25. N. Shavlakadze, Nonclassical biharmonic boundary value prob-
lems describing the band of finite and infinite plates with inclusions. Mem.

Differential Equations Math. Phys. 22(2001), 91–140.
26. O. Shinjikashvili, Solution of boundary value problems of elas-

ticity for inhomogeneous half-plane. (Russian) Trudy Tbiliss. Mat. Inst.

Razmadze 100(1992), 138–143.
27. O. Shinjikashvili, On one problem of interaction of an inhomoge-

neous half-plane and a stringer. Reports of Enlarged Session of the Seminar

of I. Vekua Inst. of Appl. Math. 7(1992), No. 2, 67–71.
28. O. Shinjikashvili, The problem of pressure of a rigid punch for

inhomogeneous half-plane free from friction. (Russian) Trudy Tbiliss. Mat.

Inst. Razmadze 110(1994), 109–116.
29. O. Shinjikashvili, Inhomogeneous half-plane with a semi-infinite

stringer along the boundary. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze

110(1994), 117–125.
30. O. Shinjikashvili, On one contact problem of the non-homogeneous

theory of elasticity. Proc. A. Razmadze Math. Inst. 118(1998), 143–152.
31. O. Shinjikashvili, On an application of the theory of functions

of a complex variable to the plane problem of non-homogeneous theory of
elasticity. Proc. A. Razmadze Math. Inst. 117(1996), 78–88.

32. Sh. Zazashvili, Contact problem of two anisotropic half-planes
with cuts along the contact line. (Russian) Soobshch. Akad. Nauk Gruzin.

SSR 145(1992), No. 2, 282–285.
33. Sh. Zazashvili, Contact problems for two anisotropic half-planes

with slits. Georgian Math. J. 1(1994), No. 3, 325–341.

(Received 11.05.2001)

Author’s address:
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia


