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Let D be a compact subset of R
n. Consider the system

ẋ = f(t, x), t ∈ R, x ∈ D, (1)

where the vector valued function f(t, x) is continuous on R×D and almost periodic in t

uniformly for x ∈ D. By mod(f) we denote a frequency module of f(t, x), i.e. mod(f) is
the smallest additive group of real numbers that contains all Fourier exponents of f(t, x).

The existence problem of almost periodic solutions to (1) is a significant problem of
qualitative theory of ordinary differential equations. Many authors have investigated this
problem. Most of them considered only the regular solutions x(t), i.e the solutions with
mod(x) ⊂ mod(f) (see e.g. [1 – 7]). However, there can be various relations between
mod(x) and mod(f). In [8] J.Kurzweil and O.Veivoda have shown that there exists a
system (1) having an almost periodic solution x(t) such that mod(x) ∩ mod(f) = {0}.
We say that such solutions are irregular. In [9, 10] we have obtained necessary and
sufficient conditions for existence of irregular almost periodic solutions to (1). In [11] we
have shown that some classes of quasiperiodic systems admit quasiperiodic solutions that
have some of right part frequencies. It is interesting to investigate similar phenomena for
almost periodic systems.

Definition. Let mod(f) be the frequency module of the right part of system (1) and
mod(f) = L1 ⊕L2. An almost periodic solution x(t) of the system (1) is called irregular
with respect to L2 (or partially irregular) if (mod(x) + L1) ∩ L2 = {0}.

In [12] regular almost periodic solutions of the system (1) with f(t, x) = X(t, x) +
Y (t, x) are considered. In [13, 14] we have obtained necessary and sufficient conditions for
existence of almost periodic irregular with respect to mod(Y ) solutions of such systems
with mod(X) ∩mod(Y ) = {0}.

Let F (t1, t2, x) be a continuous on R
2 × D vector valued function. We assume that

F (t1, t2, x) is almost periodic in tj (j = 1, 2) uniformly for the rest of the arguments and
Lj is the module of F (t1, t2, x) with respect to tj (j = 1, 2). In the sequel we will suppose
that

f(t, x) ≡ F (t, t, x), mod(f) = L1 ⊕ L2. (2)

Note that similar systems are studied in [15, 16].

The aim of this paper is to establish the existence conditions for partially irregular
almost periodic solutions of the system (1), where f(t, x) is represented in the form (2).

Following [15], we define the mean value of f(t, x) with respect to the module L2 by

f̂L2
(t, x) = lim

T→∞

1

T

∫ T

0

F (t, τ, x)dτ.
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Now let us consider the system

ẋ = f̂L2
(t, x), f(t, x)− f̂L2

(t, x) = 0. (3)

Theorem. Suppose that (2) holds and a function x(t) is an almost periodic solution

of (1). The solutions x(t) is irregular with respect to L2 iff x(t) is a solution of (3).

Proof. Suppose that x(t) is an almost periodic solution to (1) and (mod(x)+L1)∩L2 =

{0}. Let N (2) = {ν
(2)
1 , ν

(2)
2 , . . . } be the frequency set of F (t1, t2, x) with respect to t2 .

By (2), the frequency set of f(t, x) contains N (2) and the module L2 is generated by
N(2). Let

f(t, x)− f̂L2
(t, x) ∼

∑
k, ν

(2)

k
6=0

ak(t, x) exp (iν
(2)
k

t) (4)

be the Fourier-series expansion of f(t, x) with respect to module L2. Then

ak(t, x) = lim
T→∞

1

T

∫ T

0

F (t, τ, x) exp (−iν
(2)
k

τ)dτ (k = 1, 2, . . . ; ν
(2)
k

6= 0).

It follows from [1, p. 30] that f̂L2
(t, x) and ak(t, x) (k = 1, 2, . . . ) are almost periodic in

t uniformly for x ∈ D. By [1, p. 27], the functions fx
L2

= f̂L2
(t, x(t)), and ax

k
= ak(t, x(t))

(k = 1, 2, . . . ) are almost periodic and mod(f̂x
L2

) ⊂ (L1 + mod(x)), mod(ax
k
) ⊂ (L1 +

mod(x)) (k = 1, 2, . . . ). Let {µ1 , µ2, . . . } be a frequency set of ak(t, x(t)) (k = 1, 2, . . . ).
Then we have

ak(t, x(t)) ∼
∑
m

akm exp (iµmt), (5)

where

akm = lim
T→∞

1

T

∫ T

0

ak(x(τ)) exp (−iµmτ)dτ, (µm ∈ L1; k,m = 1, 2, . . . ).

It follows from (4) and (5) that

f(t, x(t)) − f̂L2
(t, x(t)) ∼

∑
k, ν

(2)

k
6=0

∑
m

akm exp (i(ν
(2)
k

+ µm)t).

Put −ẋ(t) + f̂L2
(t, x(t)) ≡ a0(t). It is clear that a0(t) is almost periodic and mod(a0) ⊂

(mod(x) + L1). Let {µ̃1, µ̃2, . . . } be the frequency set of a0(t). Then we can write

a0(t) ∼
∑

s

a0s exp (iµ̃st)dt, a0s = lim
T→∞

1

T

∫ T

0

f0(t) exp (−iµ̃st)dt.

Since x(t) is a solution to (2), we have

0 ≡ a0(t) + f̂L2
(t, x(t)) + f(t, x(t)) ∼

∼
∑

s

a0s exp (iµ̃st) +
∑

k, ν
(2)

k
6=0

∑
m

akm exp ((i(ν
(2)
k

+ µm)t). (6)

Since mod(ar) ∩ L2 = {0} (r = 0, 1, . . . ), we have µ̃s 6= ν
(2)
k

+ µm (ν
(2)
k

6=
6= 0; s, k,m = 1, 2, . . . ). Hence, all the Fourier coefficients in (6) are equal to zero. By
the uniqueness theorem for almost periodic functions, we obtain a0(t) ≡ 0, f(t, x(t))−
f̂L2

(t, x(t)) ≡ 0. This implies that x(t) satisfies (3).
Conversely, let x(t) be an almost periodic irregular with respect to L2 solution of the

system (3). Then f(t, x(t))− f̂(t, x(t)) ≡ 0. Hence, x(t) satisfies (1). This completes the
proof.
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Corollary 1. Thes (1) has an irregular with respect to L2 almost periodic solution

x(t) iff x(t) satisfies the system

ẋ = F (t, τ, x)

for each τ ∈ R.

Corollary 2. A function x(t) is an irregular with respect to L2 almost periodic so-

lution of system (1) iff x(t) satisfies the conditions

ẋ = F (t, t0, x), f(t, x)− F (t, t0 , x) = 0

for some t0 ∈ R.
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