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ON THE SOLVABILITY OF A NON-LOCAL PROBLEM
WITH INTEGRAL BOUNDARY CONDITION
FOR A SECOND ORDER PARABOLIC EQUATION



Abstract. In this paper, the existence and uniqueness of a strong solution of a second order parabolic
equation with integral boundary condition is proved. First, we establish a priori estimate and prove
that the range of the operator generated by the considered problem is dense. The technique of deriving
the a priori estimate is based on the construction of a suitable multiplicator. From the resulted energy
estimate, it is possible to establish the solvability of the linear problem.
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1 Introduction and statement of the problem
Some problems related to physical and technical issues can be effectively described in terms of nonlocal
problems with integral conditions in partial differential equations. These nonlocal conditions arise
mainly when the values on the boundary cannot be measured directly, but their average values are
known. Therefore, the investigation of these problems requires a separate study. The importance
of problems with integral conditions has been pointed out by Samarskii [20]. These mathematical
models are encountered in many engineering models such as heat conduction [2,3], plasma physics [20],
thermoelasticity [21], electrochemistry [4], chemical diffusion [5] and underground water flow [16,23].
The first paper devoted to second-order partial differential equations with nonlocal integral conditions
goes back to Cannon [3]. This type of boundary value problems, which are combined with Dirichlet or
Newmann condition and integral condition, or with purely integral conditions, have been investigated
for parabolic equations in [1–4,6,9,10,12–14,24], for hyperbolic equations in [1,18,19], for mixed type
equations in [7, 8], and elliptic equations with nonlocal conditions were considered by Gushchin and
Mikhailov [11], A. L. Skubachevski [22] and Peneiah [17].

In this paper, we prove the existence and uniqueness of a strong solution of a class of nonlocal
mixed second order parabolic problems in which nonlocal boundary conditions with integral conditions
given only on parts of the boundary are combined. This problem is stated as follows: Let us consider
the rectangular domain Ω = ]0, 1[× ]0, T [ with T < +∞, then the problem is to find a solution u(x, t)
of the following non-classical boundary value problem:

Lu =
∂u

∂t
− ∂

∂x

(
a(x, t)

∂u

∂x

)
= f(x, t) for (x, t) ∈ Ω = ]0, 1[× ]0, T [ (1.1)

with the initial condition
lu = u(x, 0) = φ(x), ∀x ∈ [0, 1], (1.2)

the nonlocal boundary condition

∂u

∂x
(0, t) =

∂u

∂x
(1, t), ∀ t ∈ [0, T ], (1.3)

and the integral condition
α∫

0

u(x, t) dx = 0, ∀ t ∈ [0, T ], where 0 < α < 1. (1.4)

It is worth mentioning that in [15], the authors proved the existence, uniqueness and continuous
dependence of a strong solution in weighted Sobolev spaces to the problem

∂u

∂t
− ∂

∂x

(
a
∂u

∂x

)
= f(x, t)

with the initial condition
lu = u(x, 0) = φ(x), ∀x ∈ [0, 1],

the boundary condition
∂u(0, t)

∂x
=

∂u(1, t)

∂x
, ∀ t ∈ [0, T ],

and the integral condition
1∫

0

u(x, t) dx = m(t), ∀ t ∈ [0, T ].

In addition, we assume that the function a(x, t) and its derivatives satisfy the conditions

0 < a0 ≤ a(x, t) ≤ a1, a2 ≤ ∂a

∂t
≤ a3,

∣∣∣∂a
∂x

∣∣∣ ≤ b, ∀ (x, t) ∈ Ω,
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where the functions φ(x), f(x, t) are given, and we assume that the following matching conditions are
satisfied:

∂φ

∂x
(0) =

∂φ

∂x
(1),

α∫
0

φ(x) dx = 0.

In the present paper, the motivation is to study and find a solution to the stated problem (1.1)–
(1.4) without imposing any condition on the constant α in the interval [0, 1]. In addition, the linear
problem of the parabolic equation with integral condition defined on one part of the boundary is
solved.

First, an a priori estimate is established for the linear problem and, using the functional analysis
method, the density of the operator range generated by the problem under consideration is proved.
The given problem can be considered as finding a solution of the operator equation given by

Lu = (Lu, lu) = (f, φ) = F ,

where the operator L has a domain of definition D(L) consisting of functions u ∈ L2(Ω) such that
∂u
∂t , ∂u

∂x , ∂2u
∂x2 ∈ L2(Ω), ∂2u

∂x∂t ∈ L2(Ω) and satisfying conditions (1.3) and (1.4).
The operator L is defined on E into F , where E is the Banach space of functions u ∈ L2(Ω) with

the finite norm

∥u∥2E =

∫
Ω

θ(x)

[ ∣∣∣∂u
∂t

∣∣∣2 + ∣∣∣∂2u

∂x2

∣∣∣2] dx dt+ sup
0≤t≤T

( 1∫
0

θ(x)
∣∣∣∂u
∂x

∣∣∣2 dx+

1∫
0

|u|2 dx
)
,

F is the Hilbert space of functions F = (f, φ), f ∈ L2(Ω), φ ∈ H1(0, 1) with the finite norm

∥F∥2F =

T∫
0

1∫
0

θ(x)|f |2 dx+

1∫
0

θ(x)
(∣∣∣dφ

dx

∣∣∣2 + |φ|2
)
dx,

where

θ(x) =


x2

α2
, x ∈ (0, α),

(1− x)2

(1− α)2
, x ∈ (α, 1).

Then we show that the operator L has a closure L and later on, in Section 2, we establish an energy
inequality of the type

∥u∥E ≤ k∥Lu∥F . (1.5)
It can be proved in a standard way that the operator L : E → F is closable. Let L be the closure of
this operator with the domain of definition D(L).

Definition. A solution of the operator equation Lu = F is called a strong solution of problem
(1.1)–(1.4).

The a priori estimate (1.5) can be extended to the strong solution, that is, we have the inequality

∥u∥E ≤ k∥Lu∥F , ∀u ∈ D(L).

This last inequality implies the following corollaries.

Corollary 1.1. If a strong solution of (1.1)–(1.4) exists, it is unique and depends continuously on
F = (f , φ).

Corollary 1.2. The range R(L) of L is closed in F and R(L) = R(L).

Corollary 1.2 shows that to prove that problem (1.1)–(1.4) has a strong solution for arbitrary F ,
it suffices to prove that the set R(L) is dense in F .
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2 Uniqueness and continuous dependence
In this section, we establish an a priori estimate and deduce the uniqueness and continuous dependence
of the solution considering the initial statement.

Theorem 2.1. There exists a positive constant k such that for each function u ∈ D(L), we have

∥u∥E ≤ k∥Lu∥F .

Proof. Let

Mu =



λx2

2α2

∂u

∂t
− λx

α2
Jx
0 u−

(δ1
2
x2 +

λ

(1− α)2a(0, t)

)
Jα
x ae

β(1−ζ)Jζ
αu

+
λ

α(1− α)2a′(0, t)
(α− x)e

x
α J1

0ae
β(1−x)Jx

αu , x ∈ [0, α],

λ(x− 1)2

2(1− α)2
∂u

∂t
+
λ(1− x)

(1− α)2
Jx
αu+

(δ
2
(1− x)2 +

λ

(1− α)2a(1, t)

)
Jx
αae

β(1−ζ)Jζ
αu , x ∈ [α, 1],

where

Jx
αu =

x∫
α

∂u

∂t
(ζ, t) dζ

and 

λ > 0,

β ≤ min
(
−b

a0
,

1

(1− α)
ln a0

4a1

(1− α)2

α2
,

1

(1− α)
ln a0

4a1

λ

(1− α)2
1

δ
2 (1− α)2 + λ

(1−α)2a0

)
,

δ1 <
−16λe2a21
α3(1− α)

− 256
( 1

a0
− 1

a1

)2 λa21
α3(1− α)

,

0 < −δ <
λ

(1− α)2a1
.

We consider the quadratic form obtained by multiplying equation (1.1) by exp(−ct)Mu in L2(Ωs)
with Ωs = [0, 1]× [0, s] and c > 0. Taking the real part, we have

Φ(u, u) = Re
∫
Ωs

exp(−ct)f(x, t)Mu dxdt

= −Re
∫
Ωs

exp(−ct)
∂

∂x

(
a(x, t)

∂u

∂x

)
Mu dxdt+ Re

∫
Ωs

exp(−ct)
∂u

∂t
Mu dx dt. (2.1)

Mu by its expression in the right-hand side of (2.1), integrating by parts with respect to x and to t,
and using conditions (1.2)–(1.4), we obtain

Re
s∫

0

1∫
0

e−ctfMu dx dt

=
λ

2α2

s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt+
λ

2(1− α)2

s∫
0

1∫
α

(1− x)2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt

+
λ

4α2

s∫
0

α∫
0

x2
(
ca− ∂a

∂t

)
e−ct

∣∣∣∂u
∂x

∣∣∣2 dx dt+
λ

4(1− α)2

s∫
0

1∫
α

(1− x)2
(
ca− ∂a

∂t

)
e−ct

∣∣∣∂u
∂x

∣∣∣2 dx dt
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+
1

2

s∫
0

α∫
0

(
ca− ∂a

∂t

)( λ

α2
−
(δ1
2
x2 +

λ

(1− α)2a(0, t)

)
a(x, t)eβ(1−x)

)
e−ct|u|2 dx dt

+
1

2

s∫
0

1∫
α

[
− δ(1− x)aeβ(1−x)

+
(δ
2
(1− x)2 +

λ

(1− α)2a(1, t)

)
(ax − βa)eβ(1−x)

]
e−ct

x∫
α

(
ca− ∂a

∂t

)
|u|2 dζ dx dt

+

s∫
0

α∫
0

(
λ

2α2
−
(δ1
2
x2 +

λ

(1− α)2a(0, t)

)
aeβ(1−x)−ct

)∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dζ dx dt

+

s∫
0

( λ

2(1− α)2
−

(δ
2
(1− α)2 +

λ

(1− α)2a(1, t)

)
a(α, t)eβ(1−α)

) 1∫
α

∣∣∣∣
x∫

α

∂u

∂t
dζ

∣∣∣∣2 dx dt

+

s∫
0

1∫
α

(
−δ(1−x)a(x, t)eβ(1−x)+

(δ
2
(1−x)2+

λ

(1−α)2a(1, t)

)
(ax−βa)eβ(1−x)

) x∫
α

∣∣∣∣
η∫

α

∂u

∂t
dζ

∣∣∣∣2 dx dt

+
λ

4α2

α∫
0

x2

2
ae−ct

∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣
t=s

+
λ

4(1− α)2

1∫
α

(1− x)2ae−ct
∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣
t=s

+
1

2

α∫
0

(
λ

α2
−
( λ

(1− α)2a(0, t)
+

δ1
2
x2

)
a(x, t)eβ(1−x)

)
ae−ct|u|2 dx

∣∣∣∣∣
t=s

+
1

2

1∫
α

[
−δ(1−x)aeβ(1−x)+

(δ
2
(1−x)2+

λ

(1−α)2a(1, t)

)
(ax−βa)eβ(1−x)

]
e−ct

x∫
α

a|u|2 dx dt

∣∣∣∣∣
t=s

− λ

4α2

α∫
0

x2

2
a(x, 0)

∣∣∣dφ
dx

∣∣∣2 dx− λ

4(1− α)2

1∫
α

(1− x)2a(x, 0)
∣∣∣dφ
dx

∣∣∣2 dx
− 1

2

α∫
0

(
λ

α2
−
( λ

(1− α)2a(0, t)
+

δ1
2
x2

)
a(x, 0)eβ(1−x)

)
a(x, 0)|φ|2 dx

− 1

2

1∫
α

[
λ

(1− α)2
−
( λ

(1− α)2a(1, 0)
+

δ

2
(1− x)2

)
a(x, 0)eβ(1−x)

]
a(x, 0)|φ|2 dx

+
1

2

s∫
0

α∫
0

[ −λa2 ∂a
∂t (0, t)

(1− α)2a2(0, t)
+
(δ1
2
x2 +

λ

(1− α)2a(0, t)

)
a
∂a

∂t

]
eβ(1−x)−ct|u|2 dx dt

− 1

2

s∫
0

1∫
α

[
λa ∂a

∂t (1, t)

(1− α)2a2(1, t)
−
(δ
2
(1− x)2 +

λ

(1− α)2a(1, t)

) ∂a

∂t

]
aeβ(1−x)−ct|u|2 dx dt

− δ1 Re
s∫

0

α∫
0

xe−ct

x∫
α

∂u

∂t
dζ Jα

x ae
β(1−ζ)Jζ

αu dζ dx dt

+
λ

α2(1− α)2
Re

s∫
0

α∫
0

xe
x
α−ct

x∫
0

∂u

∂t
dx J1

0ae
β(1−x)Jx

αu dζ dx dt
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+ δ Re
s∫

0

1∫
α

(1− x)e−ct

x∫
α

∂u

∂t
dζ

x∫
α

aeβ(1−ζ)

ζ∫
α

∂u

∂t
dζ dx dt

− λ

α2(1− α)2
Re

s∫
0

α∫
0

x
a(x, t)

a(0, t)
e

x
α−ct ∂u

∂x

1∫
0

aeβ(1−x)Jx
αu dζ dx dt

+
λ

α2
Re

s∫
0

α∫
0

∂a

∂x
e−ctuJx

0 u dx dt− Re
s∫

0

α∫
0

δ1xae
−ct ∂u

∂x

α∫
x

aeβ(1−ζ)Jζ
αu dζ dx dt

+
λ

(1− α)2
Re

s∫
0

1∫
α

∂a

∂x
e−ctuJα

x u dx dt− δ Re
s∫

0

1∫
α

(1− x)a(x, t)e−ct ∂u

∂x

x∫
α

aeβ(1−ζ)Jζ
αu dζ dx dt

− Re
s∫

0

α∫
0

(
δ1xa

2 +
(δ1
2
x2 +

λ

(1− α)2a(0, t)

)(
2a

∂a

∂x
− βa2

))
eβ(1−x)−ctuJx

αu dx dt

− Re
s∫

0

1∫
α

[
− δ(1− x)a2 +

(δ
2
(1− x)2 +

λ

(1− α)2a(1, t)

)(
2a

∂a

∂x
− βa2

)]
eβ(1−x)−ctuJζ

αu dη dt

+
λ

(1− α)2a(1, t)
Re

s∫
0

e−ct

1∫
α

∂u

∂t
dx

1∫
α

aeβ(1−ζ)Jζ
αu dx dt. (2.2)

Using the fact that
s∫

0

α∫
0

e−ct

∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dx dt ≤ 4

s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt,

s∫
0

1∫
α

e−ct

∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dx dt ≤ 4

s∫
0

1∫
α

(1− x)2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt,

s∫
0

1∫
α

e−ct|u|2 dx dt ≤ 4

s∫
0

1∫
α

(1− x)2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx dt

+
2(1− α)

α

s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx dt+
4(1− α)

α

s∫
0

α∫
0

e−ct|u|2 dx dt

and the ε-inequalities in the last twelve terms in (2.2), we get

λ

64α2

s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt+
λ

128(1− α)2

s∫
0

1∫
α

(1− x)2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt

+
(
c− a3

a0
−m1

) s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx dt+
(
c− a3

a0
−m2

) s∫
0

1∫
α

(1− x)2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx dt

+
λ

4α2
(ca0 − a3)− max{m3,m4,m5}

s∫
0

α∫
0

e−ct|u|2 dx dt

+
λ

4(1− α)2
(ca0 − a3)(−βa0 − b)

1∫
α

x∫
α

e−ct|u|2 dx dt
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+

s∫
0

1∫
α

(
−δ(1−x)a(x, t)eβ(1−x)+

(δ
2
(1−x)2+

λ

(1−α)2a(1, t)

)
(ax−βa)eβ(1−x)

)
e−ct

x∫
α

∣∣∣∣
η∫

α

∂u

∂t
dζ

∣∣∣∣2 dx dt
+

λ

2α2

s∫
0

α∫
0

e−ct

∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dx dt+
λ

4(1− α)2

s∫
0

1∫
α

e−ct

∣∣∣∣
x∫

α

∂u

∂t
dζ

∣∣∣∣2 dx dt

+

α∫
0

x2

2
ae−ct

∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣
t=s

+

1∫
α

(1− x)2
∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣
t=s

+

α∫
0

|u|2 dx
∣∣∣∣
t=s

+

1∫
α

|u|2 dx
∣∣∣∣
t=s

≤ −Re
s∫

0

1∫
0

e−ctfMu dx dt− Re
s∫

0

λ

(1− α)2a(1, t)
e−ct

1∫
α

∂u

∂t
dx

1∫
α

aeβ(1−x)Jx
αu dx dt

+
λa1
4α2

α∫
0

x2

2

∣∣∣dφ
dx

∣∣∣2 dx+
λa1

4(1− α)2

1∫
α

(1− x)2
∣∣∣dφ
dx

∣∣∣2 dx
+

1

2

(
λ

α2
−
( λa0e

β

(1− α)2a1
+

δ1
2
a1α

2eβ(1−α)
)) α∫

0

|φ|2 dx

+
1

2

(
λ

(1− α)2
−
(δ
2
a1(1− α)2 +

λa0
(1− α)2a1

eβ(1−α)
)) 1∫

α

|φ|2 dx. (2.3)

Substituting Mu by its expression in the first term in the right-hand side of (2.3), integrating with
respect to x and using the ϵ-inequalities, we have

Re
s∫

0

1∫
0

e−ctfMu dx dt

≤
(
10λ

α2
+
(
32δ21α

4a21 + 16α2
(−δ1α

2

2
+

λ

(1− α)2a0

)2

a21

) e2β(1−α)

λ

) s∫
0

α∫
0

x2e−ct|f |2 dx dt

+

(
16(1−α)6δ2a21

λ
+
32

λ
(1−α)2a21

( |δ|
2
(1−α)2+

λ

(1−α)2a0

)2

+
18λ

(1−α)2

) s∫
0

1∫
α

(x−1)2e−ct|f |2 dx dt

+
1

128

λ

α2

s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt+
λ

256(1− α)2

s∫
0

1∫
α

(x− 1)2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt

+
5λ

32α2

s∫
0

α∫
0

e−ct

∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dx dt+
7λ

32(1− α)2

s∫
0

1∫
α

e−ct

∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dx dt

+
λ

(1−α)2

s∫
0

e−ct

(
1

a(1, t)

( 1∫
α

f dx−
1∫

α

∂u

∂t
dx

)
+

1

a(0, t)

α∫
0

f dx

) 1∫
α

aeβ(1−ζ)

ζ∫
α

∂u

∂t
dη dζ dt. (2.4)

Using (1.1) and (1.3), the last term in the previous inequality can be expressed as follows:

λ

(1− α)2

s∫
0

e−ct dt

(
1

a(1, t)

( 1∫
α

f dx−
1∫

α

∂u

∂t
dx

)
+

1

a(0, t)

α∫
0

f dx

) 1∫
α

aeβ(1−ζ)

ζ∫
α

∂u

∂t
dη dζ dt
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=
2λ

(1− α)2α2

( 1

a(1, t)
− 1

a(0, t)

) s∫
0

e−ct

α∫
0

x

x∫
α

∂u

∂t
dx

1∫
α

aeβ(1−ζ)

ζ∫
α

∂u

∂t
dη dt

+
2λ

(1− α)2α2
Re

s∫
0

e−ct
( 1

a(0, t)
− 1

a(1, t)

) α∫
0

xa
∂u

∂x
dx

1∫
α

aeβ(1−ζ)

ζ∫
α

∂u

∂t
dη dt

− λ

(1− α)2α2
Re

s∫
0

e−ct
( 1

a(0, t)
− 1

a(1, t)

) α∫
0

x2f dx

1∫
α

aeβ(1−ζ)

ζ∫
α

∂u

∂t
dη dt.

From the last equality and (2.4), (2.3) becomes

1

128

λ

α2

s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt+
λ

256(1− α)2

s∫
0

1∫
α

(x− 1)2e−ct
∣∣∣∂u
∂t

∣∣∣2 dx dt

+

(
c− a3

a0
−m1 − 512

( 1

a0
− 1

a1

)2 λa41
α3(1− α)

) s∫
0

α∫
0

x2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx dt

+

(
c− a3

a0
−m2 − 64

( 1

a0
− 1

a1

)2

a41λ

) s∫
0

1∫
α

(1− x)2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx dt

+
λ

4α2
(ca0 − a3)− max{m3,m4,m5}

s∫
0

α∫
0

|u|2 dx dt

+
λ

4(1− α)2
(ca0 − a3)(−βa0 − b)

s∫
0

1∫
α

e−ct

x∫
α

|u|2 dx dt

+

s∫
0

e−ct

1∫
α

(
− δ(1−x)a(x, t)eβ(1−x)+

(δ
2
(1−x)2+

λ

(1−α)2a(1, t)

)
(ax−βa)eβ(1−x)

) x∫
α

∣∣∣∣
η∫

α

∂u

∂t
dζ

∣∣∣∣2 dx dt

+
λ

32α2

s∫
0

α∫
0

e−ct

∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dx dt+
1

2048

λ

(1−α)2

s∫
0

1∫
α

e−ct

∣∣∣∣
x∫

α

∂u

∂t

∣∣∣∣2 dx dt+ λa0
4α2

α∫
0

x2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣∣
t=s

+
λa0

(1− α)2

1∫
α

(1− x)2e−ct
∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣
t=s

+
λa0
2α2

α∫
0

e−ct|u|2 dx
∣∣∣∣
t=s

+
λa0

(1− α)2

1∫
α

e−ct|u|2 dx
∣∣∣∣
t=s

≤
(
10λ

α2
+ 512

( 1

a0
− 1

a1

)2 λa41
α3(1− α)

+ 32δ21α
4a21

+ 16α2
(−δ1α

2

2
+

λ

(1− α)2a0

)2

a21
e2β(1−α)

λ

) s∫
0

α∫
0

x2e−ct|f2 dx dt

+

(
16(1−α)6δ2a21

λ
+
32

λ
(1−α)2a21

( |δ|
2
(1−α)2+

λ

(1−α)2a0

)2

+
18λ

(1−α)2

) s∫
0

1∫
α

(x−1)2e−ct|f |2 dx dt

+
λa1
4α2

α∫
0

x2

2

∣∣∣dφ
dx

∣∣∣2 dx+
λa1

4(1− α)2

1∫
α

(1− x)2
∣∣∣dφ
dx

∣∣∣2 dx
+

1

2

(
λ

α2
+
( λa0e

β

(1− α)2a1
+

−δ1
2

a1α
2eβ(1−α)

)) α∫
0

|φ|2 dx
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+
1

2

(
λ

(1− α)2
+
(−δ

2
a1(1− α)2 +

λa0
(1− α)2a1

eβ(1−α)
)) 1∫

α

|φ|2 dx.

If we take
c > max

{
m1,m2,

4α2

λa0
m3,

4α2

λa0
m4,

4α2

λa0
m5

}
+

a3
a0

,

where

m1 =
α(1− α)

λ

[ λa21
(1− α)2a30

+ k(α)
a1
a0

]
max

(
|a2|, |a3|

)
+ 64

λe2α2a41e
2β(1−α)

λ(1− α)2a30
+ 128

e2a41
αλ(1− α)a30

+ 8
δ21α

5a41e
2β(1−α)

λ2a0

+
32α(1− α)3

λ2a0

[
− δ(1− α)a21 + k(α)(2b− βa1)

]2
+ 512

( 1

a0
− 1

a1

)2 λa41
α3(1− α)

,

m2 = 2
[a21
a30

+ k(α)
(1− α)2

λ

a1
a0

]
max

(
|a2|, |a3|

)
+ 16

δ2a21(1− α)6

λ2a0

+
64(1− α)6

λ2a0

[
− δa21 +

k(α)(2b− βa1)

(1− α)

]2
,

m3 =

[
2b− 2δ1α

2a21√
λ

+ 2α
(−δ1

2
α2 +

λa0
(1− α)2a1

)
(2b− βa0)

eβ(1−α)

√
λ

]2
,

m4 =

[
− 8δ(1− α)

5
2 a21√

αλ
+
(
− 4δ(1− α)

5
2 a1 +

8λa1√
(1− α)a0

) (2b− βa1)√
αλ

]2
,

m5 =
(1
2
+

2(1− α)

α

)[ λa21
(1− α)2a20

+
(−δ1

2
α2 +

λ

(1− α)2a0

)
a1

]
max

(
|a2|, |a3|

)
eβ(1−α),

and
k(α) =

(−δ

2
(1− α)2 +

λ

(1− α)2a0

)
we deduce

s∫
0

1∫
0

θ(x)
∣∣∣∂u
∂t

∣∣∣2 dx dt+

s∫
0

1∫
0

θ(x)
∣∣∣∂u
∂x

∣∣∣2 dx dt+

1∫
0

(
θ(x)

∣∣∣∂u
∂x

∣∣∣2 + |u|2
)
dx

∣∣∣∣
t=s

≤ C

M
ecT

[ T∫
0

1∫
0

θ(x)|f |2 dx dt+

1∫
0

(
θ(x)

∣∣∣dφ
dx

∣∣∣2 + |φ|2
)
dx

]
, (2.5)

where

C =

{
10λ

α2
+ 512

( 1

a0
− 1

a1

)2 λa41
α3(1− α)

+ 32δ21α
4a21 + 16α2

(−δ1α
2

2
+

λ

(1− α)2a0

)2

a21
e2β(1−α)

λ
,

16(1− α)6δ2a21
λ

+
32

λ
(1− α)2a21

( |δ|
2

(1− α)2 +
λ

(1− α)2a0

)2

+
18λ

(1− α)2
,

1

2

( λa0e
β

(1− α)2a1
+

−δ1
2

a1α
2
)
eβ(1−α),

1

2

(−δ

2
a1(1− α)2 +

λa0
(1− α)2a1

eβ(1−α)
)
,
λa1
4α2

,
λa1

4(1− α)2

}
and

M = min
{

λ

128
,

λ

2561
,
λa0
4

,
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λa0, c−
a3
a0

−m1 − 512
( 1

a0
− 1

a1

)2 λa41
α3(1− α)

,
(
c− a3

a0
−m2 − 64

( 1

a0
− 1

a1

)2

a41λ
)}

e−cT .

Let us now make use of the fact that the choice of s is arbitrary, then (2.5) becomes

s∫
0

1∫
0

θ(x)
∣∣∣∂u
∂t

∣∣∣2 dx dt+

s∫
0

1∫
0

θ(x)
∣∣∣∂u
∂x

∣∣∣2 dx dt+ sup
0≤t≤T

1∫
0

(
θ(x)

∣∣∣∂u
∂x

∣∣∣2 + |u|2
)
dx

≤ C

M

[ T∫
0

1∫
0

θ(x)|f |2 dx dt+

1∫
0

(
θ(x)

∣∣∣dφ
dx

∣∣∣2 + |φ|2
)
dx

]
. (2.6)

From (1.1) and (2.6) it follows that

T∫
0

1∫
0

θ(x)
(∣∣∣∂2u

∂x2

∣∣∣2 + ∣∣∣∂u
∂t

∣∣∣2) dx dt+ sup
0≤t≤T

1∫
0

(
θ(x)

∣∣∣∂u
∂x

∣∣∣2 + |u|2
)
dx

≤ k

( T∫
0

1∫
0

θ(x)|f |2 dx+

1∫
0

(
θ(x)

∣∣∣dφ
dx

∣∣∣2 + |φ|2
)
dx

)
,

where
k2 =

( ((4b2 + 4) + 2)

a20
+

C

M

)
.

3 Solvability of problem (1.1)–(1.4)
To prove the solvability of problem (1.1)–(1.4), it suffices to show that R(L) is dense in F. The proof
is based on the following

Lemma 3.1. Suppose that the function a and its derivatives are bounded and a(0, t) ̸= a(1, t). Let
u ∈ D0(L) = {u ∈ D(L), u(x, 0) = 0}. If for u ∈ D0(L) and some functions w ∈ L2(Ω) we have∫

Ω

θ(x)fω dx dt = 0, (3.1)

where

θ(x) =


x2

α2
, x ∈ (0, α),

(1− x)2

(1− α)2
, x ∈ (α, 1),

then w vanishes almost everywhere in Ω.

Proof. Equality (3.1) can be written as follows:∫
Q

∂u

∂t
ρ dx dt =

∫
Q

A(t)uρ dx dt, (3.2)

where
ρ = θ(x)w

and
A(t)u =

∂

∂x

(
a(x, t)

∂u

∂x

)
.
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We introduce the smoothing operators

J−1
ε =

(
I − ε

∂

∂t

)−1

and (J−1
ε )∗ =

(
I + ε

∂

∂t

)−1

in the space H1(0, T ) with respect to t, then these operators provide the solution of the problems
uε(t)− ε

∂uε

∂t
= u(t), uε(0) = 0,

v∗ε (t) + ε
∂v∗ε
∂t

= v(t), v∗ε (T ) = 0.

We also have the following properties: if g ∈ D(L), then J−1
ϵ g ∈ D(L), and we have

lim ∥J−1
ϵ g − g∥L2(0,T ) = 0 as ε → 0,

lim ∥(J−1
ϵ )∗g − g∥L2(0,T ) = 0 as ε → 0.

Replaicing the function u in (3.2) by the smoothing function uε and using the relation

A(t)uε = J−1
ε A(t)u− εJ−1

ε Bϵ(t)uε,

where
Bϵ(t)uε =

∂A(t)

∂t
uϵ =

∂

∂x

(
ρ(x)

∂a

∂t

∂uε

∂x

)
,

we obtain
−
∫
Ω

u
∂ρ∗ϵ
∂t

dx dt =

∫
Ω

(
A(t)u− ϵBε(t)uε

)
ρ∗ε dx dt. (3.3)

Since the operator A(t) has a continuous inverse in L2(0, 1) defined by

A−1(t)g =

x∫
0

dζ

a

(
C1(t) +

ζ∫
0

g(η) dη

)
+

1

α

1∫
0

K(x)

a

(
C1(t) +

x∫
0

g(η) dη

)
dx,

where C1(t) =
a(1,t)

a(1,t)−a(0,t)

1∫
0

g(η) dη and

K(x) =

{
x− α, (0, α),

0, (α, 1),

then we have
α∫
0

A−1(t)u dx = 0. Hence, the function J−1
ϵ u = uε can be represented in the form

uε = J−1
ϵ A−1(t)A(t)u,

and then

Bε(t)g =
∂2a

∂t∂x
J−1
ϵ

C1(t) +
ζ∫
0

g(η) dη

a
+

∂a

∂t
J−1
ϵ

g

a
− ∂a

∂t
J−1
ϵ

∂a
∂x

a

C1(t) +
ζ∫
0

g(η) dη

a
.

Consequently, equality (3.3) can be written as

−
∫
Ω

u
∂ρ∗ϵ
∂t

dx dt =

∫
Ω

A(t)uhϵ dx dt, where hϵ = ρ∗ϵ − ϵB∗
ϵ (t)ρ

∗
ϵ , (3.4)
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and

B∗
ϵ (t)ρ =

1

a
(J−1

ϵ )∗
∂a

∂t
ρ∗ε +

1∫
x

(1
a
(J−1

ϵ )∗
∂2a

∂t∂ζ
ρ∗ε −

1

a2
∂a

∂ζ
(J−1

ϵ )∗
∂a

∂t
ρ∗ε

)
dζ

+
a(1, t)

a(1, t)− a(0, t)

1∫
0

(1
a
(J−1

ϵ )∗
∂2a

∂t∂ζ
ρ∗ε −

1

a2
∂a

∂ζ
(J−1

ϵ )∗
∂a

∂t
ρ∗ε

)
dx.

The left-hand side of (3.4) is a continuous linear functional of u, hence the function hϵ has the
derivatives ∂hϵ

∂x , ∂2hϵ

∂x2 ∈ L2(Ω) and the following conditions are satisfied:

a(0, t)hϵ(0, t) = a(1, t)hϵ(1, t),

∂hϵ

∂x
(0, t) =

∂hϵ

∂x
(1, t) = 0.

For a sufficiently small ϵ, the operator I − ϵ
(J−1

ϵ )∗ ∂a
∂t

a has a bounded inverse in L2(Ω), so we deduce
that ∂ρ∗

ϵ

∂x , ∂2ρ∗
ϵ

∂x2 ∈ L2(Ω) and the conditions

a(0, t)ρ∗ϵ (0, t) = a(1, t)ρ∗ϵ (1, t),

∂ρ∗ϵ
∂x

(0, t) =
∂ρ∗ϵ
∂x

(1, t) = 0
(3.5)

are satisfied. We introduce the function v such that

v = xw +

x∫
α

w dζ, x ∈ (0, α),

v =
(1− x)2

(1− α)2
w, x ∈ (α, 1),

then

ρ(x) =


x2

α
w =

x

α
v − 1

α

x∫
α

v dζ, x ∈ (0, α),

(1− x)2

(1− α)2
w = v, x ∈ (α, 1),

and
∂v

∂x
(0, t) =

∂v

∂x
(1, t) = 0 and v(1, t) = 0.

From (3.5), we have
∂ρ

∂x
= K(x)

∂v

∂x
, where K(x) =


x

α
, x ∈ (0, α),

1, x ∈ (α, 1).

Putting

u =

t∫
0

exp(cτ)
(
λ1

x∫
α

av dξ dτ + λ2v +
λ1

α

α∫
0

xav dξ

)
dτ (3.6)

in (3.2), integrating with respect to x and t, using (3.5) and (3.6), we obtain∫
Ω

A(t)uρ dx dt =
−1

λ2

∫
Ω

K(x)

2

(
ca− ∂a

∂t

)
e−ct

∣∣∣∂u
∂x

∣∣∣2 dx dt

− 1

λ2

1∫
0

K(x)

2
ae−ct

∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣
t=T

+
λ1

λ2

∫
Ω

K(x)a2e−ct ∂u

∂x
v dx dt (3.7)
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and
T∫

0

α∫
0

∂u

∂t
ρ dx dt =

λ2

α

T∫
0

α∫
0

ectx|v|2 dx dt

+
λ1

α

T∫
0

ect
α∫

0

xv dζ

x∫
α

av dζ +
λ1

α

T∫
0

ect
α∫

0

xv dζ

α∫
0

xav dζ,

T∫
0

1∫
α

∂u

∂t
ρ dx dt = λ2

T∫
0

1∫
α

ect|v|2 dx dt

+
λ1

α

T∫
0

ect
1∫

α

v

x∫
α

av dζ dx dt+
λ1

α

T∫
0

ect
1∫

α

v dx

α∫
0

xav dζ dx dt.

Using elementary inequalities, then (3.7), becomes∫
Ω

K(x)

2

(ca− ∂a
∂t

λ2
− a41λ

2
1

λ2
2

)
e−ct

∣∣∣∂u
∂x

∣∣∣2 dx dt

+
1

λ2

1∫
0

K(x)

2
ae−ct

∣∣∣∂u
∂x

∣∣∣2 dx∣∣∣∣
t=T

(λ2

α
− 7

2
a1λ1 −

α

2

) T∫
0

α∫
0

ectx|v|2 dx dt

+

(
λ2 −

1

2
− λ1a1

( (1− α)

α
√
2

− 1

2

)) T∫
0

1∫
α

ect|v|2 dx dt ≤ 0,

we choose 

λ1 > 0,

λ2 > max
(
1

2
+ λ1a1

( (1− α)

α
√
2

− 1

2

)
,
(7α

2
a1λ1 +

α2

2

))
,

c >
a41λ

2
1

a0λ2
+

a3
a0

then, we get ∫
Q

exp(ct)K(x)|v|2 dx dt ≤ 0,

hence v = 0 a.e., which implies ω = 0.

Theorem 3.1. The range R(L) of the operator L is dense in F .

Proof. Since F is a Hilbert space, we have R(L) = F if and only if the relation

∫
Q

θ(x)fg dx dt+

1∫
0

θ(x)
dlu

dx

dφ

dx
dx+

1∫
0

luφ dx = 0. (3.8)

for arbitrary u ∈ D(L) and (g, φ) ∈ F , implies that g = 0 and φ = 0.
Putting u ∈ D0(L) in (3.8), we conclude from Lemma 3.1 that g = ω = 0, then g = 0.
Taking u ∈ D(L) in (3.8) yields

1∫
0

θ(x)
dlu

dx

dφ

dx
dx+

1∫
0

luφ dx = 0, (3.9)
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Since the two terms in the previous equality vanish independently and since the range of the trace
operator L is everywhere dense in Hilbert space with the norm

1∫
0

θ(x)
∣∣∣dφ
dx

∣∣∣2 dx+

1∫
0

|φ|2 dx,

hence, φ = 0. Thus R(A) = F .
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