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BOUNDARY VALUE PROBLEM FOR PIECEWISE-HOMOGENEOUS
VISCOELASTIC PLATE WITH FINITE CRACK



Abstract. A piecewise-homogeneous viscoelastic plate, weakened by a finite crack, which meets the
interface at a right angle, is considered. The crack boundary is loaded with normal symmetric forces.
Using the analogues of the Kolosov-Mushkelishvili formulas of viscoelasticity theory, the complex
potentials are determined and a system of singular integral equations of the first kind with respect to
jump of the normal displacement is obtained. The asymptotic behavior of a solution of the resulting
system is investigated. In the particular case, using the methods of the theory of analytic functions,
the solution to the problem is presented in explicit form. The behavior of normal contact stresses in
the neighborhood of singular points is established.
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1 Introduction

The first fundamental problem for a piecewise-homogeneous plane was solved when a crack of finite
length arrives at the interface of two bodies at the right angle. Various problems with mixed boundary
conditions are reduced to the Wiener-Hopf equation [9]. Similar problems for a piecewise-orthotropic
and piecewise-isotropic planes under the action of symmetrical normal stresses at the cracks sides
(of finite or half-infinite length) are investigated. These problems are reduced to the singular integral
equations with fixed singularity [2,14] and their solutions are presented explicitly. Additionally, contact
problems for a piecewise-homogeneous planes with a semi-infinite or finite inclusion or stringer are
investigated [3,4,8,12]. In the present paper, a piecewise-homogeneous viscoelastic plate (under the
condition of Volterra viscoelastic model) with a finite crack is considered. When the crack crosses the
interface between two materials, the problem is reduced to the system of singular integral equations
of the first kind. The asymptotic estimates of solutions of this problem are derived. In the special
case, when the crack passes through the interface, the singular integral equation with fixed singularity
is investigated by using the methods of analytical functions and integral transformation.

2 Statement of the problem and reduction to the system of
integral equations

Suppose the body holds a complex plane z = x + iy, consisting of two dissimilar isotropic half-plane
with viscoelastic properties. It is weakened by a finite crack the boundary of which is loaded by
normal symmetric forces (see Figure 1).

The half-planes S1 = {z |Rez >0, z¢ 13 =(0,a)} and Sy = {z | Rez <0, z ¢y =[—a,0)} are
connected along the Oy axis. Quantities and functions related to the half-planes Sy well be marked
by the index k (k = 1,2), and the boundary values of the functions at the upper and lower edges of
the crack will be marked by the signs (+) and (—), respectively. The contact conditions along the
interface have the form

8U1 8’&2 31)1 8’02

o) =0 ) =D T a oy (2.1)

On the crack boundary we have the following conditions:

Ul(/k)+ = O-Z(!k)7 = Nk(l‘,t), 7-./[(15)+ = T.l(,];)i = O7

+

(2.2)
uf —up =0, vf —v, =v(x,t), el k=12,

oy(k)mggl;) and ug, v are the stress and displacement components, respectively. Given continuous
functions Ni(z,t) on the interval, v(x,t) are unknown functions, showing the opening of the crack
at the corresponding points.

The analogues of the Kolosov—Muskhelishvili formulas of the viscoelasticity theory are presented

in [8] as follows:

o) — it = @p(2,t) + (2, 1) + 2@} (2, 1) + Vi (2, 1),

2.3
(I-1L) [%kq)k(z,t) — Py (z,t) — 2P (2, t) — Ui(z,t)| = 25 (u), + ivy,), 23)
where
¢
0 E
(1= Dgu() = 9u(t) — [ Bug-Cultman(mdr, 2 = 175

to

Cr(t,7) = @r(r)(1 — e 777),

and s, = 3 — 4vy (in the case of plane strain) or s, = ?;Z’;

k = 1,2; Ck(t,7) and Ej are the creep measure and Jung’s module of the materials, respectively.

(in the case of generalized plane stress),
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Here, @y (7) is known as the ageing function, the function (1 — e~7(*=7)) characterizes the hereditary
properties of materials, and tg is the ageing of the material at the beginning of load. Besides, the
Poisson coefficients for elastic-instant deformation vk (t) and creep deformation v (t,7) are the same
and constant: vg(t) = vi(t,7) = v = const [1,5,6].

Based on formulas (2.2) and (2.3), we obtain the following conditions of the problems of linear
conjugation:

(I);:( ) (I);( ) = ak(mvt)7 z € l, (2 4)
\I]z( ) \I]I;( ):bk(x7t)7 T € g, '
where
ap(@,t) = ifu(z,t), bu(x,t) = —iafl(z,t), fulz,t) = %ilikl(j_mfl%,

and (I — L)~! is an inverse operator of (I — L), which can be clearly given as [8]

(I—L) gi(t)= Cy (to)/ék(r)dT + /6k(7)< ?:((5)) ds) dr + Cy (to) ,

where

5.(t) —exp( y / an(r ) an(t) = 1+ Bpn(t), O (o) = Eugulto).

Ag(t) = Ekgk( ) +79k(t),  Ck (to) = Ex(gr(to) — Epr(to)vgr(to)),

._ 0 . 07
k=1,2; gza—i, gz—g.

The general solutions of the obtained jump problems (2.4) can be written in the following form:

By(ent) = - / T |y ) = A1) + Wilz0),

211 T —z
e (2.5)
U2 t) = QLM / W b Q2 ) = Bu(z,t) + Qu(z ).

Ik

where Wi.(z), Qr(z), k = 1,2, are unknown analytic functions in the half-plates Sy to be determined
from conditions (2.1) at the interface of two materials.
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Using the methods of the theory of analytic functions (particularly, the Cauchy theorems), for the
search functions [10], we obtain the following representations:

Wl(z,t)eltl/W+eltl/% it /f2 . t)de

ll ll

‘%%ﬂ:—ﬁb/g%%&@—@@/ﬂgﬂﬁi Mt/ﬁwtw

(x4 2)?
l2
xfi(x,t)d /f1 x,t)d /(mfl(a:,t)) dx
,t) =e1t t ASaCEA Nt AV il
Q1(z,t) =e1 1/ s 2e1t12 @+ 2)
h ; h (2.6)
t t)dt
_h3t2/xf2(x7 ) €z _mQtQ/fo(xv ) ,
x—z (x —2)?
lg l2
xff(x,t)dz /fg(x,t)dt /(xfz(x,t))'dx
t) = est —_ t = 4 2est _—
Q2(2,1) 622/ e + mato2 P + Zealaz @1 2)?
lo la l2
xf1(z,t)dx xfi(z,t)dt
P L e )
x — (x—2)
l1 ll
where
! M2 M2 — M1 2 — p1
t = , la= , el =, €= ————,
1450 1+ ripie + p1 o1 + o
1 1
my = (o +1 - = hy — hua,
1 ( 1 )M2 [%2M1+,u2 %1M2+,u1} 2 4
1 1
m2:(%2—|—1),u1[ — :|:h3—h17
Mol + po » o + U

(302 +1) 1y L ~ (a+ 1) pe b et l)m hi(%1+1)lt2

) 2 3 4 .
a2 + s + pa s + o M2 + 1

Taking into account relations (2.5)—(2.6) in the equality

G,Lk)(z, t) = Re[®r(z,t) + Pi(2,t) + 2P} (2,1) + Yi(z,1)],
and passing the limit as z — = 4+ ¢0, from the condition
Ul(,k)"' + Uz(/k)_ =2Ng(x,t), x€ly, k=12,

we obtain the following system of singular integral equations of the first kind:

1

1 1 2 +m  2ew de,2?

T - - t)d

7'('/{{1,'—8 2(1’4—3) ($+3)2+(.’IJ+8)3 fl(xa)x
0

1

fon [T g e = NG,

1
1 1 262 + mo 262(E 4@2;52
T - - —xz,t)d
/{x—s 2(z + s) (x+s)2+(x+8)3}f2( z,t)dx

ty —(h2 + ha) mix
Tto t)dx = Na(—s,t 1.
- /{ T+ s +(z+5)2}f1(9€,)x 2(—s,t), 0<s<
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3 Asymptotic study of the system of singular integral equa-
tions

To find the behavior of the solution of the system of integral equations (2.7) at the singular points,
we present its solution in the neighborhood of the point s = 1 in the following form:

fl(s, t)
©(s,t)

(1—5)"%g1(s, 1), y (3.1)
fa(=s,t) = (1 —5)"%p1(s,t), 0<Re(w,d) <1,

where g1 (x,t) and o1 (x,t) are the continuous functions in the neighborhood of the point s = 1.

The functions

1
1 2e1 +my 2e1x deqz?
== [<- — t)d
Tilst) 7r/{ 2(z + s) (33+8)2+(x+s)3}f1(x’ Jdz
0

1
to —(h1+h3) moX
—_— —x,t)d
+7rt1 { z+s +(x+3)2 fa(=a,t)dz,

1

1 2 2 degz?
Fa(s:1) = w/{_ e e (zeji)S}fz(x’t)dm

1
t1 —(h2+h4) mix
+7Tt2 { Tt s +(x+s)2}f1(l‘,t)d$
0

are regular in the neighborhood of the point s = 1. Therefore, they can be represented as follows:

Ji(s,t) = Ji(1,8) + J ' (1,8)(1 — s) + %Jl"(l,t)(l —8)2 4
(3.2)

Jo(s,t) = Jo(1,8) + Jo' (1,8)(1 — s) + %lel(l,t)(]. — )24

According to the well-known theorems about the behavior of the Cauchy-type integral near the
ends of the integration curve, from (2.7) and (3.2), we have (see [11])
—ctgmagi(1,6)(1 =) 4+ O0((1 —s)" ) + J1(1,t) +--- = N1(1,1),

—ctgmdor(1,8)(1 —5)° + O((1 — 8)7%) + Jo(1,) + - -- = No(—1,1),
ap < Rea, §p < Red.

Since the first terms have the greatest singularity, from the system of equations (2.7), we obtain

1
ctgma =0, ctgmd =0, a:5:§. (3.3)

Accordingly, in the neighborhood of the point s = 1, the solutions of the system have a singularity of

1
order 3.
We present the solution of the system in the neighborhood of the point s = 0 as follows:

fi(s,t) = s_ﬂgg(s,t), o(s,t) = s Vpa(s,t), 0<Re(B,7) <1, (3.4)

where go(x,t) and @a(x,t) are the continuous functions in the neighborhood of the point s = 0.
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Based on the known theorems on the behavior of the Cauchy-type integral [11], we have

1
1
,/M :Cth692(07t)s—l3+0(8—50)’ s—0,
xr — S

™ Tr—S

1 t)d
7/74’0(367 Jdz = ctgmyg2(0,t)s™ 7 + O(s™°), s—0,
0

60<Re67 ’}/0<Re')/.

For the functions

1
1 2 deya? ¢
J(s,t) = /{_ ar _, _tav B}fl(x,t)da:+ L2 [T o xt)de
T ( 8) Tl
0 0

x+s)2 (x4 t (x + s)2
1d 1 2e1x 1 d? ; 2¢q 22 to d / Mol
= ;£/x+sf1(x,t)dx+ e mfl(x t)dx — ot ds x_l_SfQ(f:c,t)d:c
0 0 0
1 1 2e9x deqr? t1 i maoX
Ja(s,t) = 77/{_(33+s)2 + (x+s)3}f2(x’t)dx+m/WfQ(_x’t)dx
0 0
1d / 2e51 1 d? 2e022 t1 d ; mix
~ i [ e L [T e g [ R o,
0 0 0

we obtain

(1-8)% g2(0,%)

sinm3  sP

(1 —7)* ¢2(0,1) _ timy [ 1— B g2(0,t) .
-9 Y0 Bo
Ja(s:?) = [ sin 7y 57 O™+ ty |sinmB sP O™, s 0,

4 O(S—ﬂo)] | tame [ 1—7 ¢2(0,1)

t1 sinmy  sY

Js5(s,t) = 2€; [ + O(s"*“)] :

and the functions

1

1
L A1/f1mtd£_&/m7 L2<s7t):_&/u Dg/flxtdx

xr+s ™ xr+s s xr+s r+ s
0 0

satisfy the following estimates:

ﬁ —s) 7 _ )0
L {smwﬂgQ 0,8)(=5)" } Dy {Smﬂ,yQ@(O,t)( 5)"7 4+ O(—s) }
Al{ 92(0,4)s77 + O(s~ } Dl{ <P20t37+0(_%)},8—>07
sinwf3 sin 7y
e z,@Tr
K —s5) P _g)Po
L {blnﬂ'fyso2 0,£)(=s)"7 + O(( } D2{51n77692(0’t)( 5)77 +0((—s) )}
{ p2(0,8)s™7 + O(s™ VO)} Dz{ g2(0,1)s ﬁJrO(sB”)}, 5s—0,
sin 7y -

Bo <RefB, 9 <Renr.

Taking into account these estimates, from the system of singular integral equations (2.7), in the
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neighborhood of the point s = 0, we obtain

t t 1-p8)?
—ctg wﬂgg(o,t)s’ﬂ _ Alws*ﬁ _ Dlwsﬂ + 2e1(,75)g2(0,t)5*ﬂ
sin w3 sin 7y sin w3
t 1—
212 = 00(0, )57 + O(s %) + O(s ™) = Ny(0,1),
t1 sinmy
(0,0 (0,0 (1= (35)
—ctgmyp2(0,t)s™7 — Ag Ls*“’ — ng?i’s*ﬁ + 262.77902(0, t)s™7
sin 7y sinmf8 sin 77y
tymy 1 — 5 -8 -8 _
t 0 Yo :N t
(0,057 4 0(7%) + O(s™™) = Na(0.1),
where
A = 2eq er17 D, — (h1 + h3)t2, Ay = 2e9 + mz’ Dy = (he + ha)t1 .
2 1 2 t2

It is easy to prove that 8 = =, since otherwise (Re 8 > Re+y, Re 3 < Re~) the last equalities are
not simultaneously satisfied. Therefore, from (3.5), we obtain the following system of transcendental
equations:

t 1-—
cos T + (A1 + 2e1(1 — B)?) + <D1 - W)C =0,
1
(3.6)
t 1-
cos B + (Az + 2e3(1 — B)?) + <D2 - M)cl —0,
2

where C' = % does not depend on  and ¢.

It can be shown that if s + p1 # s201 + o, system (3.6) has no such solution (8, C), where
0 < Ref < 1, C = const. In this case, the normal stresses Uél)(z,t) may have the logarithmic
singularity or may be bounded in the neighborhood of zero.

In the case s + 1 = 321 + p2, equations (3.6) take the form
cosmf + e +2e1(1—B)2+DC =0 (3.7)

where C' = £,/ g—f =+ EZ:B%, and if, additionally, ;11 = uo (the material of both half-planes

is the same), we obtain '
cosTf =42, f[B= filn(Q:I:\/é),
™

which means that the functions fi(s,t) and f2(—s,t), and accordingly the normal stresses ag(,l)(z,t)

can have an integrable singularity or can be bounded in the neighborhood of zero.
The analytical study of equations (3.6) and (3.7) is associated with great difficulties and can be
investigated only numerically.

Theorem. If the system of singular integral equations (2.5) has a solution, then it satisfies the
following estimates:

{f1(8¢) —O((1—s)" %), { sl g csan,

fa(=s,t) —5 = —1+,
fl(S,t) . -8 s — 0+,
{fg(—s,t)_O(S ), 50—, 0<s<l1l 0<Ref<l1,

where 8 can be determined from equation (3.7).

4 Exact solution of the problem in a specific case

Let us consider a problem when the crack is located in one half-plane and passes at a right angle on
the interface of two materials. Considering

INy(z,1), z€][0,1],
oi,”+<x>+o§,”‘<x>:{ o e el

203(,1)(95), x € (1, 00),
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the problem is reduced to the following singular integral equation of the first kind:

1

1 1 Aq 2e1x deiz?

= - - t)dr = Ni(s,t 0<s< 1 4.1

ﬂ/{x—s x+s (x+s)2+(x+5)3 Sz, t)dzx 1(s,1), s (4.1)
0

Using the equality

/fl(x,t)d - 1/8”18(;”@:1?;1 (I — L)~ (vf (1,t) — v} (0,1)) = 0,
0

from (4.1) we have

1

1 1 A; —2e; 6eix deqx?
— — t)dx = sN1(s,t 0 1 4.2
w/{x—s+ T+ +(a:—&-s)2 (x+s)3 f(@,t)dw = sNi(s,1), Sesh (42)

0

where f(z,t) = xfi(x,t).

Due to the fact that the displacement must be limited at the pointz = 0, the desired function
f(x,t) is required to satisfy the condition f(z,t) — 0, z — 0.

To solve equation (4.2), we make changes to the variables z = e, s = €f, and use a generalized
Fourier transform to obtain the Riemann boundary value problem [7]

Gy)® (y,t) =V H(y,t) + P(y,t), y=uyo+ic, |yo| <oo, &>0

where

O (2,t) = / fo(€,t)es2de, Wt (z,t) /z/ﬁ (€,t)e’*de,

Pz 1) = E / No(€, 1) de,

0, £ <0,

folg:t) = Fe8) No(&:1) = 2N (e5,), 1/’+(§’t):{2 (), €>0
Oy ) )

1 . .

G(z) = e [chmz + (A1 — 2e1) + 2e1(z + 1) (22 + Ti)].
The problem can be formulated as follows: find the function®™(z,t), holomorphic in the half-plane
Imz > 0, and the function ®~(z,t), holomorphic in the half-plane Im z < 1 (with the exception of a
finite number of roots of the function G(z) in the strip 0 < Imz < 1, at which the function ®~(z,t)
has poles of the first order), vanishing at infinity and satisfying condition (4.1) [7,11].

The boundary condition (4.1) is represented in the form
(I)i(y7t)\/y —1 \I/Jr(y’t) P(yat)

G = =yg+1ie, €>0, 4.3
o(y) " yﬂ T YT (4.3)

s

1

where the function Go(y,t) = yG(y)[1 + y?]~ = satisfies the conditions Re Go(y,t) > 0, Go(£o0) = 1,
Ind Go(y, t) =0.
The solution of this problem can be represented in the form [10]

_ 2X(z,1) .
O (z,t) = =222, Imz<0, Ut(z,t)=X(z,)Vz+i, Imz>0,
(2,1) — < (z,t) = X(z,1)V
Ut (z,t) + P(z,t
O (z,1) = GO+ PEY g s,

G(2) ’
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where

_X@) [ P.ndy = (L [ Gl
Xt =55 _4 Xty +ily—=2) Xle) = p(Qm/ y—= )

— 00

The function ®~(z,t) is holomorphic in the half-plane Im z < 1, with the exception of a finite number
of roots of the function G(z) in the strip 0 < Imz < 1.
The function ¥ (z,t) can be represented in the form

vt = z+z{/\/r+(;Py’t /X+ yH}

dy

Vz—}—z X+ \/y—i-z'

= \IJOJF(Za t)

The boundary value ¥y (y,t) of the function ¥yt (z,¢) is the Fourier transform of the bounded
function (&, t), continuous on the semi-axis & > 0, except possibly at the point £ = 0, where it may
have a logarithmic singularity. Using the inverse Fourier transform [13], from

W00 = A " (011), (4.9

+ ¢Yo(Inz,t), x > 1, and from the function

_ c1(t)
> (y,t) =
VY —
where the function Wy~ (y,t) is the Fourier transform of the bounded function ¢o(&,t), which is

continuous on the semi-axis £ < 0 (except maybe at the point £ = 0, where it may have a logarithmic
singularity), the inverse Fourier transform yields

ety

we obtain o), (x,t) = =

+CI)O (’)7

Cl(t) 1
x,t) = +oo(lnz,t) =0((1—2)"2), O0<z<l, z—1-—.
fi(z,t) T @o ) =0(( )" 2)
It can be easily shown that for 0 < Imz < 1, we have
t
o (o) = 2D L g (2p), (4.5)

Vz—i

where the function ®; (z,t) is holomorphic in the strip 0 < Imz < 1, except maybe at one point
zo = iTg + @, 79 < B < 1, where it has a first order pole. Using Cauchy's theorem, we obtain

N N
/ Dy (y,t)e Wy = e / D17 (y + B, t)e Wody + e3(t)e™ + e(N, €),
—N —N

where (N, €§) — 0, N — cc.
From formula (4.5), the Fourier transform gives

ca(t)et efe _ . . ca(t)em0f
e fi(eft) = iﬁ% Jon O (y+iB,t)e” Wody + 35/)2?7 §<0.
Therefore,
ca(t) B—1 c3(t)z™! ~1
Alat) = -2 401 )+ SO 0@, 0<a<1l, 204,
v—Inz V2T
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ovi(z,t) s +1 _ ro—1
o T o (I-L)fi(z,t)=0(™ "), x—0+.

In a particular case pu3 = ps (e = 0, Ay = ﬁ, |A1] < 1), the equation G(z) = 0 has a
Mo — 1

purely imaginary solution (the least distant from the origin) zo = i7g, 70 = %arc cos 5=, and the

following conclusions are valid:
a) if Ay >0 (56 > ), then % <719 <1,
b) if A1 <0 (511 < 32), then 0 < 79 < %,

c) if A; =0 (311 = 59, the material of both half-planes is the same), then 79 = %
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