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BOUNDARY VALUE PROBLEM FOR PIECEWISE-HOMOGENEOUS
VISCOELASTIC PLATE WITH FINITE CRACK



Abstract. A piecewise-homogeneous viscoelastic plate, weakened by a finite crack, which meets the
interface at a right angle, is considered. The crack boundary is loaded with normal symmetric forces.
Using the analogues of the Kolosov–Mushkelishvili formulas of viscoelasticity theory, the complex
potentials are determined and a system of singular integral equations of the first kind with respect to
jump of the normal displacement is obtained. The asymptotic behavior of a solution of the resulting
system is investigated. In the particular case, using the methods of the theory of analytic functions,
the solution to the problem is presented in explicit form. The behavior of normal contact stresses in
the neighborhood of singular points is established.
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რეზიუმე. განხილულია უბან-უბან ერთგვაროვანი ბლანტი დრეკადი ფირფიტა. იგი შესუსტებუ-
ლია სასრული ბზარით, რომელიც მართი კუთხით კვეთს ორი მასალის გამყოფ საზღვარს.
ბლანტი დრეკადობის თეორიაში კოლოსოვ-მუსხელიშვილის ფორმულების ანალოგების გამოყე-
ნებით განისაზღვრება კომპლექსური პოტენციალები და ნორმალური გადაადგილებების ნახტო-
მების მიმართ მიიღება პირველი გვარის სინგულარულ ინტეგრალურ განტოლებათა სისტემა.
გამოკვლეულია მიღებული სისტემის ამონახსნის ასიმპტოტური ყოფაქცევა. კერძო შემთხვევა-
ში, ანალიზურ ფუნქციათა თეორიის მეთოდების გამოყენებით, ამოცანის ამონახსნი წარმოდგე-
ნილია ცხადი სახით. დადგენილია ნორმალური საკონტაქტო ძაბვის ყოფაქცევა განსაკუთრებუ-
ლი წერტილების მიდამოში.
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1 Introduction
The first fundamental problem for a piecewise-homogeneous plane was solved when a crack of finite
length arrives at the interface of two bodies at the right angle. Various problems with mixed boundary
conditions are reduced to the Wiener-Hopf equation [9]. Similar problems for a piecewise-orthotropic
and piecewise-isotropic planes under the action of symmetrical normal stresses at the cracks sides
(of finite or half-infinite length) are investigated. These problems are reduced to the singular integral
equations with fixed singularity [2,14] and their solutions are presented explicitly. Additionally, contact
problems for a piecewise-homogeneous planes with a semi-infinite or finite inclusion or stringer are
investigated [3, 4, 8, 12]. In the present paper, a piecewise-homogeneous viscoelastic plate (under the
condition of Volterra viscoelastic model) with a finite crack is considered. When the crack crosses the
interface between two materials, the problem is reduced to the system of singular integral equations
of the first kind. The asymptotic estimates of solutions of this problem are derived. In the special
case, when the crack passes through the interface, the singular integral equation with fixed singularity
is investigated by using the methods of analytical functions and integral transformation.

2 Statement of the problem and reduction to the system of
integral equations

Suppose the body holds a complex plane z = x+ iy, consisting of two dissimilar isotropic half-plane
with viscoelastic properties. It is weakened by a finite crack the boundary of which is loaded by
normal symmetric forces (see Figure 1).

The half-planes S1 = {z | Re z > 0, z /∈ l1 = (0, a)} and S2 = {z | Re z < 0, z /∈ l2 = [−a,0)} are
connected along the 0y axis. Quantities and functions related to the half-planes Sk well be marked
by the index k (k = 1, 2), and the boundary values of the functions at the upper and lower edges of
the crack will be marked by the signs (+) and (−), respectively. The contact conditions along the
interface have the form

σ(1)
x = σ(2)

x , τ (1)xy = τ (2)xy ,
∂u1
∂y

=
∂u2
∂y

,
∂v1
∂y

=
∂v2
∂y

. (2.1)

On the crack boundary we have the following conditions:

σ(k)+
y = σ(k)−

y = Nk(x, t), τ (k)+xy = τ (k)−xy = 0,

u+k − u−k = 0, v+k − v−k = vk(x, t), x ∈ lk, k = 1, 2,
(2.2)

σy
(k), τ

(k)
xy and uk, vk are the stress and displacement components, respectively. Given continuous

functions Nk(x, t) on the interval, vk(x, t) are unknown functions, showing the opening of the crack
at the corresponding points.

The analogues of the Kolosov–Muskhelishvili formulas of the viscoelasticity theory are presented
in [8] as follows:

σ(k)
y − iτ (k)xy = Φk(z, t) + Φk(z, t) + zΦ′

k(z, t) + Ψk(z, t),

(I − L)
[
κkΦk(z, t)− Φk(z, t)− zΦ′

k(z, t)−Ψk(z, t)
]
= 2µk (u

′
k + iv′k) ,

(2.3)

where

(I − L)gk(t) = gk(t)−
t∫

t0

Ek
∂

∂τ
Ck(t, τ)gk(τ)dτ, 2µk =

Ek

1 + νk
,

Ck(t, τ) = φk(τ)(1− e−γ(t−τ)),

and κk = 3− 4νk (in the case of plane strain) or κk = 3−νk

1+νk
(in the case of generalized plane stress),

k = 1, 2; Ck(t,τ) and Ek are the creep measure and Jung’s module of the materials, respectively.
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Figure 1

Here, φk(τ) is known as the ageing function, the function (1− e−γ(t−τ)) characterizes the hereditary
properties of materials, and t0 is the ageing of the material at the beginning of load. Besides, the
Poisson coefficients for elastic-instant deformation νk(t) and creep deformation νk(t,τ) are the same
and constant: νk(t) = νk(t,τ) = νk = const [1, 5, 6].

Based on formulas (2.2) and (2.3), we obtain the following conditions of the problems of linear
conjugation:

Φ+
k (x, t)− Φ−

k (x, t) = ak(x, t), x ∈ lk,

Ψ+
k (x, t)−Ψ−

k (x, t) = bk(x, t), x ∈ lk,
(2.4)

where

ak(x, t) = ifk(x, t), bk(x, t) = −ixf ′k(x, t), fk(x, t) =
2µk

κk + 1
(I − L)−1 ∂vk(x, t)

∂x
,

and (I − L)−1 is an inverse operator of (I − L), which can be clearly given as [8]

(I − L)−1gk(t) = Ck (t0)

t∫
t0

δk(τ)dτ +

t∫
t0

δk(τ)

( τ∫
t0

Ak(s)

δk(s)
ds

)
dτ + C̃k (t0) ,

where

δk(t) = exp
(
− γ

t∫
t0

αk(τ)dτ

)
, αk(t) = 1 + Ekφk(t), C̃k (t0) = Ekgk(t0),

Ak(t) = Ekg̈k(t) + γġk(t), Ck (t0) = Ek(ġk(t0)− Eφk(t0)γgk(t0)),

k = 1, 2; ġ ≡ ∂g

∂t
, g̈ ≡ ∂2g

∂t2
.

The general solutions of the obtained jump problems (2.4) can be written in the following form:

Φk(z, t) =
1

2πi

∫
lk

ak(x, t)dx

x− z
+Wk(z, t) ≡ Ak(z, t) +Wk(z, t),

Ψk(z, t) =
1

2πi

∫
lk

bk(x, t)dx

x− z
+Qk(z, t) ≡ Bk(z, t) +Qk(z, t).

(2.5)

where Wk(z), Qk(z), k = 1, 2, are unknown analytic functions in the half-plates Sk to be determined
from conditions (2.1) at the interface of two materials.
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Using the methods of the theory of analytic functions (particularly, the Cauchy theorems), for the
search functions [10], we obtain the following representations:

W1(z, t) = e1t1

∫
l1

xf ′1(x, t)dx

x+ z
+ e1t1

∫
l1

xf1(x, t)dx

(x+ z)2
+ h1t2

∫
l2

f2(x, t)dx

x− z
,

W2(z, t) = −e2t2
∫
l2

xf ′2(x, t)dx

x+ z
− e2t2

∫
l2

xf2(x, t)dx

(x+ z)2
+ h2t1

∫
l1

f1(x, t)dx

x− z
,

Q1(z, t) = e1t1

∫
l1

xf ′1(x, t)dx

x+ z
−m1t1

∫
l1

f1(x, t)dt

x+ z
− 2e1t1z

∫
l1

(xf1(x, t))
′dx

(x+ z)2

− h3t2

∫
l2

xf ′2(x, t)dx

x− z
−m2t2

∫
l2

xf2(x, t)dt

(x− z)2
,

Q2(z, t) = e2t2

∫
l2

xf ′2(x, t)dx

x+ z
+m2t2

∫
l2

f2(x, t)dt

x+ z
+ 2e2t2z

∫
l2

(xf2(x, t))
′dx

(x+ z)2

− h4t2

∫
l1

xf ′1(x, t)dx

x− z
+m1t1

∫
l1

xf1(x, t)dt

(x− z)2
,

(2.6)

where

t1 =
µ1

1 + κ1
, t2 =

µ2

1 + κ2
, e1 =

µ2 − µ1

κ1µ2 + µ1
, e2 =

µ2 − µ1

κ2µ1 + µ2
,

m1 = (κ1 + 1)µ2

[
1

κ2µ1 + µ2
− 1

κ1µ2 + µ1

]
= h2 − h4,

m2 = (κ2 + 1)µ1

[
1

κ2µ1 + µ2
− 1

κ1µ2 + µ1

]
= h3 − h1,

h1 =
(κ2 + 1)µ1

κ1µ2 + µ1
, h2 =

(κ1 + 1)µ2

κ2µ1 + µ2
, h3 =

(κ2 + 1)µ1

κ2µ1 + µ2
, h4 =

(κ1 + 1)µ2

κ1µ2 + µ1
.

Taking into account relations (2.5)–(2.6) in the equality

σ(k)
y (z, t) = Re[Φk(z, t) + Φk(z, t) + zΦ′

k(z, t) + Ψk(z, t)],

and passing the limit as z → x± i0, from the condition

σ(k)+
y + σ(k)−

y = 2Nk(x, t), x ∈ lk, k = 1, 2,

we obtain the following system of singular integral equations of the first kind:

1

π

1∫
0

{
1

x− s
− 2e1 +m1

2(x+ s)
− 2e1x

(x+ s)2
+

4e1x
2

(x+ s)3

}
f1(x, t)dx

+
t2
πt1

1∫
0

{
−(h1 + h3)

x+ s
+

m2x

(x+ s)2

}
f2(−x, t)dx = N1(s, t),

1

π

1∫
0

{
1

x− s
− 2e2 +m2

2(x+ s)
− 2e2x

(x+ s)2
+

4e2x
2

(x+ s)3

}
f2(−x, t)dx

+
t1
πt2

1∫
0

{
−(h2 + h4)

x+ s
+

m1x

(x+ s)2

}
f1(x, t)dx = N2(−s, t), 0 < s < 1.

(2.7)
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3 Asymptotic study of the system of singular integral equa-
tions

To find the behavior of the solution of the system of integral equations (2.7) at the singular points,
we present its solution in the neighborhood of the point s = 1 in the following form:

f1(s, t) = (1− s)−αg1(s, t),

φ(s, t) ≡ f2(−s, t) = (1− s)−δφ1(s, t), 0 ≤ Re(α, δ) < 1,
(3.1)

where g1(x, t) and φ1(x, t) are the continuous functions in the neighborhood of the point s = 1.

The functions

J1(s, t) =
1

π

1∫
0

{
−2e1 +m1

2(x+ s)
− 2e1x

(x+ s)2
+

4e1x
2

(x+ s)3

}
f1(x, t)dx

+
t2
πt1

1∫
0

{
−(h1 + h3)

x+ s
+

m2x

(x+ s)2

}
f2(−x, t)dx,

J2(s, t) =
1

π

1∫
0

{
−2e2 +m2

2(x+ s)
− 2e2x

(x+ s)2
+

4e2x
2

(x+ s)3

}
f2(x, t)dx

+
t1
πt2

1∫
0

{
−(h2 + h4)

x+ s
+

m1x

(x+ s)2

}
f1(x, t)dx

are regular in the neighborhood of the point s = 1. Therefore, they can be represented as follows:

J1(s, t) = J1(1, t) + J1
′(1, t)(1− s) +

1

2
J1

′′(1, t)(1− s)2 + · · · ,

J2(s, t) = J2(1, t) + J2
′(1, t)(1− s) +

1

2
J2

′′(1, t)(1− s)2 + · · · .
(3.2)

According to the well-known theorems about the behavior of the Cauchy-type integral near the
ends of the integration curve, from (2.7) and (3.2), we have (see [11])

− ctgπαg1(1, t)(1− s)−α +O((1− s)−α0) + J1(1, t) + · · · = N1(1, t),

− ctgπδφ1(1, t)(1− s)−δ +O((1− s)−δ0) + J2(1, t) + · · · = N2(−1, t),

α0 < Reα, δ0 < Re δ.

Since the first terms have the greatest singularity, from the system of equations (2.7), we obtain

ctgπα = 0, ctgπδ = 0, α = δ =
1

2
. (3.3)

Accordingly, in the neighborhood of the point s = 1, the solutions of the system have a singularity of
order 1

2 .
We present the solution of the system in the neighborhood of the point s = 0 as follows:

f1(s,t) = s−βg2(s, t), φ(s, t) = s−γφ2(s, t), 0 ≤ Re(β, γ) < 1, (3.4)

where g2(x, t) and φ2(x, t) are the continuous functions in the neighborhood of the point s = 0.
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Based on the known theorems on the behavior of the Cauchy-type integral [11], we have

1

π

1∫
0

f1(x, t)dx

x− s
= ctgπβg2(0, t)s−β +O(s−β0), s→ 0,

1

π

1∫
0

φ(x, t)dx

x− s
= ctgπγg2(0, t)s−γ +O(s−γ0), s→ 0,

β0 < Reβ, γ0 < Re γ.

For the functions

J3(s, t) =
1

π

1∫
0

{
− 2e1x

(x+ s)2
+

4e1x
2

(x+ s)3

}
f1(x, t)dx+

t2
πt1

1∫
0

m2x

(x+ s)2
f2(−x, t)dx

=
1

π

d

ds

1∫
0

2e1x

x+ s
f1(x, t)dx+

1

π

d2

ds2

1∫
0

2e1x
2

x+ s
f1(x, t)dx− t2

πt1

d

ds

1∫
0

m2x

x+ s
f2(−x, t)dx,

J4(s, t) =
1

π

1∫
0

{
− 2e2x

(x+ s)2
+

4e2x
2

(x+ s)3

}
f2(x, t)dx+

t1
πt2

1∫
0

m2x

(x+ s)2
f2(−x, t)dx

=
1

π

d

ds

1∫
0

2e2x

x+ s
f2(−x, t)dx+

1

π

d2

ds2

1∫
0

2e2x
2

x+ s
f2(−x, t)dx− t1

πt2

d

ds

1∫
0

m1x

x+ s
f1(x, t)dx,

we obtain

J3(s, t) = 2e1

[
(1− β)2

sinπβ
g2(0, t)

sβ
+O(s−β0)

]
+
t2m2

t1

[
1− γ

sinπγ
φ2(0, t)

sγ
+O(s−γ0)

]
,

J4(s, t) = 2e2

[
(1− γ)2

sinπγ
φ2(0, t)

sγ
+O(s−γ0)

]
+
t1m1

t2

[
1− β

sinπβ
g2(0, t)

sβ
+O(s−β0)

]
, s→ 0,

and the functions

L1(s, t) = −A1

π

1∫
0

f1(x, t)dx

x+ s
− D1

π

1∫
0

φ(x, t)dx

x+ s
, L2(s, t) = −A2

π

1∫
0

φ(x, t)dx

x+ s
− D2

π

1∫
0

f1(x, t)dx

x+ s

satisfy the following estimates:

L1(s, t) = −A1

{
eiβπ

sinπβ g2(0, t)(−s)
−β +O((−s)−β0)

}
−D1

{
eiγπ

sinπγφ2(0, t)(−s)−γ +O(−s)−γ0

}
= −A1

{
1

sinπβ g2(0, t)s
−β +O(s−β0)

}
−D1

{
1

sinπγφ2(0, t)s
−γ +O(s−γ0)

}
, s→ 0,

L2(s, t) = −A2

{
eiγπ

sinπγφ2(0, t)(−s)−γ +O((−s)−γ0)

}
−D2

{
eiβπ

sinπβ g2(0, t)(−s)
−β +O((−s)−β0)

}
= −A2

{
1

sinπγφ2(0, t)s
−γ +O(s−γ0)

}
−D2

{
1

sinπβ g2(0, t)s
−β +O(s−β0)

}
, s→ 0,

β0 < Reβ, γ0 < Re γ.

Taking into account these estimates, from the system of singular integral equations (2.7), in the
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neighborhood of the point s = 0, we obtain

− ctgπβg2(0, t)s−β −A1
g2(0, t)

sinπβ s
−β −D1

φ2(0, t)

sinπγ s−γ + 2e1
(1− β)2

sinπβ g2(0, t)s
−β

+
t2m2

t1

1− γ

sinπγφ2(0, t)s
−γ +O(s−β0) +O(s−γ0) = N1(0, t),

− ctgπγφ2(0, t)s
−γ −A2

φ2(0, t)

sinπγ s−γ −D2
g2(0, t)

sinπβ s
−β + 2e2

(1− γ)2

sinπγ φ2(0, t)s
−γ

+
t1m1

t2

1− β

sinπβ g2(0, t)s
−β +O(s−β0) +O(s−γ0) = N2(0, t),

(3.5)

where
A1 =

2e1 +m1

2
, D1 =

(h1 + h3)t2
t1

, A2 =
2e2 +m2

2
, D2 =

(h2 + h4)t1
t2

.

It is easy to prove that β = γ, since otherwise (Reβ > Re γ, Reβ < Re γ) the last equalities are
not simultaneously satisfied. Therefore, from (3.5), we obtain the following system of transcendental
equations:

cosπβ + (A1 + 2e1(1− β)2) +

(
D1 −

t2m2(1− β)

t1

)
C = 0,

cosπβ + (A2 + 2e2(1− β)2) +

(
D2 −

t1m1(1− β)

t2

)
C−1 = 0,

(3.6)

where C = φ2(0,t)
g2(0,t)

does not depend on β and t.
It can be shown that if κ1µ2 + µ1 ̸= κ2µ1 + µ2, system (3.6) has no such solution (β,C), where

0 ≤ Reβ < 1, C = const. In this case, the normal stresses σ(1)
y (z, t) may have the logarithmic

singularity or may be bounded in the neighborhood of zero.
In the case κ1µ2 + µ1 = κ2µ1 + µ2, equations (3.6) take the form

cosπβ + e1 + 2e1(1− β)2 +D1C = 0 (3.7)

where C = ±
√

D2

D1
= ±

√
(κ1−1)(κ2+1)
(κ2−1)(κ1+1) , and if, additionally, µ1 = µ2 (the material of both half-planes

is the same), we obtain
cosπβ = ±2, β = − i

π
ln(2±

√
3),

which means that the functions f1(s, t) and f2(−s, t), and accordingly the normal stresses σ(1)
y (z, t)

can have an integrable singularity or can be bounded in the neighborhood of zero.
The analytical study of equations (3.6) and (3.7) is associated with great difficulties and can be

investigated only numerically.
Theorem. If the system of singular integral equations (2.5) has a solution, then it satisfies the
following estimates:{

f1(s,t)
f2(−s,t)

= O((1− s)−
1
2 ),

{
s→ 1−,

−s→ −1+,
0 < s < 1,{

f1(s,t)
f2(−s,t)

= O(s−β),

{
s→ 0+,
−s→ 0−, 0 < s < 1, 0 ≤ Reβ < 1,

where β can be determined from equation (3.7).

4 Exact solution of the problem in a specific case
Let us consider a problem when the crack is located in one half-plane and passes at a right angle on
the interface of two materials. Considering

σ(1)+
y (x) + σ(1)−

y (x) =

{
2Nk(x, t), x ∈ [0, 1],

2σ
(1)
y (x), x ∈ (1,∞),
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the problem is reduced to the following singular integral equation of the first kind:

1

π

1∫
0

{
1

x− s
− A1

x+ s
− 2e1x

(x+ s)2
+

4e1x
2

(x+ s)3

}
f1(x, t)dx = N1(s, t), 0 < s < 1. (4.1)

Using the equality

1∫
0

f1(x, t)dx =
2µ1

1 + κ1
(I − L)−1

1∫
0

∂v1(x, t)

∂x
dx =

2µ1

1 + κ1
(I − L)−1(v+1 (1, t)− v+1 (0, t)) = 0,

from (4.1) we have

1

π

1∫
0

{
1

x− s
+
A1 − 2e1
x+ s

+
6e1x

(x+ s)2
− 4e1x

2

(x+ s)3

}
f(x, t)dx = sN1(s, t), 0 < s < 1, (4.2)

where f(x, t) = xf1(x, t).
Due to the fact that the displacement must be limited at the pointx = 0, the desired function

f(x, t) is required to satisfy the condition f(x, t) → 0, x→ 0.
To solve equation (4.2), we make changes to the variables x = eς , s = eξ, and use a generalized

Fourier transform to obtain the Riemann boundary value problem [7]

G(y)Φ−(y, t) = Ψ+(y, t) + P (y, t), y = y0 + iε, |y0| <∞, ε > 0

where

Φ−(z, t) =
1√
2π

0∫
−∞

f0(ξ, t)e
iξzdξ, Ψ+(z, t) =

i√
2π

∞∫
0

ψ+(ξ, t)eiξzdξ,

P (z, t) =
i√
2π

0∫
−∞

N0(ξ, t)e
iξzdξ,

f0(ξ, t) = f(eξ, t), N0(ξ, t) = 2eξN1(e
ξ, t), ψ+(ξ, t) =

{
0, ξ < 0,

2σ
(1)
y (eξ), ξ > 0,

G(z) =
1

shπz [chπz + (A1 − 2e1) + 2e1(z + i)(2z + 7i)].

The problem can be formulated as follows: find the functionΨ+(z, t), holomorphic in the half-plane
Im z > 0, and the function Φ−(z, t), holomorphic in the half-plane Im z < 1 (with the exception of a
finite number of roots of the function G(z) in the strip 0 < Im z < 1, at which the function Φ−(z, t)
has poles of the first order), vanishing at infinity and satisfying condition (4.1) [7, 11].

The boundary condition (4.1) is represented in the form

G0(y)
Φ−(y, t)

√
y − i

y
=

Ψ+(y, t)√
y + i

+
P (y, t)√
y + i

, y = y0 + iε, ε > 0, (4.3)

where the function G0(y, t) = yG(y)[1 + y2]−
1
2 satisfies the conditions ReG0(y, t) > 0, G0(±∞) = 1,

IndG0(y, t) = 0.
The solution of this problem can be represented in the form [10]

Φ−(z, t) =
zX(z, t)√
z − i

, Im z ≤ 0, Ψ+(z, t) = X(z, t)
√
z + i, Im z > 0,

Φ−(z, t) =
Ψ+(z, t) + P (z, t)

G(z)
, 0 < Im z < 1,
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where

X(z, t) =
X(z)

2πi

∞∫
−∞

P (y, t)dy

X+(y)
√
y + i(y − z)

, X(z) = exp
(

1

2πi

∞∫
−∞

lnG0(y)dy

y − z

)
.

The function Φ−(z, t) is holomorphic in the half-plane Im z < 1, with the exception of a finite number
of roots of the function G(z) in the strip 0 < Im z < 1.

The function Ψ+(z, t) can be represented in the form

Ψ+(z, t) =
X(z)

2πi
√
z + i

{ ∞∫
−∞

√
y + iP (y, t)dy

X+(y)(y − z)
−

∞∫
−∞

P (y, t)dy

X+(y)
√
y + i

}

= Ψ0
+(z, t)− X(z)

2πi
√
z + i

∞∫
−∞

P (y, t)dy

X+(y)
√
y + i

.

The boundary value Ψ0
+(y, t) of the function Ψ0

+(z, t) is the Fourier transform of the bounded
function ψ0(ξ, t), continuous on the semi-axis ξ ≥ 0, except possibly at the point ξ = 0, where it may
have a logarithmic singularity. Using the inverse Fourier transform [13], from

Ψ+(y, t) =
c(t)√
y + i

+Ψ0
+(y, t), (4.4)

we obtain σ(1)
y(x, t) =

c(t)√
ix

√
x−1

+ ψ0(lnx, t), x > 1, and from the function

Φ−(y, t) =
c1(t)√
y − i

+Φ0
−(y, t),

where the function Ψ0
−(y, t) is the Fourier transform of the bounded function φ0(ξ, t), which is

continuous on the semi-axis ξ ≤ 0 (except maybe at the point ξ = 0, where it may have a logarithmic
singularity), the inverse Fourier transform yields

f1(x, t) =
c1(t)√
1− x

+ φ0(lnx, t) = O((1− x)−
1
2 ), 0 < x < 1, x→ 1− .

It can be easily shown that for 0 ≤ Im z < 1, we have

Φ−(z, t) =
c2(t)√
z − i

+Φ1
−(z, t), (4.5)

where the function Φ1
−(z, t) is holomorphic in the strip 0 < Im z < 1, except maybe at one point

z0 = iτ0 + α, τ0 < β < 1, where it has a first order pole. Using Cauchy's theorem, we obtain

N∫
−N

Φ1
−(y, t)e−iyξdy = eβξ

N∫
−N

Φ1
−(y + iβ, t)e−iyξdy + c3(t)e

τ0ξ + ε(N, ξ),

where ε(N, ξ) → 0, N → ∞.
From formula (4.5), the Fourier transform gives

eξf1(e
ξ, t) =

c2(t)e
ξ

√
−ξ

+
eβξ√
2π

∞∫
−∞

Φ0
−(y + iβ, t)e−iyξdy +

c3(t)e
τ0ξ

√
2π

, ξ < 0.

Therefore,

f1(x, t) =
c2(t)√
− lnx

+ xβ−1φ1(x, t) +
c3(t)x

τ0−1

√
2π

= O(xτ0−1), 0 < x < 1, x→ 0+,
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∂v1(x, t)

∂x
=

κ1 + 1

2µ1
(I − L)f1(x, t) = O(xτ0−1), x→ 0 + .

In a particular case µ1 = µ2 (e1 = 0, A1 = κ1−κ2

2(κ2+1) , |A1| < 1), the equation G(z) = 0 has a
purely imaginary solution (the least distant from the origin) z0 = iτ0, τ0 = 1

πarc cos κ2−κ1

2(κ2+1) , and the
following conclusions are valid:

a) if A1 > 0 (κ1 > κ2), then 1
2 < τ0 < 1,

b) if A1 < 0 (κ1 < κ2), then 0 < τ0 <
1
2 ,

c) if A1 = 0 (κ1 = κ2, the material of both half-planes is the same), then τ0 = 1
2 .
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