Memoirs on Differential Equations and Mathematical Physics

Volume ??, 2025, 1–10

Nguyen T. T. Lan, H. T. Thanh

EXISTENCE AND UNIQUENESS OF A SOLUTION OF A SELF-REFERRED DIFFERENTIAL EQUATION WITH WEIGHT

Abstract. In this paper, the existence and uniquenesss of a solution of an initial-value problem of a self-referred differential equation with weight is investigated. In addition, the Lipschitzian continuity of this unique solution is also considered.

2020 Mathematics Subject Classification. 34A12, 34A34, 34C99.

Key words and phrases. Self-referred, differential solution, weight, existence, uniqueness, fixedpoint method.

1 Introduction

Let *X* be a space of functions, $A: X \to \mathbb{R}$ and $B: X \to \mathbb{R}$ be funtionals. Consider the equation

$$
Au(x,t) = u(Bu(x,t),t),\tag{1.1}
$$

where $u = u(x, t)$, $(x, t) \in \mathbb{R} \times [0, +\infty)$, is an unknown function satisfying some initial conditions at $t = 0$ for every $x \in \mathbb{R}$. Equation [\(1.1\)](#page-2-0) is called a self-referred equation. Many authors have investigated (1.1) (1.1) for different *A* and *B* (see [[1–](#page-8-0)[5\]](#page-8-1) and the references therein).

In [\[3](#page-8-2)], the authors considered the existence and uniqueness of a local solution of the following initial-value problem of a self-referred differential equation associated with an integral operator:

$$
\begin{cases}\n\frac{\partial}{\partial t} u(x,t) = u\left(\int_0^t u(x,s) ds, t\right), & t > 0, \\
u(x,0) = u_0(x), & x \in \mathbb{R},\n\end{cases}
$$
\n(1.2)

where $(x, t) \in \mathbb{R} \times \mathbb{R}^+$ and u_0 is a given function. Then, replacing the integral operator in ([1.2](#page-2-1)) by some integral operators with weight, the authors also got the existence and uniqueness of a local solution of the initial-value problems

$$
\begin{cases}\n\frac{\partial}{\partial t}u(x,t) = u\left(\frac{1}{t}\int_{0}^{t}u(x,s)\,ds,t\right), & t > 0, \\
u(x,0) = u_0(x), & x \in \mathbb{R},\n\end{cases}
$$
\n(1.3)

and

$$
\begin{cases}\n\frac{\partial}{\partial t}u(x,t) = u\left(\int_{0}^{t} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u(\xi,s) \, d\xi \, ds, t\right), & t > 0, \\
u(x,0) = u_0(x), & x \in \mathbb{R},\n\end{cases}
$$
\n(1.4)

where $(x, t) \in \mathbb{R} \times \mathbb{R}^+$ and u_0 is a given function.

In [[6\]](#page-8-3), the authors studied the following system of two partial-differential equations with selfreference and weighted hereditary:

$$
\begin{cases}\n\frac{\partial}{\partial t}u(x,t) = u\bigg(f(u(x,t)) + v\bigg(\frac{1}{t}\int_{0}^{t}u(x,s)\,ds + \varphi(u(x,t)),t\bigg),t\bigg),\\ \n\frac{\partial}{\partial t}v(x,t) = v\bigg(g(v(x,t)) + u\bigg(\frac{1}{t}\int_{0}^{t}v(x,s)\,ds + \psi(u(x,t)),t\bigg),t\bigg),\n\end{cases} \tag{1.5}
$$

associated with the initial conditions

$$
u(x, 0) = u_0(x), \quad v(x, 0) = v_0(x).
$$

With some appropriate conditions on the given functions f , g , φ , ψ , u_0 and v_0 , the uniqueness of a local solution and the existence of a global solution of this problem were proved.

By considering ([1.1\)](#page-2-0) in one-dimensional space setting and the Chandrase–Khar kernel, the general state-dependent integral equation via Chandrase–Khar kernel

$$
x(t) = b(t) + \lambda x \bigg(\int_{0}^{t} \frac{t}{t+s} g(s, x(s)) ds \bigg), \ \ t \in [0, 1], \tag{1.6}
$$

was investigated in [[7\]](#page-9-0) under some conditions on the given functions *b* and *g*. The existence of a solution of [\(1.6](#page-2-2)) and the continuous dependence of this solution were obtained.

As a generalization of (1.3) (1.3) (1.3) , (1.4) , (1.5) (1.5) (1.5) and (1.6) (1.6) , this paper deals with the following initial-value problem of a self-referred differential equation with weight:

$$
\begin{cases}\n\frac{\partial}{\partial t}u(x,t) = u\left(au(x,t) + \int_{0}^{t} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u(\xi,s) \,d\xi \,ds, t\right), \\
u(x,0) = u_0(x),\n\end{cases} \tag{1.7}
$$

where $(x, t) \in \mathbb{R} \times \mathbb{R}^*$, $\mathbb{R}^* = \mathbb{R}^+ \cup \{0\}$, $a \in \mathbb{R}$; u_0 and $\delta > 0$ are the given real functions and *u* is an unknown function. Using a fixed-point method, the existence and uniqueness of a solution of ([1.7](#page-3-0)) are studied. In addition, the Lipschitz property of this solution is also obtained.

2 Main results

In this section, we study the existence and uniqueness of a solution of the following initial-value problem of a self-referred differential equation with weight

$$
\begin{cases} \frac{\partial}{\partial t} u(x,t) = u\bigg(au(x,t) + \int\limits_0^t \frac{1}{2\delta(s)} \int\limits_{x-\delta(s)}^{x+\delta(s)} u(\xi,s) \, d\xi \, ds, t\bigg), & t \ge 0, \ x \in \mathbb{R}, \\ u(x,0) = u_0(x), & x \in \mathbb{R}, \end{cases}
$$

where $x \in \mathbb{R}$, $t \geq 0$, $a \in \mathbb{R}$, $u_0(0)$ and $\delta(s) > 0$ are two given functions, *u* is an unknow function.

First, denote

 $\mathbb{C}(\mathbb{R} \times [0, +\infty), \mathbb{R}) = \{u : \mathbb{R} \times [0, +\infty) \to \mathbb{R}, u \text{ is continuous and bounded}\}.$

For $u \in \mathbb{C}(\mathbb{R} \times [0, +\infty), \mathbb{R})$, consider the following operator:

$$
Tu(x,t) = u_0(x) + \int_0^t u\left(au(x,t) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u(\xi, s) d\xi ds, \tau\right) d\tau,
$$

where u_0 and δ are the given real continuous functions.

Remark. Given a continuous and bounded function $f : \mathbb{R} \to \mathbb{R}$ and a non-negative function $\delta : \mathbb{R} \to$ $[0, +\infty)$, it follows that

$$
\begin{split}\n\left| \int_{x-\delta(s)}^{x+\delta(s)} f(\xi) \, d\xi - \int_{y-\delta(s)}^{y+\delta(s)} f(\xi) \, d\xi \right| \\
&= \left| \int_{x-\delta(s)}^{0} f(\xi) \, d\xi + \int_{0}^{x+\delta(s)} f(\xi) \, d\xi + \int_{0}^{y-\delta(s)} f(\xi) \, d\xi - \int_{0}^{y+\delta(s)} f(\xi) \, d\xi \right| \\
&= \left| \int_{x-\delta(s)}^{y-\delta(s)} f(\xi) \, d\xi + \int_{y+\delta(s)}^{x+\delta(s)} f(\xi) \, d\xi \right| \le 2 \|f\|_{\infty} |x-y|.\n\end{split} \tag{2.1}
$$

Suppose that

 (M_1) $a \in \mathbb{R}$;

(M_2) *u*⁰ is a bounded function in ℝ, $||u_0||_{L^\infty(\mathbb{R}, \mathbb{R})}$ < +∞;

 (M_3) $\,u_0$ is Lipschitz, which means that there exists $L_0\geq 0$ such that

$$
|u_0(x) - u_0(y)| \le L_0 |x - y|
$$

for all $x, y \in \mathbb{R}$;

 (M_4) $\delta : \mathbb{R} \to [0, +\infty)$ satisfies the condition

$$
\int\limits_0^t\frac{1}{\delta(s)}\,ds<+\infty
$$

for all $t > 0$.

We consider the sequence of functions $(u_n)_n$ defined by recurrence formula:

$$
u_1(x,t) = u_0(x) + \int_0^t u_0 \left(au_0(x) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u_0(\xi) d\xi ds \right) d\tau,
$$

$$
u_{n+1}(x,t) = u_0(x) + \int_0^t u_n \left(au_n(x,\tau) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u_n(\xi,s) d\xi ds, \tau \right) d\tau,
$$

where $t \geq 0, x \in \mathbb{R}, n \geq 1$.

We see that

$$
|u_1(x,t)| \le ||u_0||_{\infty}(1+t),
$$

$$
|u_2(x,t)| \le ||u_0||_{\infty}\left(1+t+\frac{t^2}{2}\right).
$$

By induction on *n*, we get

$$
|u_n(x,t)| \leq ||u_0||_{\infty} \sum_{i=1}^n \frac{t^i}{i!}.
$$

Therefore, we can choose $T_1 > 0$ such that

$$
||u_n||_{L^{\infty}(\mathbb{R}\times[0,T_1])} \le ||u_0||_{\infty} \sum_{i=1}^n \frac{T_1^i}{i!} \le e^{T_1} ||u_0||_{\infty}.
$$
\n(2.2)

On the other hand, we have

$$
0 \le |u_1(x,t) - u_0(x)| \le ||u_0||_{\infty} t = A_1(t), \quad \forall x \in \mathbb{R}, \quad t > 0.
$$

Furthermore,

$$
|u_1(x,t) - u_1(y,t)| \leq \left[L_0 + \int_0^t L_0(|a|L_0 + ||u_0||) \int_0^{\tau} \frac{1}{\delta(s)} ds\right) d\tau\right]|x - y| := L_1(t)|x - y|,
$$

where

$$
L_1(t) = L_0 + \int_0^t L_0 \left(|a|L_0 + ||u_0||_{\infty} \int_0^{\tau} \frac{1}{\delta(s)} ds \right) d\tau.
$$

Since

$$
u_2(x,t) = u_0(x) + \int_0^t u_1\left(au_1(x,\tau) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u_1(\xi,s) \, d\xi \, ds, \tau\right) d\tau,
$$

we have

$$
|u_2(x,t) - u_1(x,t)| \leq \int_0^t \left[\left| u_1 \left(au_1(x,\tau) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_s^{x+\delta(s)} u_1(\xi,s) \, d\xi \, ds, \tau \right) \right| \right. \\ \left. - u_0 \left(au_1(x,\tau) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_s^{x+\delta(s)} u_1(\xi,s) \, d\xi \, ds \right) \right| \\ \left. + \left| u_0 \left(au_1(x,\tau) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u_1(\xi,s) \, d\xi \, ds \right) \right| \\ \left. - u_0 \left(au_0(x) + \int_0^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u_0(\xi) \, d\xi \, ds \right) \right| \right] d\tau \\ \leq \int_0^t \left[A_1(\tau) + L_0 \left(|a|A_1(\tau) + \int_0^{\tau} A_1(s) \, ds \right) \right] d\tau \\ = \int_0^t \left[(1 + L_0|a|)A_1(\tau) + L_0 \int_0^{\tau} A_1(s) \, ds \right] d\tau \\ := A_2(t).
$$

Furthermore,

$$
|u_2(x,t) - u_2(y,t)|
$$

\n
$$
\leq L_0|x - y| + \int_0^t L_1(\tau) \left[|a|L_1(\tau) + \|u_1\|_{L^\infty(\mathbb{R}\times[0,T_1])} \int_0^\tau \frac{1}{\delta(s)} ds \right] |x - y| d\tau
$$

\n
$$
= |x - y| \left[L_0 + \int_0^t L_1(\tau) \left(|a|L_1(\tau) + e^{T_1} \|u_0\|_{\infty} \int_0^\tau \frac{1}{\delta(s)} ds \right) d\tau \right]
$$

\n
$$
= L_2(t)|x - y|,
$$

where

$$
L_2(t) = L_0 + \int_0^t L_1(\tau) \left(|a| L_1(\tau) + e^{T_1} ||u_0||_{\infty} \int_0^{\tau} \frac{1}{\delta(s)} ds \right) d\tau.
$$

By induction on *n*, we get

$$
|u_{n+1}(x,t) - u_{n+1}(y,t)|
$$

\n
$$
\leq L_0|x-y| + \int_0^t L_n(\tau) \left[|a|L_n(\tau) + \|u_1\|_{L^\infty(\mathbb{R}\times[0,T_1])} \int_0^\tau \frac{1}{\delta(s)} ds \right] |x-y| d\tau
$$

\n
$$
= |x-y| \left[L_0 + \int_0^t L_n(\tau) \left(|a|L_n(\tau) + e^{T_1} \|u_0\|_{\infty} \int_0^\tau \frac{1}{\delta(s)} ds \right) d\tau \right]
$$

\n
$$
= L_{n+1}(t)|x-y|,
$$

where

$$
L_{n+1}(t) = L_0 + \int_{0}^{t} L_n(\tau) \left(|a| L_n(\tau) + e^{T_1} ||u_0||_{\infty} \int_{0}^{\tau} \frac{1}{\delta(s)} ds \right) d\tau.
$$

It is easy also to prove that

$$
|u_{n+1}(x,t) - u_n(x,t)| \le A_{n+1}(t), \ \forall x \in \mathbb{R}, \ 0 \le t \le T_1, \ \forall n \in \mathbb{N},
$$

and

$$
|u_{n+1}(x,t) - u_{n+1}(y,t)| \le L_{n+1}|x - y|, \quad \forall x, y \in \mathbb{R}, \quad 0 \le t \le T_1, \quad \forall n \in \mathbb{N},
$$

where

$$
A_{n+1}(t) = \int_{0}^{t} \left[\left(1 + |a| L_{n}(\tau) \right) A_{n}(\tau) + L_{n}(\tau) \int_{0}^{\tau} A_{n}(s) ds \right] d\tau,
$$

$$
L_{n+1}(t) = L_{0} + \int_{0}^{t} L_{n}(t) \left(|a| L_{n}(\tau) + e^{T_{1}} ||u_{0}||_{\infty} \int_{0}^{\tau} \frac{1}{\delta(s)} ds \right) d\tau.
$$

Let $M_0 > 0$, putting $c^* = \int_0^{T_1}$ 0 $\frac{1}{\delta(s)}$ *ds*, $T_2 \leq T_1$, such that for every $0 \leq t \leq T_2$,

$$
L_0\Big(|a|L_0 + e^{T_1}||u_0||_{\infty}c^{\star}\Big) t \le M_0,
$$

$$
(M_0 + L_0)\Big[|a|(M_0 + L_0) + e^{T_1}||u_0||_{\infty}c^{\star}\Big] t \le M_0,
$$

$$
\frac{t^2}{2}(M_0 + L_0) + ((M_0 + L_0)|a| + 1)t \le h < 1,
$$

we can see that

$$
0 \le L_1((t) - L_0 \le \int_0^t L_0 \left(|a|L_0 + e^{T_1} ||u_0||_{\infty} \int_0^{T_1} \frac{1}{\delta(s)} ds \right) d\tau
$$

$$
\le \int_0^t L_0 \left(|a|L_0 + e^{T_1} ||u_0||_{\infty} c^{\star} \right) d\tau \le L_0 \left(|a|L_0 + e^{T_1} ||u_0||_{\infty} c^{\star} \right) t \le M_0
$$

and

$$
0 \le L_2(t) - L_0
$$

\n
$$
\le \int_0^t L_1(\tau) \left(|a|L_1(\tau) + e^{T_1}||u_0||_{\infty} \int_0^{T_1} \frac{1}{\delta(s)} ds \right) d\tau \le \int_0^t L_1(\tau) \left(|a|L_1(\tau) + e^{T_1}||u_0||_{\infty} c^* \right) d\tau
$$

\n
$$
= \int_0^t \left[L_1(\tau) - L_0 + L_0 \right] \left(|a| \left[L_1(\tau) - L_0 + L_0 \right] + e^{T_1} ||u_0||_{\infty} c^* \right) d\tau
$$

\n
$$
\le \int_0^t (M_0 + L_0) \left[|a| (M_0 + L_0) + e^{T_1} ||u_0||_{\infty} c^* \right] d\tau
$$

\n
$$
\le (M_0 + L_0) \left[|a| (M_0 + L_0) + e^{T_1} ||u_0||_{\infty} c^* \right] d\tau
$$

By induction on *n*, we get

$$
0 \le t \le T_2, \quad 0 \le L_n(t) - L_0 \le M_0, \quad \forall n \in \mathbb{N}.
$$

So, we obtain

$$
0 \le t \le T_2, \quad 0 \le L_n(t) \le L_0 + M_0, \quad \forall n \in \mathbb{N}.
$$

As a result, it follows that

$$
A_{n+1}(t) = \int_{0}^{t} \left[(1+|a|L_{n}(\tau))A_{n}(\tau) + L_{n}(\tau) \int_{0}^{\tau} A_{n}(s) ds \right] d\tau
$$

\n
$$
\leq \int_{0}^{t} \left[(1+|a|(M_{0}+L_{0})) \|A_{n}\|_{L^{\infty}([0,T_{2}])} + \tau (M_{0}+L_{0}) \|A_{n}\|_{L^{\infty}([0,T_{2}])} \right] d\tau
$$

\n
$$
= \|A_{n}\|_{L^{\infty}([0,T_{2}])} \left[(1+|a|(M_{0}+L_{0}))t + (M_{0}+L_{0}) \frac{t^{2}}{2} \right] \leq h \|A_{n}\|_{L^{\infty}([0,T_{2}])}.
$$

In conclusion, the series

$$
\sum_{n=0}^{\infty} ||A_n||_{L^{\infty}([0,T_2])}
$$

is convergent and we deduce that the sequence (u_n) is uniformly convergent to a function $u^* \in X$. It is easy to prove that u^* is the solution of Problem (1.7) (1.7) (1.7) , $\forall x \in \mathbb{R}$, $t \in [0, T_2]$. Moreover, the solution u^* is unique. In fact, we assume that $\overline{u}(x,t)$ is also the solution of Problem ([1.7\)](#page-3-0). Then we have

$$
\left|\overline{u}(x,t) - u^{*}(x,t)\right| = \left|u_{0}(x) + \int_{0}^{t} \overline{u}\left(a\overline{u}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} \overline{u}(\xi,\tau) d\xi ds, \tau\right) d\tau\right|
$$

\n
$$
- \left[u_{0}(x) + \int_{0}^{t} u^{*}\left(au^{*}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} u^{*}(\xi,\tau) d\xi ds, \tau\right) d\tau\right|
$$

\n
$$
\leq \left| \int_{0}^{t} \overline{u}\left(a\overline{u}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} \overline{u}(\xi,\tau) d\xi ds, \tau\right) d\tau - \int_{0}^{t} u^{*}\left(au^{*}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} \overline{u}(\xi,\tau) d\xi ds, \tau\right) d\tau\right|
$$

\n
$$
\leq \int_{0}^{t} \left| \overline{u}\left(a\overline{u}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} \overline{u}(\xi,\tau) d\xi ds, \tau\right) - u^{*}\left(a\overline{u}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} \overline{u}(\xi,\tau) d\xi ds, \tau\right) \right| d\tau
$$

\n
$$
+ \int_{0}^{t} |u^{*}\left(a\overline{u}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} \overline{u}(\xi,\tau) d\xi ds, \tau\right) - u^{*}\left(au^{*}(x,\tau) + \int_{0}^{\tau} \frac{1}{2\delta(s)} \int_{x-\delta(s)}^{x+\delta(s)} \overline{u}(\xi,\tau) d\xi ds, \tau\right) d\tau
$$

\n<math display="block</math>

$$
= \|\overline{u} - u^*\|_{\infty} t + (M_0 + L_0)\|\overline{u} - u^*\|_{\infty} \int_0^t \left[|a| + \int_0^{\tau} \frac{1}{2\delta(s)} \int_{x - \delta(s)}^{x + \delta(s)} d\xi \, ds\right] d\tau
$$

\n
$$
= \|\overline{u} - u^*\|_{\infty} t + (M_0 + L_0)\|\overline{u} - u^*\|_{\infty} \int_0^t \left[|a| + \int_0^{\tau} ds\right] d\tau
$$

\n
$$
= \|\overline{u} - u^*\|_{\infty} t + (M_0 + L_0)\|\overline{u} - u^*\|_{\infty} \int_0^t \left[|a| + \tau\right] d\tau
$$

\n
$$
= \|\overline{u} - u^*\|_{\infty} \left[(M_0 + L_0) \left(|a|t + \frac{t^2}{2} \right) + t \right]
$$

\n
$$
= \|\overline{u} - u^*\|_{\infty} \left[\frac{t^2}{2} (M_0 + L_0) + ((M_0 + L_0)|a| + 1)t \right]
$$

\n
$$
\leq \|\overline{u} - u^*\|_{\infty} \cdot h.
$$

Since $0 < h < 1$, we deduce $\|\overline{u} - u^*\|_{\infty} = 0$. We conclude that $u^*(x, t)$ is the unique solution of ([1.7\)](#page-3-0). Moreover, from (2.1) (2.1) it follows that

$$
|u^{\star}(x,t)-u^{\star}(y,t)|\leq (M_0+L_0)|x-y|, \;\;\forall\,x,y\in\mathbb{R},\;\;t\in[0,T_2],
$$

and from ([2.2\)](#page-4-0) it follows

$$
|u^*(x,t_2) - u^*(x,t_1)| \le e^{T_1} ||u_0||_{\infty} |t_2 - t_1|,
$$

hence u^* is Lipschitz in the first variable (uniformly with respect to the second one) and is Lipschitz in the second variable (uniformly with respect to the first one).

To summarize, the following theorem is proved.

Theorem. *Suppose* (M_1) – (M_4) *hold. There exists* $T > 0$ *such that Problem* ([1.7](#page-3-0)) *has a unique solution* $u \in \mathbb{C}(\mathbb{R} \times [0,T], \mathbb{R}) \cap L^\infty(\mathbb{R} \times [0,T], \mathbb{R})$ *. In addition, u is Lipschitz in the first variable (uniformly with respect to the second one), and Lipschitz in the second variable (uniformly with respect to the first one).*

Acknowledgments

This research was funded by Sai Gon University under the project $\#$ CSB2023-07 and partially reported to Sai Gon University by H. T. Thanh for her graduation under the supervision of Dr. Nguyen T. T. Lan [8].

References

- [1] Ut Van Le and L. T. T. Nguyen, Existence of solutions for systems of self-referred and hereditary differential equations. *Electron. J. Differential Equations* **2008**, no. 51, 7 pp.
- [2] M. Miranda, Jr. and E. Pascali, On a class of differential equations with self-reference. *Rend. Mat. Appl. (7)* **25** (2005), no. 2, 155–164.
- [3] M. Miranda, Jr. and E. Pascali, On a type of evolution of self-referred and hereditary phenomena. *Aequationes Math.* **71** (2006), no. 3, 253–268.
- [4] E. Pascali, Existence of solutions to a self-referred and hereditary system of differential equations. *Electron. J. Differential Equations* **2006**, no. 7, 7 pp.
- [5] E. Pascali and Ut Van Le, An existence theorem for self-referred and hereditary differential equations. *Adv. Differ. Equ. Control Process.* **1** (2008), no. 1, 25–32.
- [6] P. K. Anh, N. T. T. Lan and N. M. Tuan, Solutions to systems of partial differential equations with weighted self-reference and heredity. *Electron. J. Differential Equations* **2012**, no. 117, 14 pp.
- [7] A. M. A. El-Sayed and H. H. G. Hashem, A state-dependent Chandrasekhar integral equation. *Int. J. Nonlinear Anal. Appl.* **13** (2022), no. 2, 3049–3056.
- [8] H. T. Thanh, A differential equation with self-reference and weighted memory. *The internal undergraduate report supervised by Dr. Nguyen T. T. Lan, Sai Gon University*, 2022.

(Received 1.02.2024; revised 25.03.2024; accepted 28.03.2024)

Authors' addresses:

Nguyen T. T. Lan

Faculty of Mathematics and Applications, Saigon University, Ho Chi Minh City, Vietnam *E-mail:* nguyenttlan@sgu.edu.vn

H. T. Thanh

Faculty of Mathematics and Applications, Saigon University, Ho Chi Minh City, Vietnam