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ON EXACT LIMITS FOR THE NEGATIVITY OF THE GREEN
FUNCTION OF A TWO-POINT BOUNDARY VALUE PROBLEM



Abstract. The question of the positivity of the Green function G(x, s, λ) of the two-point boundary
value problem

(−1)ku(n) − λ

l∫
0

u(s) dsr(x, s) = f(x), x ∈ [0, l], Bku = 0, (∗)

where
Bmu :=

(
u(0), u′(0), . . . , u(n−m−1)(0), u(l),−u′(l), u′′(l), . . . , (−1)m−1u(m−1)(l)

)
,

with non-decreasing r(x, · ) for almost all x ∈ [0, l] is reduced to estimating the eigenvalues of auxiliary
boundary value problems. The Green function G(x, s, λ) is positive if and only if

−min{λk−1, λk+1} ≤ λ < λk

(there are also small clarifying details that are not needed for the ordinary differential equation
(−1)k+1u(n) − λp(x)u = f(x)). Here, λm is the smallest positive eigenvalue of the boundary value
problem

(−1)mu(n) − λ

l∫
0

u(s) dsr(x, s) = 0, Bmu = 0

(m ∈ {0, . . . , n}).
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1 Introduction
The two-term equation u(n)+p(x)u = f(x) has been the subject of many works. Of particular note are
the works of J. Mikusinsky [17] and A. Levin [15], devoted to the properties of solving a homogeneous
equation, similar to the alternation of zeros for a second-order equation. These properties serve as
a basis for studying the spectrum of a differential operator and for substantiating the oscillation
properties [5] of the Green function. They are used in the works on the oscillatory properties of
higher-order differential equations.

The question of the positivity of the Green function is included in the range of problems mentioned
above. We note its importance not only in problems of comparison, existence and estimates of solutions
to nonlinear equations, but also in such problems as the existence of a positive eigenfunction of a
boundary value problem and analogues of the Jacobi criterion in the calculus of variations.

The solution of the question of the sign-definiteness of the Green function of a two-point boundary
value problem essentially depends on the sign of p(x). The boundary value problem is reduced to an
equation of the second kind z − λKz = f in the space of Lebesgue integrable functions. If λ > 0 and
the operator K is positive, then the necessary and sufficient condition for the positivity of the Green
function is λ < λk, where λk = 1/r(K) and r(K) is the spectral radius of the operator K. This leads
to the theorems on integral and differential inequalities, giving necessary and sufficient conditions
for positivity. For the opposite sign of p(x), the use of this equation leads only to rough sufficient
conditions.

1.1 Briefly about the result
Let 1 ≤ k ≤ n− 1 (n ≥ 2). Consider the two-point (n− k, k)-boundary value problem (BVP in what
follows)

(−1)k+1u(n)(x)− λp(x)u(x) = f(x), x ∈ [0, l], (1.1)
Bku = 0, (1.2)

where
Bmu :=

(
u(0), u′(0), . . . , u(n−m−1)(0), u(l),−u′(l), u′′(l), . . . , (−1)m−1u(m−1)(l)

)
(symbol := means equal by definition; m ∈ {0, 1, . . . , n}). By the Green function of BVP {(1.1), (1.2)}
we mean a function G(x, s, λ) such that the solution to this problem is written in the form

u(x) =

l∫
0

G(x, s, λ)f(s) ds.

Our goal is, considering p(x) ≥ 0, to establish the exact boundaries of the interval for the parameter
λ, for which the Green function G(x, s, λ) is negative. Without the multiplier (−1)k+1, we would talk
about the positivity of the function (−1)kG(x, s, λ). We will obtain the corresponding result for a
more general functional differential equation

Lλu(x) := (−1)k+1u(n)(x)− λ

l∫
0

u(s) dsr(x, s) = f(x), x ∈ [0, l], (1.3)

assuming r(x, · ) to be non-decreasing, which corresponds to the case p(x) ≥ 0 for equation (1.1). The
coefficient (−1)k in equation (∗) is replaced here by (−1)k+1. This is done for the convenience of the
proof and does not affect the essence of the matter.

Let λm (m ∈ {0, . . . , n}) be the least positive eigenvalue of BVP

Lλ,mu := (−1)mu(n) − λ

l∫
0

u(s) dsr(x, s) = 0, Bmu = 0. (1.4)
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If there are no such numbers, then by definition λm = +∞. In this paper, we show that the necessary
and sufficient conditions for the existence and negativity of the Green function of BVP {(1.3), (1.2)}
are the inequalities (for more details, see Theorems 4.1, 4.2, 4.3 below)

−λk < λ ≤ min{λk−1, λk+1}.

It is important to emphasize that the problem of estimating eigenvalues λm is solved very efficiently
by using differential or integral inequality theorems (see Theorem 3.1 below).

In [4], the same result was obtained for an equation of the form Lu = λu under the condition
that the interval [0, l] is the disconjugacy interval of the ordinary differential equation Lu = 0. The
difference consists in replacing the operator u(n) by an arbitrary linear differential operator L with

disconjugacy property and replacing u(x) by
l∫
0

u(s) dsr(x, s). Our result can probably be extended

to the case of an arbitrary ordinary operator on disconjugacy interval [0, l], since it expands into a
product of first-order operators [16].

For a second-order equation, the presented problem was considered in [8] (delay equation), [1,11,20].
Subsequently, the problem was studied for particular cases in [12] (third-order equation), [13] ((n−1, 1)-
BVP), [14] (even order). The methods for obtaining effective conditions for the positivity of the Green
functions for a wide class of linear boundary values are developed in [2]. We note the work [19], in
which the method based on the relationship of boundary value problems with different boundary
conditions was widely used.

The following material is divided into three parts. The first part (Section 2) provides supporting
information. The second part (Section 3) is auxiliary. It studies the properties of BVP (1.4) and the
estimation of eigenvalues, as well as one auxiliary three-point problem. The third part (Section 4)
deals with the actual main BVP {(1.3), (1.2)}.

1.2 Notation, assumptions, definitions
• For general concepts related to the boundary value problems for equation (1.3), we refer to the

monograph [3].
Denote I = [0, l]. As usual, we use the notation L(I) for the Lebesgue space of integrable on I
functions. ACn−1(I) is the space of functions that have an absolutely continuous on I derivative
of order n− 1. Norms in these spaces are usual.

• To emphasize that we are not talking about the value of the function at point x, but about
the function itself, as an object, we write f( · ) instead of f(x), or just f . The inequalities for
functions f ≤ g are understood pointwise, and for measurable functions almost everywhere.
For finite-dimensional vectors, we understand the inequalities α ≤ β component-by-component.
Similarly, we will understand the inequalities u ̸= 0, f ̸= 0, etc., which mean that these are
nonzero elements of the corresponding function spaces. For clarity, we will sometimes write
u(x) ̸≡ 0. The inequality (f, α) ≥ (0, 0) (or just (f, α) ≥ 0) means f ≥ 0, α ≥ 0.
The inequality f ≱= 0 (f ≰= 0) means non-negativity (non-positivity) of a function on the
segment [0, l] (almost everywhere for a measurable function), excluding the case of identical zero
(equivalence to zero).

• For a better understanding of the material, it is desirable to pay attention to the fact that the
value of k should be considered fixed, and the value of m is arbitrary. However, we will need
m = k − 1 and m = k + 1.

• We use the abbreviation BVP for the term boundary value problem.

• Operator Q : ACn−1(I) → L(I) is defined by

Qu(x) :=

l∫
0

u(s) dsr(x, s), x ∈ I.
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Here, for almost all x ∈ I, the function r(x, · ) is non-decreasing; for all s ∈ I, the function
r( · , s) is measurable and r(x, 0) = 0, r( · , l) ∈ L(I), r( · , l) ̸= 0. The operator Q is positive in
the sense that it maps the cone of non-negative functions in ACn−1(I) to the cone of non-negative
functions in L(I).
Additionally, in the case of k = n− 1, we assume that

r(x, 0+) = r(x, 0), x ∈ I, (1.5)

and in the case of k = 1, we assume that

r(x, l) = r(x, l−), x ∈ I. (1.6)

This assumption is made because the Green function does not depend on the limits r(x, 0+) and
r(x, l−). However, the solutions of the homogeneous equation depend on this. For the equation
(1.1), this is not relevant.

• Let E ⊂ ACn−1(I) be the set of functions satisfying the conditions

u(0) = · · · = u(n−k−2)(0) = 0, u(l) = · · · = u(k−2)(l) = 0. (1.7)

If k = n− 1 or k = 1, the corresponding group of equalities disappears. In the main Section 4,
all solutions are considered exclusively on the set E .

• Everywhere below, G(x, s, λ) represents the Green function of BVP {(1.3), (1.2)}.

• The function
Γ(x, s, λ) :=

G(x, s, λ)

sk(l − s)n−k
(1.8)

is the Green function of BVP

xk(l − x)n−k
(
(−1)k+1u(n)(x)− λQu(x)

)
= f(x), Bku = 0.

The solution to BVP
(−1)mu(n) − λQu = f, Bmu = α (1.9)

under condition of unique solvability has the form u = Gλ,mf + Uλ,mα, where Gλ,m is the Green
operator for this problem and Uλ,mα is the solution of the semi-homogeneous BVP Lλ,mu = 0,
Bmu = α.

Definition 1.1. We call BVP (1.9) positively solvable if (Gλ,m, Uλ,m) ≥ 0, that is, f ≥ 0, α ≥ 0
implies u ≥ 0.

The Green function of a two-point problem in the case of sign conservation usually has a property
that can be called (n−m,m)-positivity (negativity), according to the following definition.

Definition 1.2. A function G(x, s) is called (n − m,m)-positive ((n − m,m)-negative) if f ≱= 0
(f ≰= 0) implies

l∫
0

G(x, s)f(s) ds ≥ εxn−m(l − x)m

for some ε > 0 and all x ∈ [0, l].

It will be convenient for us to use a similar concept for functions.

Definition 1.3. A function u ∈ ACn−1(I) is called (n −m,m)-positive ((n −m,m)-negative) if for
some ε > 0 and x ∈ I, u(x) ≥ εxn−m(l − x)m (resp. u(x) ≤ −εxn−m(l − x)m).

Remark 1.1. Note that if Bmu = 0, then (n − m,m)-positivity is equivalent to the inequalities
u(x) > 0 on (0, l),

u(n−m)(0) > 0, (−1)mu(m)(l) > 0.
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The definition of (n−m,m)-positivity has the following generalization.

Definition 1.4. Let u0 ∈ ACn−1(I), u0 ≱= 0. An operator G : L(I) → ACn−1(I) is said to be
u0-positive if for any f ≱= 0 there exists ε > 0 such that Gf ≥ εu0.

Note that (n−m,m)-positivity is u0-positivity if we set u0(x) = xm−n(l − x)m.

2 Supporting information
2.1 Estimation of the spectral radius of a positive compact operator
The concepts used in this section are well known (see, for example, [6]). Let K be a total cone1 in
the Banach space E and A : E → E be a linear compact operator, positive with respect to K, that is,
AK ⊂ K. Let r(A) be the spectral radius of the operator A.

Theorem 2.1 (M. Krein, M. Rutman [7]). If the spectrum of A contains nonzero points, then r = r(A)
is an eigenvalue of the operator A and its adjoint. The operator A has a positive eigenvector v0 ∈ K,
Av0 = rv0, and the adjoint A∗ has a positive eigenvector ψ ∈ K∗, A∗ψ = rψ.

Definition 2.1 ([6]). An operator A : E → E is said to be u0-bounded from above if for any x ∈ E
there exists β > 0 such that Ax ≤ βu0.

Lemma 2.1 ([9, Corollary from Lemma 2]). Let A be u0-bounded from above, where u0 ∈ K, and let
there exist v ∈ K satisfying the inequality v −Av ≥ γu0 for some γ > 0. Then r(A) < 1.

2.2 Basic BVP
If λ = 0, we get the simplest BVP, the properties of which can also be applied to the main problem
for small absolute values of λ:

(−1)mu(n) = z, Bmu = α. (2.1)

The solution to problem (2.1) has the form

u = Hmz + Vmα,

where Hm is an integral operator and Vmα is a polynomial of degree at most n− 1.

Lemma 2.2. Let (z, α) ≱= 0, u = Hmz + Vmα. Then

(1) if 1 ≤ m ≤ n− 1, then u( · ) is (n−m,m)-positive,

(2) if m = 0 and α ≱= 0, then u(x) ≥ εxn−1, x ∈ I,

(3) if m = n and α ≱= 0, then u(x) ≥ ε(l − x)n−1, x ∈ I.

Proof. For m = 0 and m = n. the assertion is obvious. Let 1 ≤ m ≤ n− 1.
If α = 0, that is, u = Hmz, the statement can be obtained from the interpolation formula

u(x) = (z(ξ)/n!)xn−m(l − x)m in case of continuous z. However, the assertion also follows from
representation (2.2) for the Green function Hm(x, s) given below.

If z = 0, that is, u = Vmα, see, for example, [10, Lemma 15].

The operator Hm is integral one, its kernel is the Green function Hm(x, s), for which the following
expression was obtained in [18]:

Hm(x, s) =
xn−m−1(l − x)m−1(l − s)n−m−1sm−1

ln−2(n− 1)!
G11(x, s)φ(x, s), (2.2)

1A cone K is said to be total if the closure of its linear span coincides with the entire space E [6].
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where G11(x, s) is the Green function of BVP −u′′ = f , u(0) = u(l) = 0, and

φ(x, s) =



m−1∑
i=0

Cn−m−1
n−2−i

( l(s− x)

s(l − x)

)i

, if 0 ≤ x ≤ s ≤ l,

n−m−1∑
i=0

Cm−1
n−2−i

( l(x− s)

x(l − s)

)i

, if 0 ≤ s ≤ x ≤ l.

Note that

φ(x, 0) =

n−m−1∑
i=0

Cm−1
n−2−i = Cm

n−1,

G11(x, s) =
1

l

{
x(l − s), if x ≤ s,

s(l − x), if s ≤ x.

The following assertion is derived directly from formula (2.2).

Lemma 2.3. There is a limit

lim
s→0

Hm(x, s)

sm
=
xn−m−1(l − x)m

lm(n− 1)!
Cm

n−1. (2.3)

The convergence here is uniform on [0, l] if m < n− 1. In the case m = n− 1, uniform convergence
takes place on [ν, l] for any ν ∈ (0, l].

2.3 Limit values of the Green function
Lemma 2.4. Let k < n− 1. There is a limit (uniform convergence)

g(x) = lim
s→0

G(x, s, λ)

sk
. (2.4)

The function g(x) is a solution to the problem

Lλu = 0, u(0) = · · · = u(n−k−2)(0) = 0, u(n−k−1)(0) ̸= 0, u(l) = · · · = u(k−1)(l) = 0. (2.5)

Proof. The function us(x) = G(x, s, λ)/sk is the solution to the equation

us(x) = −λ
l∫

0

Hk(x, t)Qus(t) dt−
Hk(x, s)

sk
. (2.6)

According to (2.3), the last term converges to the function −Mxn−k−1(l−x)k as s→ 0 in the uniform
norm (in C(I)), where

M =
ln−k−1

ln−1(n− 1)!
φ(x, 0) =

1

lk(n− 1)!
Ck

n−1.

The integral operator in (2.6) is compact in C(I), equation (2.6) is uniquely solvable, so us(x) → u(x),
where u = −λHkQu−Mxn−k−1(l − x)k. Hence u(x) is the solution to the BVP (2.5).

Lemma 2.5. If k = n− 1 and the condition (1.5) is satisfied, then the limit (2.4) exists and the limit
function satisfies the conditions

Lλu = 0, u(0+) ̸= 0, u(l) = · · · = u(n−2)(l) = 0. (2.7)
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Proof. Let us show that the solution us of equation (2.6) for k = n − 1 converges at s → 0 to the
solution u of the equation

u = −λHn−1Qu+ (−M)(l − x)n−1

uniformly on [ν, l] for any ν ∈ (0, l). Then u will be a solution to BVP (2.7).
For x ∈ [ν, l], let us denote

Q[ν,l]v(x) :=

l∫
ν

v(τ) dτr(x, τ), Q[0,ν]v(x) :=

ν∫
0

v(τ) dτr(x, τ).

Solution us,ν of the equation

us,ν(x) = −λ
l∫

0

Hn−1(x, t)Q[ν,l]us,ν(t) dt−
Hn−1(x, s)

sn−1
, x ∈ [ν, l],

converges as s→ 0 uniformly on [ν, l] to the solution u0,ν of the equation

u0,ν(x) = −λ
l∫

0

Hn−1(x, t)Q[ν,l]u0,ν(t) dt−M(l − x)n−1, x ∈ [ν, l].

Let us estimate the differences u− u0,ν and us − us,ν . They satisfy the equations

u− u0,ν = −λHn−1Q[ν,l](u− u0,ν)− λHn−1Q[0,ν]u

and
us − us,ν = −λHn−1Q[ν,l](us − us,ν)− λHn−1Q[0,ν]us,

respectively. Since
ν∫

0

|us(τ)| dτr(t, τ) ≤ max |us| r(x, ν),

from condition (1.5) it follows that u− u0,ν and us − us,ν uniformly tend to zero as ν → 0.
The standard ε-procedure proves the uniform convergence of us → u on [ν, l].

The statement symmetric to Lemma 2.4 is true because the (n−k, k)-problem is transformed into
a (k, n− k)-problem by changing the variable x→ l − x.

Lemma 2.6. Let k > 1. There is a limit (uniform convergence)

g(x) = lim
s→l

G(x, s, λ)

(l − s)n−k
.

The function g(x) is a solution to BVP

Lλu = 0, u(l) = · · · = u(k−2)(l) = 0, u(k−1)(l) ̸= 0, u(0) = · · · = u(n−k−1)(0) = 0.

Lemmas 2.4 and 2.6 show the existence of the following two limits:

g0(x) := lim
s→0

G(x, s, λ)

sk
, (2.8)

g1(x) := lim
s→l

G(x, s, λ)

(l − s)n−k
. (2.9)

The limits (2.8), (2.9) can be replaced by

Γ(x, 0+, λ) =
g0(x)

ln−k
and Γ(x, l−, λ) = g1(x)

lk
, (2.10)

respectively, where the function Γ is defined by equality (1.8).
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3 Two-point and three-point BVP’s
The two-point BVP (1.9) is needed to estimate the eigenvalue λm. This two-point BVP, as well as
the three-point BVP considered below, are auxiliary for solving the main problem, to which the next
Section 4 is devoted.

The two-point problem Lλ,mu = f , Bmu = α (1 ≤ m ≤ n − 1) was studied in [10] for a more
general singular BVP of the form

(−1)mxm(l − x)n−mu(n) −
l∫

0

u(s) dsr(x, s) = f(x), Bmu = α.

Our BVP (1.9) is reduced to this form by multiplying both sides of the equation by xm(l−x)n−m.
In [10], Theorem 3.1 we need is obtained (see below). However, due to the difference in the definition
of the solution in the singular and given BVPs, and also, in connection with the need to study the
three-point problem, we briefly present a scheme for studying both problems.

3.1 Two-point BVP
We consider not only the proper two-point BVP for 1 ≤ m ≤ n − 1. We also need the cases m = 0
and m = n. Due to the symmetry (change of the variable x→ l−x), the properties of the (n−m,m)-
problem coincide with the properties of the (m,n −m)-problem. Therefore, it suffices, for example,
to consider only the case m = 0, omitting m = n.

Using the substitution u = Hmz + Vmα, we reduce the BVP Lλ,mu = f , Bmu = α to the integral
equation

z − λQHmz = λQVmα+ f (3.1)

with a positive compact operator Km := QHm. Let r(Km) be the spectral radius of the operator Km.
Operator Km is integral one with the kernel

Km(x, s) :=

l∫
0

Hm(t, s) dtr(x, t). (3.2)

Indeed,

QHm(x) =

l∫
0

dtr(x, t)

l∫
0

Hm(t, s)z(s) ds =

l∫
0

Km(x, s)z(s) ds.

Lemma 3.1 (positive solvability). Let λ > 0, λr(Km) < 1. Then BVP (1.9) is positively solvable,
and if (f, α) ≱= 0 and u( · ) is the solution to (1.9), then for some ε > 0:

(1) if 1 ≤ m ≤ n− 1, then u( · ) is (n−m,m)-positive,

(2) if m = 0 and α ≱= 0, then u(x) ≥ εxn−1, x ∈ I,

(3) if m = n and α ≱= 0, then u(x) ≥ ε(l − x)n−1, x ∈ I.

Proof. The solution of (1.9) is u = Hmz + Vmα, where z is the solution of (3.1). By Lemma 2.2,
QVmα ≥ 0. Therefore, z ≥ 0, and z ≥ f . Now we refer to Lemma 2.2.

Lemma 3.2 (eigenfunction is positive). The eigenvalue λm is inverse to the spectral radius r(Km):

λmr(Km) = 1.

If λ = λm, then BVP (1.4) has a solution u ≱= 0. If 1 ≤ m ≤ n−1, then u( · ) is (n−m,m)-positive.
If m = 0, then u(i) ≥ 0, i = 0, . . . , n− 1. If m = n, then (−1)iu(i) ≥ 0, i = 0, . . . , n− 1.
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Proof. From (1.4) and (3.1) we have u = Hmz and z − λKmz = 0. By virtue of Theorem 2.1, the
equation z−λmKmz = 0 has a non-trivial non-negative solution, and λmr(Km) = 1. Therefore, BVP
(1.4) also has a non-trivial non-negative solution u = Hmz.

The (n−m,m)-positivity follows from Lemma 2.2.

Theorem 3.1 (cf. [10, Theorem 2]). Let 1 ≤ m ≤ n− 1. The following statements are equivalent:

(1) BVP Lλ,mu = f , Bmu = α is uniquely solvable, and if (f, α) ≱= 0, then u( · ) is (n −m,m)-
positive.

(2) λ < λm.

(3) There is a solution u ≥ 0 of the inequalities Lλu = ψ ≥ 0, Bmu = α ≥ 0, and (ψ, α) ̸= 0.

(4) There exists u ≥ 0 such that u− λHmQu = g ≥ 0, Qg ̸= 0.

Theorem 3.1 can be considered as a consequence of [10, Theorem 2]. The difference is that the
working space is wider in the singular problem. However, all the functions in Theorem 3.1 are in the
subset ACn−1(I), and it remains valid. For the cases m = 0 and m = n, we also need an analogue of
Theorem 3.1. In view of symmetry, it suffices to consider the case m = 0.

Theorem 3.2. Let m = 0. The following statements are equivalent:

(1) BVP Lλ,mu = f , Bmu = α is uniquely solvable; if (f, α) ≥ 0, then u(i)(x) ≥ 0, i = 0, . . . , n− 1;
if α ̸= 0, then u(x) ≥ εxn−1 for some ε > 0.

(2) λ < λm.

(3) There is a solution u ≥ 0 of the inequalities Lλu = ψ ≥ 0, Bmu = α ≥ 0, and α ̸= 0.

Proof. Only the implication 3 → 2 needs proof. Note that the spectral radii of the operatorsK0 = QH0

and H0Q coincide. We have

(−1)k+1u(n) = λQu+ ψ = z, u = H0z + V0α, u− λH0Qu = H0ψ + V0α.

By Lemma 2.2, for some ε > 0 the right side of H0ψ + V0α ≥ V0α ≥ εxn−1. Since the operator H0Q
is u0-bounded from above, where u0(x) = xn−1, then λr(QH0) < 1 by virtue of Lemma 2.1.

For the cases m = 0 and m = n, we need the following assertion. Due to symmetry, it suffices to
consider only one of the cases m = 0 or m = n.

Theorem 3.3. Let m = n. Suppose there exists a positive on [0, l) solution to BVP Lλu = f ≥ 0,
Bnu = 0. Then λ ≤ λn.

Proof. From (3.1) we have u = Hnz and

z − λKnz = f.

The eigenfunction φ of the adjoint operator K∗
n corresponding to the spectral radius r = r(Kn)

satisfies

rφ(s) =

l∫
0

Kn(x, s)φ(x) dx.

It is non-negative and does not decrease since Kn(x, s) does not decrease with respect to s due to
(3.2). Let φ(s) > 0 on (l− ε, l]. Since u(x) > 0 on [0, l), we have z(x) = (−1)nu(n)(x) ̸≡ 0 on [l− ε, l].

This implies
l∫
0

φ(x)z(x) dx > 0. Introducing the notation

⟨f, g⟩ :=
l∫

0

f(x)g(x) dx,
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we write it briefly: ⟨φ, z⟩ > 0.
Since

⟨φ,Knz⟩ = ⟨K∗
nφ, z⟩ = r⟨φ, z⟩,

we have
⟨φ, z⟩ − λr⟨φ, z⟩ = ⟨φ, f⟩ ≥ 0.

Hence 1− λr ≥ 0 and λ ≤ λn.

3.2 Three-point BVP
Let ξ ∈ (0, l), n ≥ 3. Consider the boundary value problem

Lλu = f, Bk,ξu = 0, (3.3)

where the vector functional Bk,ξ is defined by the equality

Bk,ξu :=
(
u(0), u′(0), . . . , u(n−k−2)(0), u(ξ), u′(ξ), u(l),−u′(l), u′′(l), . . . , (−1)k−2u(k−2)(l)

)
.

If k = n − 1, there is no condition group at the left end. Similarly, for k = 1, there is no group of
conditions for x = l.

Let Hk,ξ be the Green operator of the BVP (−1)k+1u(n) = z, Bk,ξu = 0, i.e., the solution to this
problem is u = Hk,ξz.

Lemma 3.3. Let u = Hk,ξz and z ≱= 0. Moreover, if k = 1, then suppose additionally that
z(x) ̸≡ 0 on [0, ξ], and if k = n − 1, then suppose additionally that z(x) ̸≡ 0 on [ξ, l]. Then
u(x) ≥ εxn−k−1(x− ξ)2(l − x)k−1, x ∈ I, for some ε > 0.

Proof. If z is continuous, it suffices to mention the interpolation formula

u(x) =
z(c)

n!
xn−k−1(x− ξ)2(l − x)k−1, c ∈ (0, l).

The inequality u ≥ 0 is also true in the general case. The assumption that u has a zero of higher
multiplicity at one of the points 0, ξ, l leads to a contradiction. Indeed, in this case, u will be a
solution to another interpolation problem for which u ≤ 0.

Similarly, the presence of other zeros of u( · ) is excluded.

Note that in the extreme cases k = 1 or k = n − 1, when the boundary conditions disappear at
one of the ends, the solution may vanish identically between the remaining zeros even for z ≱= 0.

Substituting u = Hk,ξz into (3.3) gives the equation

z − λQHk,ξz = f. (3.4)

Let rξ = r(QHk,ξ) be the spectral radius of the operator QHk,ξ.

Lemma 3.4. Let λ > 0 and λr(QHk,ξ) < 1. Then BVP (3.3) has a unique solution u(x).
If f ≱= 0, and in the case of k = 1, f(x) ̸≡ 0 holds on [0, ξ], and in the case of k = n − 1, the

inequality f(x) ̸≡ 0 holds on [ξ, l], then for some ε > 0, u(x) ≥ εxn−k−1(x− ξ)2(l − x)k−1, x ∈ I.

Proof. The solution of (3.3) is u = Hk,ξz, where z = (I−λQHk,ξ)
−1f (see equation (3.4)). Therefore,

z ≥ f . Now, we refer to Lemma 3.3.

Let λk,ξ be the smallest positive value λ for which BVP

(−1)k+1u(n) − λQu = 0, Bk,ξu = 0 (3.5)

has a non-trivial solution. If there are no such numbers, then, by definition, λk,ξ = +∞.

Lemma 3.5. λk,ξ = 1/r(QHk,ξ) (if r(QHk,ξ) = 0, then λk,ξ = +∞). For λ = λk,ξ, problem (3.5)
has a non-trivial non-negative solution.

The proof is the same as that of Lemma 3.2.
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4 The main boundary value problem
4.1 Main results
We return to the problem of the negativity of the Green function of BVP {(1.3), (1.2)}. Let us write
it in a short form with nonzero boundary conditions

Lλu = f, Bku = α. (4.1)

4.1.1 Positive solvability

For BVP (4.1) positive solvability is impossible. Instead, we will use the restricted notion of E-positive
solvability. Recall that E ⊂ ACn−1(I) is the set of functions satisfying conditions (1.7).

Definition 4.1. We call BVP (4.1) E-positively solvable if it is uniquely solvable and u ≥ 0 follows
from f ≤ 0, α ≥ 0, u ∈ E .

The relations α ≥ 0, u ∈ E mean that all components of the vector Bku are equal to zero except,
possibly, u(n−k−1)(0) ≥ 0 and (−1)k−1u(k−1)(l) ≥ 0. Actually, problem (4.1) is considered only on
the set E . Note that E-positive solvability implies the negativity of the Green function G(x, s, λ).

Definition 4.2. The equation Lλu = 0 is E-disconjugate on the interval [0, l] if any of its nontrivial
solutions belonging to the set E has at most n − 1 zeros on [0, l], counting multiple zeros as many
times as their multiplicity.

Note that since the solution u ∈ E already has n−2 zeros, counting multiplicities, it can only have
one simple zero in (0, l). In this case, the sum of multiplicities of zeros at the points 0 and l is equal
to n− 2.

Theorem 4.1 (Main theorem). Let λ ≥ 0. The following statements are equivalent:

(1) Problem (4.1) is E-positively solvable, and if (−f, α) ≱= 0, u ∈ E, then the solution u( · ) is
(n− k, k)-positive.

(2) The equation Lλu = 0 is E-disconjugate on [0, l].

(3) λ < min{λk−1, λk+1}.

(4) The Green function G(x, s, λ) is (n− k, k)-negative and

(−1)kΓ(k)(l, 0+, λ) < 0, Γ(n−k)(0, l−, λ) < 0 (4.2)

(recall that sk(l− s)n−kΓ(x, s, λ) = G(x, s, λ)). Derivatives in (4.2) are taken with respect to the
first argument.

The proof of the equivalence of the first three statements is given in Theorems 4.4–4.8. Equivalence
of statements (3) and (4) is contained in Theorems 4.9 and 4.10.

Remark 4.1. In the case of λ < 0, BVP (4.1), by multiplying the equation by −1, turns into BVP
(1.9) when m = k:

(−1)ku(n) + λQu = −f, Bku = α.

Therefore, a necessary and sufficient condition for E-positive solvability is the pair of inequalities

−λk < λ < min{λk−1, λk+1}.

Remark 4.2. For the statement (4) to be equivalent to the first three in the cases k = n−1 and k = 1,
assumptions (1.5) and (1.6) are essential. For the ordinary differential equation (−1)k+1u(n)−λp(x)u =
0, this remark is not relevant, since (n, 0)- and (0, n)-BVPs are uniquely solvable (λ0 = λn = ∞).

Remark 4.3. Estimates of the eigenvalues λm are efficiently performed by using theorems on diffe-
rential and integral inequalities (Theorems 3.1 and 3.2) (see estimates in [10] and in Section 5.1).
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4.1.2 Extreme case

Theorem 4.1 gives the conditions for the strong positivity of the Green function in the sense of
inequalities (4.2). Here, we consider a more subtle situation of simple negativity of the Green function.

Theorem 4.2. Let λ ≥ 0. Suppose 2 ≤ k ≤ n− 2. The following statements are equivalent:

(1) Problem (4.1) is E-positively solvable, and if (−f, α) ≱= 0, u ∈ E, then u(x) > 0, x ∈ (0, l).

(2) λ ≤ min{λk−1, λk+1}.

(3) G(x, s, λ) is (n− k, k)-negative.

(4) G(x, s, λ) ≤ 0.

Proof. We use the scheme 2 → 3 → 4 → 2; 1 → 2 → 1. The implication 2 → 3 follows from
Theorem 4.11, 3 → 4 is obvious, 4 → 2 follows from Lemma 4.5. The implication 1 → 2 follows from
Lemma 4.5, 2 → 1 from Lemma 4.2 and the statement (3).

Remark 4.4. For the equation (−1)k+1u(n) − λp(x)u = f in the cases k = 1 and k = n − 1,
Theorem 4.2 remains true since λ0 = λn = ∞.

Remark 4.5. In the cases k = 1 and k = n−1, the sufficiency of the inequality λ ≤ min{λk−1, λk+1}
remains valid.

There is a conjecture about the validity of necessity (of course, under conditions (1.5), (1.6)). In
any case, the following assertion is true.

Theorem 4.3. If k = n−1, G(x, s, λ) ≤ 0, Γ(n−1)(l, 0+, λ) = 0 and on the interval (0, l) Γ(x, 0+, λ) <
0, then λ = λn.

Proof. By virtue of Lemma 2.5, the function g0(x) = lΓ(x, 0+, λ) (see (2.10)) is an eigenfunction of
BVP Lλu = 0, Bnu = 0 and satisfies the conditions of Theorem 3.3.

Without the positivity condition for the function g0 in Theorem 4.3, the question of the inequality
λ ≤ λn remains unresolved.

4.2 Proof of the main theorem
Everywhere below, it is assumed that all solutions are in the set E , i.e., satisfy conditions (1.7). In
the case of unique solvability of BVP Lλu = 0, Bku = 0, the intersection of the set of solutions of the
homogeneous equation Lλu = 0 with the set E is two-dimensional. Let us define the basis u0, u1 in
this intersection by the boundary conditions u

(n−k−1)
0 (0) u

(n−k−1)
1 (0)

(−1)k−1u
(k−1)
0 (l) (−1)k−1u

(k−1)
1 (l)

 =

(
1 0
0 1

)
. (4.3)

4.2.1 Necessity

Here, we show that statement (3) of Theorem 4.1 follows from the first and second statements. Due
to symmetry, it suffices to consider only one of the inequalities λ < λk−1 or λ < λk+1.

Theorem 4.4. Let statement (1) of Theorem 4.1 be satisfied. Then λ < min{λk−1, λk+1}.

Proof. Let us prove, for example, λ < λk+1. It follows from statement (1) of Theorem 4.1 that
u0(x) > 0 on (0, l), and (−1)ku

(k)
0 (l) > 0.

By Theorem 3.1 (3.2), for m = k + 1 we have λ < λk+1.

Theorem 4.5. Let statement (2) of Theorem 4.1 be satisfied. Then λ < min{λk−1, λk+1}.
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Proof. The E-disconjugacy implies the unique solvability of BVP (1.9) for m = k − 1 and m = k + 1,
since a nontrivial solution of the homogeneous problem Lλu = 0, Bmu = 0 would have n zeros on
[0, l].

Let u be a solution to the problem Lλu = 0, u ∈ E , u(n−k−1)(0) = 0, u(n−k)(0) = 1. Since u
has n − 1 zeros at the ends of the interval, u(x) > 0 in (0, l). By Theorem 3.1 (3.2), λ < λk−1. The
inequality λ < λk+1 is proved similarly.

4.2.2 Some lemmas

Note that in the case λ ≤ min{λk−1, λk+1}, the basis {u0, u1} defined in (4.3) exists. Indeed, if
λ < λk+1, then as u0 we can take the solution of the problem Lλu = 0, u ∈ E , u(k−1)(l) = 0,
(−1)ku(k)(l) = 1. Then u(n−k−1)(0) > 0 by Lemma 3.1. If λ = λk+1, then as u0 we take the
eigenfunction Lλu = 0, Bk+1u = 0. We construct u1 similarly. So, we have the following lemma.

Lemma 4.1. Suppose λ ≤ min{λk−1, λk+1}. Then problem (4.1) is uniquely solvable.

Lemma 4.2. If λ < λk+1 or (λ = λk+1 and k ≤ n− 2), then u0(x) > 0, x ∈ (0, l). If λ < λk+1, then
(−1)ku

(k)
0 (l) > 0.

If λ < λk−1 or (λ = λk−1 and k ≥ 2), then u1(x) > 0, x ∈ (0, l). If λ < λk−1, then u
(n−k)
1 (0) > 0.

Proof. Consider, for example, u0. If λ < λk+1, in the vector Bk+1u0, all components are zero,
except u(k)0 (l). This last component cannot be zero, because otherwise u0 would be a solution to the
homogeneous problem Lλu = 0, Bk+1u = 0. By Lemma 3.1, u0(x) > 0, x ∈ (0, l).

If λ = λk+1, then k + 1 ≤ n− 1, and u0 is positive by Lemma 3.2.

Corollary 4.1. Let λ < min{λk−1, λk+1} or (n > 2 and λ = min{λk−1, λk+1}).
If u(x) = c1u0 + c2u1 and c1c2 > 0, then u(x) ̸= 0 on (0, l). If c1c2 < 0, then the function u(x)

changes sign.

Remark 4.6. In the case of n = 2, the statement of Corollary 4.1 is false, since both functions u0
and u1 may vanish on parts of the interval with non-empty intersection (see Example 5.1).

Lemma 4.3. For any ξ ∈ (0, l), the inequality λk,ξ ≥ min{λk−1, λk+1} holds. If 2 ≤ k ≤ n − 2, the
strict inequality λk,ξ > min{λk−1, λk+1} holds.

Proof. Let λ = λk,ξ and λk,ξ do not satisfy the conditions of the lemma. Then, by Lemma 4.2, the
basis functions u0, u1 are strictly positive on (0, l). By Lemma 3.5, for λ = λk,ξ there exists a non-
negative non-trivial solution Lλu = 0, Bk,ξu = 0. It is a linear combination u = c1u0 + c2u1. The
equalities u(ξ) = u′(ξ) = 0 contradict Corollary 4.1.

4.2.3 Sufficiency

Here, we prove that statements (1) and (2) of Theorem 4.1 follow from statement (3). From Lemma 4.2
we obtain the following theorem.

Theorem 4.6. Let λ < min{λk−1, λk+1}. Then the solution u(x) to BVP (u ∈ E),

Lλu = 0, u(n−k−1)(0) = c1 ≥ 0, (−1)k−1u(k−1)(l) = c2 ≥ 0 (c1 + c2 > 0)

is (n− k, k)-positive.

Theorem 4.7 (E-nonoscillation (E-disconjugacy)). If λ < min{λk−1, λk+1}, then any solution u ∈ E
of the homogeneous equation Lλu = 0 has at most one simple zero in the interval (0, l) (the total
number of zeros in [0, l] is at most n− 1, counting multiplicities).

Proof. By Lemma 4.3, λ < λk,ξ. Up to a factor, any solution of Lλu = 0 in E can be represented as

u(x) = −u0(x) + Cu1(x),
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where C is a constant. If C ≤ 0, then u(x) has no zeros in (0, l), since in this case u(x) = −u0(x) +
Cu1(x) ≤ −u0(x) < 0.

Now, let C > 0. Then

(−1)k−1u(k−1)(l) = C(−1)k−1u
(k−1)
1 (l) = C > 0,

but u(n−k−1)(0) = u
(n−k−1)
1 (0) < 0. Therefore, u(x) has zeros in (0, l). Let x2 be the largest zero

(first from the right) (see Fig. 1).

u

v

x1 x2

ξ

Figure 1: To Theorem 4.7.

This zero can be simple or multiple. First, consider the case of a simple zero, when u′(x2) > 0.
Let us show that in this case there are no other zeros. Assume, on the contrary, that they exist and
that x1 < x2 is the one closest to x2. Let v(x) = u(x) +Du1(x), where

D = max
x∈[x1,x2]

(
− u(x)

u1(x)

)
= − u(ξ)

u1(ξ)
, ξ ∈ (x1, x2).

Then on [x1, x2] we have v(x) ≥ 0, v(ξ) = v′(ξ) = 0. So, v(x) is a non-trivial solution to the problem
Lλv = 0, Bk,ξv = 0. But this contradicts λ < λk,ξ.

If x2 is a multiple zero of u, then we put ξ = x2, v = u.

Lemma 4.4. Let λ < min{λk−1, λk+1}, and the function u(x) be the solution to the BVP

Lλu = f, Bku = 0. (4.4)

If f( · ) ≱= 0, then u(n−k)(0) < 0 and (−1)ku(k)(l) < 0.

Proof. By Lemma 4.1, BVP (4.4) has a unique solution. It is also a non-zero solution to BVP (1.9) for
m = k−1, with the conditions u ∈ E , u(n−k)(0) = c, where c is some number. Suppose u(n−k)(0) ≥ 0.
By Lemma 3.1 (for m = k − 1), u(x) > 0, x ∈ (0, l), and (−1)k−1u(k−1)(l) > 0, which contradicts the
boundary condition (4.4). The contradiction shows that u(n−k)(0) < 0.

The inequality (−1)ku(k)(l) < 0 is proved similarly.

Theorem 4.8. If λ < min{λk−1, λk+1}, then BVP (4.4) is uniquely solvable and G(x, s, λ) is (n−k, k)-
negative.

Proof. Let u(x) be the solution to BVP (4.4) and f ≱= 0. By Lemma 4.4, u(x) < 0 in the neighbor-
hoods of the points 0 and l.

Suppose that u(x0) ≥ 0 at some point x0 ∈ (0, l). We can assume that x0 is a maximum point:
u(x0) = max{u(x) : x ∈ I}. Let us construct a non-positive solution to problem (3.3), i.e., a solution
that has a multiple zero at some point ξ ∈ (0, l).

If u(x0) = 0, then x0 is a multiple of zero, since x0 is a maximum point. In this case, u itself is
the right solution. If u(x0) > 0, then it is possible to construct a non-positive solution Lλv = f with
multiple zero (Fig. 2). Let v(x) = u(x)− Cu1(x) (we recall that u1(x) < 0, x ∈ (0, l)) and

C = max
(0,l)

u(x)

u1(x)
=

u(ξ)

u1(ξ)
, ξ ∈ (0, l).

This maximum exists because u(x0) > 0 and u(x) < 0 in some neighborhoods of the points x = 0,
x = l. The function v(x) is non-positive because

v(x) = u(x)− Cu1(x) = u(x)− u(ξ)

u1(ξ)
u1(x) ≤ u(x)− u(x)

u1(x)
u1(x) = 0.
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O ξ

u

v

lx0

Figure 2: On Theorem 4.8.

So, v(ξ) = v′(ξ) = 0, and the function v(x) is the solution to BVP (3.3).
By Lemma 4.3, λ < λk,ξ. By Lemma 3.4, v(x) ≥ 0. But this contradicts inequality v(x) ≤ u(x)

and the negativity of u(x) in neighborhoods of the endpoints of the interval. The contradiction shows
that u(x) < 0 in (0, l).

The (n− k, k)-negativity follows from Lemma 4.4.

4.2.4 Negativity of the Green function and positive solvability

Recall that the functions g0(x) and g1(x) are defined by equalities (2.8),(2.9).

Lemma 4.5. Let 2 ≤ k ≤ n− 2, G(x, s, λ) ≤ 0.

If g(k)0 (l) ̸= 0, then λ < λk+1. If g(k)0 (l) = 0, then λ = λk+1.

If g(n−k)
1 (0) ̸= 0, then λ < λk−1. If g(n−k)

1 (l) = 0, then λ = λk−1.

Proof. It suffices to consider only one of these two cases. Limits (2.8) and (2.9) exist by Lemmas 2.4
and 2.6. Let u(x) = −g0(x) and let g(k)0 (l) ̸= 0. It follows from Lemma 2.4 and Theorem 3.1 (for
m = k + 1) that λ < λk+1.

If g(k)0 (l) = 0, then g0(x) and u(x) are the eigenfunctions of BVP (−1)k+1u(n)−λQu = 0, Bk+1u =
0. For ε > 0,

(−1)k+1u(n) − (λ− ε)Qu = εQu ≱= 0.

By Theorem 3.1, λ − ε < λk+1. But λk+1 ≤ λ by definition of the number λm. From here, λ =
λk+1.

It follows from Lemma 2.5 and Theorem 3.2 that Lemma 4.5 remains true for strict inequalities in
the case of k = n− 1 under the additional condition r(x, 0+) = r(x, 0), and, similarly, in the case of
k = 1 under the additional condition r(x, l−) = r(x, l). Namely, the following lemma is true.

Lemma 4.6. Suppose G(x, s, λ) ≤ 0.

If k = n− 1, r(x, 0+) = r(x, 0), g(n−1)
0 (l) ̸= 0, then λ < λn.

If k = 1, r(x, l−) = r(x, l), g(n−1)
1 (0) ̸= 0, then λ < λ0.

Remark 4.7. For example, let n = 3, k = 1, and Lλu = u′′′ − λu(l). The Green function G(x, s, λ)
is the same as Hk(x, s) and is therefore negative for any λ. At the same time, the BVP

u′′′ − λu(l) = 0, u(0) = u′(0) = u′′(0) = 0

has a nonzero solution u = x3 for λ = 6/l3. The reason for this behavior is the inequality r(x, l) ̸=
r(x, l−). This is a special situation that is not relevant for the ordinary equation (−1)k+1u(n) −
p(x)u= 0.

From Lemmas 4.5 and 4.6, we directly obtain the following two theorems.

Theorem 4.9. Let G(x, s, λ) ≤ 0 and g(k)0 (l) ̸= 0, g(n−k)
1 (0) ̸= 0. Then λ < min{λk−1, λk+1}.

Theorem 4.10. Suppose λ < min{λk−1, λk+1}. Then G(x, s, λ) is (n−k, k)-negative, and g(k)0 (l) ̸= 0,
g
(n−k)
1 (0) ̸= 0.
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4.3 Negativity of the Green function in the extreme case
Lemma 4.7. Let k ≤ n− 2, Lλu = f ≱= 0, Bku = 0, and λ = λk+1. Then (−1)ku(k)(l) < 0.

Proof. The existence of the Green function follows from Lemma 4.1. It follows from the continuous
dependence of G(x, s, λ) on λ that G(x, s, λ) ≤ 0. Therefore, u(x) ≤ 0.

Suppose that u(k)(l) = 0. By Lemma 3.2 for m = k+1, there exists a solution u0(x) > 0, x ∈ (0, l),
of BVP Lλu = 0, Bk+1u = 0 and u(n−k−1)

0 (0) > 0, (−1)k+1u
(k+1)
0 (l) > 0.

Since u(n−k−1)(0) = 0 and u(k)(l) = 0, we have −u(x) ≤ Cu0(x) for some C > 0. The function
v = u + Cu0 satisfies Theorem 3.1 for m = k + 1, due to which λ < λk+1. But this contradicts
λ = λk+1.

Theorem 4.11. Let 2 ≤ k ≤ n− 2, λ = min{λk−1, λk+1}.
The Green function G(x, s, λ) is (n− k, k)-negative.

Proof. The existence of the Green function follows from Lemma 4.1. Let f ≱= 0, u = Gf . By
Lemma 4.7, the solution u(x) ≤ 0 and is negative near the ends of the segment. The presence of
multiple zeros inside (0, l) contradicts Lemma 4.3.

5 Appendix
Let us give the previously promised example.

Example 5.1. Let n = 2, k = 1, l = 2, 0 < x0 < 1 < x1 < 2, x0 + x1 = 2. We define the operator Q
by the equality

Qu(x) =

{
u(x0) if x ∈ [0, 1),

u(x1) if x ∈ [1, 2].

The equation u′′ − λQu = 0 has solutions (λ = 2/(x0 − 1)2)

u0(x) =

{
(x− 1)2 if x ∈ [0, 1),

0 if x ∈ [1, 2],

u1(x) =

{
0 if x ∈ [0, 1),

(x− 1)2 if x ∈ [1, 2].

These solutions are the eigenfunctions of boundary value problems with functionals B2 and B0, res-
pectively. Therefore, λ2 = λ0 = 1/(x0−1)2. The linear combination c1u0+ c2u1 vanishes at the point
x = 1. Thus the condition of Corollary 4.1 is essential.

5.1 Estimation of eigenvalues
Let us use Theorem 3.1 to estimate the eigenvalues λm. Consider only the case 1 ≤ m ≤ n − 1,
Qu(x) = q(x)u(x). We use Yu. Pokorny’s representation (2.2). Substituting u = xn−m(l − x)m into
the integral inequality u− λHmQu = g ≥ 0 and dividing by u, we get

1− λ

l∫
0

1

x(l − x)
(l − s)n−1sn−1 G11(x, s)φ(x, s)

ln−2(n− 1)!
q(s) ds ≥ 0. (5.1)

The function φ(x, s) is bounded from above,

φ(x, s) ≤ max{φ(0, s), φ(l, s)} = Cσ
n−1, σ = min{n−m,m}.

Let

J(x) :=

l∫
0

1

x(l − x)
(l − s)n−1sn−1G11(x, s)q(s) ds = J1(x) + J2(x),
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where

J1(x) =
1

lx

x∫
0

sn(l − s)n−1q(s) ds,

J2(x) =
1

l(l − x)

l∫
x

sn−1(l − s)nq(s) ds.

(5.1) implies that if for 0 ≤ x ≤ l
1

λ
≥ J(x)

Cσ
n−1

ln−2(n− 1)!
,

then λ < λm. Thus
1

λm
< max J(x)

Cσ
n−1

ln−2(n− 1)!
. (5.2)

Lemma 5.1. At the maximum point x0 of J(x) there takes place

J(x0) =
l

x0
J1(x0) =

l

l − x0
J2(x0). (5.3)

Proof. Let h(s) := sn−1(l − s)n−1q(s)/l. Then

J1(x) =
1

x

x∫
0

s h(s) ds, J2(x) =
1

l − x

l∫
x

(l − s)h(s) ds,

J ′(x) = − 1

x2

x∫
0

s h(s) ds+
1

x
xh(x) +

1

(l − x)2

l∫
x

(l − s)h(s) ds− 1

l − x
(l − x)h(x)

= − 1

x2

x∫
0

s h(s) ds+
1

(l − x)2

l∫
x

(l − s)h(s) ds,

J ′(x0) = 0 =⇒ 1

x0
J1(x0) =

1

l − x0
J2(x0).

This implies (5.3).

From (5.2) and (5.3) follows

1

λm
<

Cσ
n−1

ln−2(n− 1)!

1

x20

x0∫
0

sn(l − s)n−1q(s) ds.
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