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SOME REMARKS ON THE BIENERGY
OF PULL-BACK VECTOR FIELDS



Abstract. The problem studied in this paper is related to the bienergy of a pull-back vector field
from a Riemannian manifold (M, g) to its tangent bundle TN equipped with the Sasaki metric hs.
We show that a pull-back vector field on a compact manifold (M, g) is biharmonic if and only if it
is harmonic. We also investigate the bienergy of a pull-back vector field, as a map from (M, g) to
(TN, hs).
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1 Introduction
In vector calculus and vector physics, a vector field is the assignment of a vector to each point in a
given space. As an illustration, the position vector of a space curve is specified only for a smaller
subset of the ambient space. A vector field is a special case of a vector-valued function, whose domain’s
dimension has no relationship to the size of its range. Think about the movement through a spatial
region. Every point has a specific velocity connected with it at any given time, hence every flow has
a vector field associated with it. Numerous phenomenological formulations and applications in this
direction have been researched in recent decades (see [1, 12–15, 17–21, 23, 24]). In a broader sense,
vector fields are defined on differentiable manifolds, which are spaces that, at greater sizes, may have
a more intricate structure than Euclidean space. In this configuration, every point on the manifold
(i.e., a segment of the tangent bundle to the manifold) has a tangent vector provided by a vector field.
One type of tensor field is a vector field. Let φ : M → N be a smooth map between the smooth
manifolds M , N . The map φ induces the pull-back vector field V : M → TN in the case where
M , N are Riemannian manifolds and TN is the tangent bundle equipped with the Sasaki metric.
The motivation of this paper is to study the harmonicity and biharmonicity of the pull-back vector
field V : (M, g) → (TN, hs). The energy functional of the map φ between Riemannian manifolds
has been widely investigated by several researchers (see [2–11]). Biharmonic maps are inherently
harmonic maps. Proper biharmonic mappings are defined as non-harmonic biharmonic maps. The
idea of biharmonic maps has garnered increasing attention over the past ten years and falls under two
primary categories for further investigation.

In this paper, we deal with these problems. We show that if (M, g) is a compact oriented m-
dimensional Riemannian manifold and the map φ is harmonic, then the pull-back vector field V ∈
Γ(φ−1TN) is harmonic if and only if V is parallel.

In the biharmonicity, we show that if (M, g) is a compact oriented m-dimensional Riemannian
manifold and the map φ is harmonic, then the pull-back vector field V ∈ Γ(φ−1TN) is biharmonic if
and only if V is harmonic.

1.1 Harmonic maps
Consider a smooth map ϕ : (Mm, g) → (Nn, h) between two Riemannian manifolds, then the energy
functional is defined by

E(ϕ) =
1

2

∫
M

|dϕ|2vg

(or over any compact subset K ⊂ M).
A map is called harmonic if it is a critical point of the energy functional E (or E(K) for all compact

subsets K ⊂ M). For any smooth variation {ϕ}t∈I of ϕ with ϕ0 = ϕ and V = dϕt

dt

∣∣
t=0

, we have

d

dt
E(ϕt)

∣∣
t=0

= −
∫
M

h(τ(ϕ), V )vg,

where τ(ϕ) = trg∇dϕ is the tension field of ϕ. Therefore, the following theorem is valid.
Theorem 1.1. A smooth map ϕ : (Mm, g) → (Nn, h) is harmonic if and only if

τ(ϕ) = 0. (1.1)

If (xi)1≤i≤m and (yα)1≤α≤n denote local coordinates on M and N , respectively, then equation (1.1)
takes the form

τ(ϕ)α =
(
∆ϕα + gij

N

Γα
βγ

∂ϕβ

∂xi

∂ϕγ

∂xj

)
= 0,

where
∆ϕα =

1√
|g|

∂

∂xi

(√
|g| gij ∂ϕ

α

∂xj

)
is the Laplace operator on (Mm, g) and

N

Γα
βγ are the Christoffel symbols on N .
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1.2 Biharmonic maps
Definition 1.1. A map ϕ : (Mm, g) → (Nn, h) between Riemannian manifolds is called biharmonic
if it is a critical point of the bienergy functional

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2vg.

We have
d

dt
E2(ϕt)

∣∣
t=0

= −
∫
M

h(τ2(ϕ), V )vg.

The Euler–Lagrange equation attached to bienergy is given by the vanishing bitension field

τ2(ϕ) = −Jϕ(τ(ϕ)) = −
(
∆ϕτ(ϕ) + trgR

N (τ(ϕ), dϕ)dϕ
)
,

where Jϕ is the Jacobi operator defined by

Jϕ : Γ(ϕ−1(TN)) → Γ(ϕ−1(TN)),

V 7→ ∆ϕV + trgR
N (V, dϕ)dϕ.

The biharmonic map, introduced by Eelles and Sampson in 1964, is a generalization of harmonic
maps. For background on harmonic and biharmonic maps, we refer to [6, 16,22].

2 Basic notions and definition on TM

Let (M, g) be an n-dimensional Riemannian manifold and (TM, π,M) be its tangent bundle. A local
chart (U, xi)i=1,...,n on M induces a local chart (π−1(U), xi, yi)i=1,...,n on TM. Denote by Γk

ij the
Christoffel symbols of g and by ∇ the Levi–Civita connection of g.

We have two complementary distributions on TM , the vertical distribution V and the horizontal
distribution H defined by

V(x,u) = ker(dπ(x,u)) =
{
ai

∂

∂yi |(x,u)
; ai ∈ R

}
,

H(x,u) =
{ ∂

∂xi |(x,u)
− aiujΓk

ij

∂

∂yk |(x,u)
; ai ∈ R

}
,

where (x, u) ∈ TM such that
T(x,u)TM = H(x,u) ⊕ V(x,u).

Let X = Xi ∂
∂xi be a local vector field on M . The vertical and the horizontal lifts of X are defined by

XV = Xi ∂

∂yi
,

XH = Xi δ

δxi
= Xi

{ ∂

∂xi
− y

jΓk
ij

∂

∂yk

}
.

For consequences, we have ( ∂
∂xi )

H = δ
δxi and ( ∂

∂xi )
V = ∂

∂yi , then ( δ
δxi ,

∂
∂yi )i=1,...,n is a local adapted

frame in TTM .

Definition 2.1. The Sasaki metric gs on the tangent bundle TM of M is given by

1. gs(XH , Y H) = g(X,Y ) ◦ π,

2. gs(XH , Y V ) = 0,

3. gs(XV , Y V ) = g(X,Y ) ◦ π
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for all vector fields X,Y ∈ Γ(TM).

Proposition 2.1 ([11]). Let (M, g) be a Riemannian manifold and ∇̂ be the Levi–Civita connection
of the tangent bundle (TM, gs) equipped with the Sasaki metric. Then

(∇̂XHY H)(x,u) = (∇XY )H(x,u) −
1

2
(Rx(X,Y )u)V ,

(∇̂XHY V )(x,u) = (∇XY )V(x,u) +
1

2
(Rx(u, Y )X)H ,

(∇̂XV Y H)(x,u) =
1

2
(Rx(u,X)Y )H ,

(∇̂XV Y V )(x,u) = 0

for all vector fields X,Y ∈ Γ(TM) and (x, u) ∈ TM .

3 Harmonicity of pull-back vector fields
Lemma 3.1 ([4]). Let (M, g) be a Riemannian manifold. If X,Y ∈ Γ(TM) are the vector fields and
(x, u) ∈ TM such that Xx = u, then we have

dxX(Yx) = Y H
(x,u) + (∇Y X)V(x,u).

Lemma 3.2. Let φ : (Mm, g) → (Nn, h) be a smooth map between the Riemannian manifolds. The
map φ induces the pull-back vector fields

V : (M, g) → (TN, hs),

x → (φ(x), Yφ(x))

for all vector field V ∈ Γ(φ−1TN) and X ∈ Γ(TM), and we have

dV (X) = (dφ(X))H + (∇φ
XV )V .

Proof. From Lemma 3.1, we have

dV (Xx) = d(Y ◦ φ)(Xx) = dY (dφ(Xx))

= (dφ(X))H(x,u) +
(
∇dφ(X)Y ◦ φ

)V
(x,u)

= (dφ(X))H(x,u) + (∇φ
XV )V(x,u).

Proposition 3.1. The tension field of the pull-back vector fields
V ∈ Γ(φ−1TN) is given by

τ(V ) =
(
τ(φ) + trgR

N (V,∇φ
∗V )dφ(∗)

)H

+
(
trg(

φ

∇2V )
)V

.

Proof. Let x ∈ M and {ei}ni=1 be a local orthonormal frame on M such that ∇eiej = 0 at x and
Xx = u. By summing over i, we have

τ(V ) =
{
∇V

eidV (ei)
}

=
{
∇TN

(dφ(ei))H
(dφ(ei))

H +∇TN
(dφ(ei))H

(∇φ
eiV )V +∇TN

(∇φ
ei

V )V (∇
φ
eiV )V +∇TN

(∇φ
ei

V )V (dφ(ei))
H
}

=
{(

∇dφ(ei)dφ(ei)
)H − 1

2

(
R(dφ(ei), dφ(ei))v

)V
+
(
∇dφ(ei)(∇

φ
eiV )

)V
+

1

2

(
Rx(v,∇φ

eiV )dφ(ei)
)H

+
1

2

(
R(v,∇φ

eiV )dφ(ei)
)H}

,

and then
τ(V ) =

(
τ(φ) + trgR

N (V,∇φ
∗V )dφ(∗)

)H

+
(
trg(

φ

∇2V )
)V

.
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Theorem 3.1. The pull-back vector field V ∈ Γ(φ−1TN) is harmonic if and only if

τ(φ) = 0, trgR(V,∇φ
∗V )dφ(∗) = 0 and trg

φ

∇2V = 0.

Lemma 3.3. Let φ : (Mm, g) → (Nn, h) be a smooth map between the Riemannian manifolds. Then
the energy density associated to V ∈ Γ(φ−1TN) is given by

e(V ) = e(φ) +
1

2
tracegh(∇φ

∗V,∇φ
∗V ),

where e(φ) is the energy density of the map φ.

Proof. Let {e1, . . . , em} be a local orthonormal frame on M , then

2e(V ) =

m∑
i=1

hs
(
dV (ei), dV (ei)

)
.

Using Lemma 3.2, we obtain

2e(V ) =

m∑
i=1

hs
(
(dV (ei))

h, (dV (ei)
H)

)
+ hs

(
(∇φ

eiV )V , (∇φ
eiV )V

)
=

m∑
i=1

h
(
dV (ei), dV (ei)

)
+ h

(
(∇φ

eiV ), (∇φ
eiV )

)
= 2e(φ) + h

(
(∇φ

eiV ), (∇φ
eiV )

)
.

Theorem 3.2. Let φ : (Mm, g) → (Nn, h) be a smooth harmonic map between the Riemannian
manifolds and (M, g) be compact. Then the pull-back vector field V ∈ Γ(φ−1TN) is harmonic if and
only if V is parallel.

Proof. If φ is harmonic and V is parallel, we deduce that V is harmonic. Conversely, let Vt be a
compactly supported variation of V defined by V = (1 + t)V . From Lemma 3.3, we have

e(Vt) = e(φ) +
(1 + t)2

2
tracegh(∇φ

∗V,∇φ
∗V ).

If V is a critical point of the energy functional, then we have

0 =
d

dt
E(Vt)|t=0

=
d

dt

(∫
M

(
e(φ) +

(1 + t)2

2
tracegh(∇φV,∇φV )

)
dvg

)
t=0

=
d

dt

∫
M

tracegh(∇φV,∇φV ) dvg.

It follows that
h(∇φV,∇φV ) = 0.

4 Biharmonicity of pull-back vector fields
In this section, we denote

∆φV = −traceg
φ

∇2V =

m∑
i=1

{
∇φ

∇ei
ei
V −∇φ

ei∇
φ
eiV

}
, (4.1)

S(V ) = −
m∑
i=1

RN (V,∇φ
eiV ) dφ(ei). (4.2)

Then we have
τ(V ) =

(
τ(φ)− S(V )

)H
+

(
−∆φ(V )

)V
.
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Theorem 4.1. Let (M, g) be a compact oriented m-dimensional Riemannian manifold and V ∈
Γ(φ−1TN). Then we have

d

dt
E2(Vt)

∣∣
t=0

=

∫
M

{
h
(
∆φ∆φV +

m∑
i=1

[
(∇φ

eiR)(ei, S(V ))V +R(ei,∇φ
eiS(V ))V

+ 2R(ei, S(V ))∇φ
eiV − (∇φ

eiR)(ei, τ(φ))V −R(ei,∇φ
eiτ(φ))V − 2R(ei, τ(φ))∇φ

eiV, V
]

+ h
(
R(S(V ), dφ(ei))dφ(ei) + ∆φS(V )− τ2(φ), v

))}
vg

for any smooth 1-parameter variation U : M × (−ϵ, ϵ)
ϕ−→ N

Y−→ TN of V through vector fields, i.e.,
Vt(z) = Y ◦ ϕ(z, t) = U(z, t) ∈ Tφ(z)N for any |t| < ϵ and z ∈ M or, equivalently, Vt ∈ Γ(φ−1(TN))
for any |t| < ϵ. Also, W is the tangent vector field on M given by

W (z) =
d

dt
Vz(0), z ∈ M,

where Vz(t) = U(z, t), (z, t) ∈ M × (−ϵ, ϵ).

Proof. Let V ∈ Γ(φ−1TN) and I = (−ϵ, ϵ), ϵ > 0. For t ∈ I, we denote by it : M → M×I, p → (p, t),
the canonical injection. We consider C∞-variations U : M × I → TN of V , i.e., for all t ∈ I, the
mappings Vt = U ◦it are, in fact, the vector fields and V0 = V . We choose {ei}mi=1, a local orthonormal
frame field of (M, g). We extend ei (resp. d

dt ∈ Γ(I)) to M × I, denoted by Ei (resp. d
dt ). Moreover,

we have [Ei,
d
dt ] = 0. We denote by Dϕ the pull-back Levi–Civita connection of M × I and by RD the

pull-back Riemann curvature tensor of M × I. Since M × I is a Riemannian product, we have (using
the second Bianchi identity for the last relation)

RD(TN, TI) = 0, Dϕ
d
dt

dϕ(Ei) = 0, Dϕ
Ei
dϕ

( d

dt

)
= 0, (Dϕ

d
dt

RD)(Dϕ
Ei
U,U)dϕ(Ei) = 0

for all 1 ≤ i ≤ m. We set

Z =

m∑
i=1

RD(Dϕ
Ei
U,U) dφ(Ei) and Ω =

m∑
i=1

[
Dϕ

DEi
Ei
U −Dϕ

Ei
Dϕ

Ei
U
]
.

We easily observe that S(Vt) = Z ◦ it and ∆φVt = Ω ◦ it. In the sequel, we consider the function

E2(Vt) =
1

2

∫
M

[
h(τ(φ), τ(φ)) + h(S(Vt), S(Vt))− 2h(S(Vt), τ(φ)) + h(∆φVt,∆

φVt)
]
vg

=
1

2

∫
M

[
h(τ(φ), τ(φ)) + h(Z,Z)− 2h(Z, τ(φ)) + h(Ω,Ω)

]
◦ itvg.

Differentiating the function E2(Vt) at each t, we obtain

d

dt
E2(Vt) =

∫
M

h
(
Dϕ

d
dt

τ(ϕ), τ(ϕ)
)
◦ iivg +

∫
M

h(Dϕ
d
dt

Z,Z) ◦ iivg

−
∫
M

h(Dϕ
d
dt

Z, τ(ϕ)) ◦ iivg +
∫
M

h(Dϕ
d
dt

Ω,Ω) ◦ iivg −
∫
M

h(Z,Dϕ
d
dt

τ(ϕ)) ◦ iivg. (4.3)

Taking into account the symmetries of the Riemann curvature tensor and summing over all repeated
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indices, we have∫
M

h(Dϕ
d
dt

Z,Z) ◦ itvg

=

∫
M

h
(
(Dϕ

d
dt

RD)(Dϕ
Ei
U,U)dϕ(Ei)+R

D(Dϕ
d
dt

Dϕ
Ei
U,U)dϕ(Ei)+R

D(Dϕ
Ei
U,Dϕ

d
dt

U)dϕ(Ei), Z
)
◦itvg

=

∫
M

[
h
(
RD(Dϕ

Ei
Dϕ

d
dt

U +
ϕ

RD
( d

dt
, Ei

)
U,U)dϕ(Ei), Z

)
+ h(RD(dϕ(Ei), Z)Dϕ

Ei
U,Dϕ

d
dt

U)
]
◦ itvg

=

∫
M

[
− h

(
RD(dϕ(Ei), Z)U,Dϕ

Ei
Dϕ

d
dt

U
)
+ h

(
RD(dϕ(Ei), Z)Dϕ

Ei
U,Dϕ

d
dt

U
)]

◦ itvg

=

∫
M

{
−Dϕ

Ei

(
h(RD(dϕ(Ei), Z)U,Dϕ

d
dt

U)
)
+ h

(
RD(Dϕ

Ei
dϕ(Ei), Z)U,Dϕ

d
dt

U
)

+ h
(
(Dϕ

Ei
RD)(dϕ(Ei), Z)U,Dϕ

d
dt

U
)
+ h

(
RD(dϕ(Ei), D

ϕ
Ei
Z)U,Dϕ

d
dt

U
)

+ 2h
(
RD(dϕ(Ei), Z)Dϕ

Ei
U,Dϕ

d
dt

U
)}

◦ itvg. (4.4)

Applying the divergence theorem for the 1-form

ηt(W ) = h
(
R(dφ(W ), S(Vt))Vt,∇φ

d
dt

Vt

)
, t ∈ I, dφ(W ) ∈ Γ(φ−1(TN)),

the last relation (4.4) gives∫
M

h(Dϕ
d
dt

Z,Z) ◦ itvg

=

∫
M

h
(
(∇φ

eiR)(dφ(ei), S(Vt))Vt+R(dφ(ei),∇φ
eiS(Vt))Vt+2R(dφ(ei), S(Vt))∇φ

eiVt,∇φ
d
dt

Vt

)
vg. (4.5)

Similarly, summing over all repeated indices, we deduce∫
M

h(Dϕ
d
dt

Ω,Ω) ◦ itvg

=

∫
M

h
(
Dϕ

d
dt

Dϕ
DEi

Ei
U−Dϕ

d
dt

Dϕ
Ei
Dϕ

Ei
U,Ω

)
◦ itvg=

∫
M

h
(
Dϕ

DEi
Ei
Dϕ

d
dt

U−Dϕ
Ei
Dϕ

Ei
Dϕ

d
dt

U,Ω
)
◦ itvg

=

∫
M

{
Dϕ

DEi
Ei

[
h(Dϕ

d
dt

U,Ω)
]
− h(Dϕ

d
dt

U,Dϕ
DEi

Ei
Ω)

−Dϕ
Ei

[
h(Dϕ

Ei
Dϕ

d
dt

U,Ω)
]
+ h(Dϕ

Ei
Dϕ

d
dt

U,Dϕ
Ei
Ω)

}
◦ itvg

=

∫
M

{
Dϕ

DEi
Ei

[
h(Dϕ

d
dt

U,Ω)
]
−Dϕ

Ei
Dϕ

Ei

[
h(Dϕ

d
dt

U,Ω)
]

− h(Dϕ
d
dt

U,Dϕ
DEi

Ei
Ω) +Dϕ

Ei

[
h(Dϕ

d
dt

U,Dϕ
Ei
Ω)

]
+ h(Dϕ

Ei
Dϕ

d
dt

U,Dϕ
Ei
Ω)

}
◦ itvg

=
{
∆ϕ

[
h(Dϕ

d
dt

U,Ω)
]
−h(Dϕ

d
dt

U,Dϕ
DEi

Ei
Ω)+2Dϕ

Ei

[
h(Dϕ

d
dt

U,Dϕ
Ei
Ω)

]
−h(Dϕ

d
dt

U,Dϕ
Ei
Dϕ

Ei
Ω)

}
◦ itvg

=
{
∆ϕ

[
h(Dϕ

d
dt

U,Ω)
]
− h(Dϕ

d
dt

U,Dϕ
DEi

Ei
Ω) + 2Dϕ

Ei

[
h(Dϕ

d
dt

U,Dϕ
Ei
Ω)

]
− 2h(Dϕ

d
dt

U,Dϕ
DEi

Ei
Ω) + 2h(Dϕ

d
dt

U,Dϕ
DEi

Ei
Ω)− h(Dϕ

d
dt

U,Dϕ
Ei
Dϕ

Ei
Ω)

}
◦ itvg.
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Applying the divergence Theorem for the 1-form

θt( · ) = h(∇φ
d
dt

Vt,∇φ
·∆

φVt), t ∈ I,

we have

∫
M

h(Dϕ
d
dt

Ω,Ω) ◦ itvg =

∫
M

∆ϕ
[
h(Dφ

d
dt

Vt,∆Vt)
]
vg

+ 2

∫
M

div(θt)vg +

∫
M

h(∇φ
d
dt

Vt,∆
φ∆φVt)vg =

∫
M

h(∇φ
d
dt

Vt,∆
φ∆φVt)vg. (4.6)

Similarly, summing over all repeated indices, we deduce∫
M

h(Dϕ
d
dt

Z, τ(ϕ)) ◦ itvg

=

∫
M

h
(
(Dϕ

d
dt

RD)(Dϕ
Ei
U,U)dϕ(Ei)+R

D(Dϕ
d
dt

Dϕ
Ei
U,U)dϕ(Ei)+R

D(Dϕ
Ei
U,Dϕ

d
dt

U)dϕ(Ei), τ(ϕ)
)
◦itvg

=

∫
M

[
h
(
RD

(
Dϕ

Ei
Dϕ

d
dt

U+
ϕ

RD
( d

dt
, Ei

)
U,U

)
dϕ(Ei), τ(ϕ)

)
+h

(
RD(dϕ(Ei), τ(ϕ))D

ϕ
Ei
U,Dϕ

d
dt

U
)]
◦itvg

=

∫
M

[
− h

(
RD(dϕ(Ei), τ(ϕ))U,D

ϕ
Ei
Dϕ

d
dt

U
)
+ h

(
RD(dϕ(Ei), τ(ϕ))D

ϕ
Ei
U,Dϕ

d
dt

U
)]

◦ itvg

=

∫
M

{
−Dϕ

Ei

(
h(RD(dϕ(Ei), τ(ϕ))U,D

ϕ
d
dt

U)
)
+ h

(
RD(Dϕ

Ei
dϕ(Ei), τ(ϕ))U,D

ϕ
d
dt

U
)

+ h
(
(Dϕ

Ei
RD)(dϕ(Ei), τ(ϕ))U,D

ϕ
d
dt

U
)
+ h

(
RD(dϕ(Ei), D

ϕ
Ei
τ(ϕ))U,Dϕ

d
dt

U
)

+ 2h
(
RD(dϕ(Ei), τ(ϕ))D

ϕ
Ei
U,Dϕ

d
dt

U
)}

◦ itvg. (4.7)

Applying the divergence Theorem for the 1-form

ηt(W ) = h
(
R(dφ(W ), τ(ϕ))Vt,∇φ

d
dt

Vt

)
, t ∈ I, dφ(W ) ∈ Γ(φ−1(TN))

the last relation (4.7) gives

∫
M

h(Dϕ
d
dt

Z, τ(ϕ)) ◦ itvg

=

∫
M

h
(
(∇φ

eiR)(dφ(ei), τ(φ))Vt +R(dφ(ei),∇φ
eiτ(φ))Vt + 2R(dφ(ei), τ(φ))∇φ

eiVt,∇φ
d
dt

Vt

)
vg. (4.8)

From Definition 1.1, we have∫
M

h(Dϕ
d
dt

τ(ϕ), τ(ϕ))|t=0 ◦ itvg = −
∫
M

h(τ2(ϕ), v)vg, (4.9)

where v = dϕ( d
dt ) (for more details, see [17]).
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Similarly, summing over all repeated indices, we deduce∫
M

h(Dϕ
d
dt

τ(ϕ), Z) ◦ iivg

=

∫
M

h
(
Dϕ

d
dt

Ddϕ(Ei, Ei), Z
)
◦ iivg =

∫
M

h
(
Dϕ

d
dt

Dϕ
Ei
dϕ(Ei)−Dϕ

d
dt

dϕ(DEi
Ei), Z

)
◦ iivg

=

∫
M

h
(
R
(
dϕ

( d

dt

)
, dϕ(Ei)

)
dϕ(Ei) +Dϕ

Ei
Dϕ

d
dt

dϕ(Ei) +Dϕ

[ d
dt ,Ei]

dϕ(Ei)−Dϕ
DEi

Ei
dϕ

( d

dt

)
, Z

)
◦ iivg

=

∫
M

(
h
(
R
(
dϕ

( d

dt

)
, dϕ(Ei)

)
dϕ(Ei), Z

)
+ h

(
Dϕ

Ei
Dϕ

Ei
dϕ

( d

dt

)
, Z

))
◦ iivg

=

∫
M

(
h
(
R(Z, dϕ(Ei))dϕ(Ei), dϕ

( d

dt

))
+ Ei

(
h
(
Dϕ

Ei
dϕ

( d

dt

)
, Z

))
− Ei

(
h
(
dϕ

( d

dt

)
, Dϕ

Ei
Z
))

+ h
(
Dϕ

Ei
Dϕ

Ei
Z, dϕ

( d

dt

)))
◦ iivg.

Applying the divergence Theorem for the 1-form

ω( · ) =
(
h
(
Dϕ

· dϕ
( d

dt

)
, Z

))
, η( · ) = h

(
dϕ

( d

dt

)
, Dϕ

·Z
)
,

one gets∫
M

h
(
Dϕ

d
dt

τ(ϕ), S(V )
)∣∣

t=0
◦ iivg =

∫
M

h
(
R(S(V ), dφ(ei))dφ(ei)−∆φS(V ), v

)
vg. (4.10)

Substituting (4.5), (4.6), (4.8)–(4.9) into (4.3), evaluating at t = 0 and setting V = ∇ d
dt
Vt|t=0, we

easily obtain the desired result.

Since the bull-back vector field V is biharmonic if and only if d
dt E2(Vt)

∣∣
t=0

= 0 for all admissible
variations, we get

Corollary. A pull-back vector field V of an m-dimensional Riemannian manifold (M, g) is biharmonic
if and only if

∆φ∆φV +

m∑
i=1

[
(∇φ

eiR)(ei, S(V ))V +R(ei,∇φ
eiS(V ))V

+ 2R(ei, S(V ))∇φ
eiV − (∇φ

eiR)(ei, τ(φ))V −R(ei,∇φ
eiτ(φ))V

− 2R(ei, τ(φ))∇φ
eiV +R(S(V ), dφ(ei))dφ(ei) + ∆φS(V )− τ2(φ)

]
= 0.

Remark. If a pull-back vector field of a Riemannian manifold (M, g) defines a harmonic map from
(M, g) into (TN, hs), i.e., S(V ) = 0, τ(φ) = 0 and ∆φV = 0, then it is automatically a biharmonic
pull-back vector field.

Theorem 4.2. Let φ : (Mn, g) → (Nm, h) be a smooth harmonic map between the Riemannian
manifolds and (M, g) be compact. Then the pull-back bundle V ∈ Γ(φ−1TN) is biharmonic if and
only if V is harmonic.

Proof. Let Vt be a compactly supported variation of V defined by Vt = (1+ t)V . From formulas (4.1)
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and (4.2), we have

∆φVt = (1 + t)∆φV,

S(Vt) = (1 + t)2S(V ),

E2(Vt) =
1

2

∫
M

hs(τ(Vt), τ(Vt))vg =
1

2

∫
M

h(∆φVt,∆
φVt)vg +

1

2

∫
M

h(S(Vt), S(Vt))vg

=
(1 + t)2

2

∫
M

h(∆φV,∆φV )vg +
(1 + t)4

2

∫
M

h(S(Vt), S(Vt))vg.

Since the pull-back vector field V is biharmonic, then for the variation Vt, we have

d

dt
E2(Vt)

∣∣
t=0

=

∫
M

h(∆φV,∆φV )vg + 2

∫
M

h(S(Vt), S(Vt))vg = 0.

Hence
∆φV = 0 and S(Vt) = 0,

thus V is harmonic and Theorem 3.2 follows.

Example. We give in R3 the curve γ : [0, 2π] → R3, t 7→ γ(t) = (t, t, t). Let V0 = (1, 2,−1) and ∇ be
the connection on R3 such that Γ1

12 = x and the other coefficients are zero. We propose to calculate
the vector field V (t) ∈ Γ(γ−1TR3) which is parallel and extends V0.

The general form of a vector field V (t) ∈ Γ(γ−1TR3) is

V = v1(t)
∂

∂x
+ v2(t)

∂

∂y
+ v3(t)

∂

∂z
.

Then V is biharmonic if it verifies the following system:

dv1(t)

dt
+ v2(t)

dc1(t)

dt
Γ1
12 = 0,

dv2(t)

dt
= 0,

dv3(t)

dt
= 0,

thus 
dv1(t)

dt
+ v2(t)t = 0,

v2(t) = b,

v3(t) = c,

where b and c are arbitrary real constants. Hence
v1(t) = −b

t2

2
+ d,

v2(t) = b,

v3(t) = c.

Since (V )t=0 = V0, we have

V = (−t2 + 1)
∂

∂x
+ 2

∂

∂y
− ∂

∂z
.
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