Memoirs on Differential Equations and Mathematical Physics

Volume ??, 2024, 1-9

Abdelaziz Gherdaoui, Abdelkader Senouci, Bouharket Benaissa

SOME ESTIMATES FOR HARDY-STEKLOV TYPE OPERATORS

Abstract

The aim of this work is to establish some new integral inequalities for $0<p<1$ under

 weaker condition than monotonicity via Hardy-Steklov-type operators.2020 Mathematics Subject Classification. 26D10, 26D15.
Key words and phrases. Hardy-type inequality, Hardy-Steklov operator.

1 Introduction

It is well-known that for Lebesgue spaces L_{p} with $0<p<1$, the Hardy inequality is not satisfied for arbitrary non-negative measurable functions, but is satisfied for monotone functions (see [2]). In 2007, the Hardy type inequality was obtained under a still weaker condition than monotonicity (see [3]). Namely, the following statements were proved.

Lemma 1.1. Let $0<p<1, c_{1}>0$ and f be a non-negative measurable function on $(0, \infty)$ such that for all $x>0$,

$$
\begin{equation*}
f(x) \leq \frac{c_{1}}{x}\left(\int_{0}^{x} f^{p}(y) y^{p-1} d y\right)^{\frac{1}{p}} \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\int_{0}^{x} f(y) d y\right)^{p} \leq c_{2} \int_{0}^{x} f^{p}(y) y^{p-1} d y \tag{1.2}
\end{equation*}
$$

where

$$
c_{2}=c_{1}^{p(1-p)}
$$

The classical Hardy operators are defined as follows:

$$
\left(H_{1} f\right)(x)=\frac{1}{x} \int_{0}^{x} f(y) d y, \quad\left(H_{2} f\right)(x)=\frac{1}{x} \int_{x}^{\infty} f(y) d y
$$

Theorem 1.1 ([3]). Let $0<p<1, \alpha<1-\frac{1}{p}$ and $c_{1}>0$. If f is non-negative measurable function on $(0, \infty)$ and satisfies (1.1) for all $x>0$, then

$$
\begin{equation*}
\left\|x^{\alpha}\left(H_{1} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq c_{3}\left\|x^{\alpha} f(x)\right\|_{L_{p}(0, \infty)} \tag{1.3}
\end{equation*}
$$

where

$$
c_{3}=c_{1}^{1-p}\left(1-\alpha-\frac{1}{p}\right)^{-\frac{1}{p}} p^{-\frac{1}{p}}
$$

The constant c_{3} is sharp (the best possible).
Remark 1.1. If f is a non-increasing function on $(0, \infty)$, then (1.1) is satisfied with $c_{1}=p^{\frac{1}{p}}$. For such functions inequality (1.3) takes the form

$$
\begin{equation*}
\left\|x^{\alpha}\left(H_{1} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq\left(p^{p}\left(1-\alpha-\frac{1}{p}\right)\right)^{-\frac{1}{p}}\left\|x^{\alpha} f(x)\right\|_{L_{p}(0, \infty)} \tag{1.4}
\end{equation*}
$$

The factor $\left(p^{p}\left(1-\alpha-\frac{1}{p}\right)\right)^{-\frac{1}{p}}$ is sharp. Inequality (1.4) was proved earlier (for more details, see [2]).
The well-known Hardy-Steklov operator is defined as

$$
(T f)(x)=\frac{1}{x} \int_{a(x)}^{b(x)} f(y) d y
$$

with the boundary functions $a(x), b(x)$ satisfying the following conditions:
(1) $a(x), b(x)$ are differentiable and strictly increasing functions on $[0, \infty]$,
(2) $0<a(x)<b(x)<\infty$ for $0<x<\infty, a(0)=b(0)=0$ and $a(\infty)=b(\infty)=\infty$,
where f is a non-negative Lebesgue measurable function on $(0, \infty)$.
The objective of this work is to extend the results of [3] to Hardy-Steklov type operators T_{1}, T_{2} and T_{3} defined as follows:

$$
\left(T_{1} f\right)(x)=\frac{1}{x} \int_{0}^{b(x)} f(y) d y
$$

with boundary function $b(x)$ satisfying the following conditions:
(1) $b(x)$ is differentiable and strictly increasing function on $(0, \infty]$,
(2) $0<b(x)<\infty$ for $0<x<\infty$ and $b(\infty)=\infty$;

$$
\left(T_{2} f\right)(x)=\frac{1}{x} \int_{a(x)}^{\infty} f(y) d y
$$

with boundary function $a(x)$ satisfying the following conditions:
(1) $a(x)$ is differentiable and strictly increasing function on $[0, \infty)$,
(2) $0<a(x)<\infty$ for $0<x<\infty$ and $a(0)=0$;

$$
\left(T_{3} f\right)(x)=\frac{1}{x} \int_{a(x)}^{b(x)} f(y) d y
$$

where
(1) $a(x), b(x)$ are differentiable and strictly increasing functions on $(0, \infty)$,
(2) $0<a(x)<b(x)<\infty$ for $0<x<\infty$.

2 Main results

Throughout the paper, we assume that the function f is a non-negative Lebesgue measurable function on $(0, \infty)$.
Theorem 2.1. Let $0<p<1, \alpha<1-\frac{1}{p}$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. If f is a non-negative measurable function on $(0, \infty)$ and satisfies (1.1) for all $x>0$, then

$$
\left\|x^{\alpha}\left(T_{1} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq c_{4}\left\|x^{\frac{1}{p^{\prime}}}\left(b^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}
$$

where

$$
c_{4}=c_{1}^{1-p}((1-\alpha) p-1)^{-\frac{1}{p}}
$$

Proof. Choose $t=b(x)$, hence $x=b^{-1}(t)$, where $b^{-1}(t)$ is the reciprocal function of $b(t)$. Applying (1.2) and Fubini's Theorem, we get

$$
\begin{aligned}
\left\|x^{\alpha}\left(T_{1} f\right)(x)\right\|_{L_{p}(0, \infty)} & =\left(\int_{0}^{\infty}\left(b^{-1}(t)\right)^{(\alpha-1) p}\left(\int_{0}^{t} f(y) d y\right)^{p}\left(b^{-1}(t)\right)^{\prime} d t\right)^{\frac{1}{p}} \\
& \leq\left(c_{2}\right)^{\frac{1}{p}}\left(\int_{0}^{\infty}\left(b^{-1}(t)\right)^{(\alpha-1) p}\left(\int_{0}^{t} f^{p}(y) y^{p-1} d y\right)\left(b^{-1}(t)\right)^{\prime} d t\right)^{\frac{1}{p}} \\
& =\left(c_{2}\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} f^{p}(y) y^{p-1}\left(\int_{y}^{\infty}\left(b^{-1}(t)\right)^{\prime}\left(b^{-1}(t)\right)^{(\alpha-1) p} d t\right) d y\right)^{\frac{1}{p}} .
\end{aligned}
$$

Since $\alpha<1-\frac{1}{p}$ and $b^{-1}(\infty)=\infty$, we have

$$
\int_{y}^{\infty}\left(b^{-1}(t)\right)^{\prime}\left(b^{-1}(t)\right)^{(\alpha-1) p} d t=\frac{1}{(1-\alpha) p-1}\left[b^{-1}(y)\right]^{(\alpha-1) p+1}
$$

consequently,

$$
\begin{aligned}
\left\|x^{\alpha}\left(T_{1} f\right)(x)\right\|_{L_{p}(0, \infty)} & \leq\left(\frac{c_{1}^{p(1-p)}}{(1-\alpha) p-1}\right)^{\frac{1}{p}}\left[\int_{0}^{\infty} f^{p}(y) y^{p-1}\left(b^{-1}(y)\right)^{(\alpha-1) p+1} d y\right]^{\frac{1}{p}} \\
& =c_{1}^{1-p}((1-\alpha) p-1)^{-\frac{1}{p}}\left[\int_{0}^{\infty}\left(f(y) y^{1-\frac{1}{p}}\left(b^{-1}(y)\right)^{\alpha-1+\frac{1}{p}}\right)^{p} d y\right]^{\frac{1}{p}}
\end{aligned}
$$

We get the desired inequality.
Remark 2.1. If f is a non-increasing function on $(0, \infty)$, we obtain the following inequality:

$$
\left\|x^{\alpha}\left(T_{1} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq\left(\frac{p^{1-p}}{(1-\alpha) p-1}\right)^{\frac{1}{p}}\left\|x^{\frac{1}{p^{\prime}}}\left(b^{-1}\right)^{\alpha-\frac{1}{p^{\prime}}}(x) f(x)\right\|_{L_{p}(0, \infty)}
$$

Choosing $b(x)=\beta x$ in Theorem 2.1, where $\beta>0$, we have the following
Corollary 1. Let f satisfy the assumptions of Theorem 2.1 and

$$
\left(S_{1} f\right)(x)=\frac{1}{x} \int_{0}^{\beta x} f(y) d y \text { for } x>0
$$

then

$$
\left\|x^{\alpha}\left(S_{1} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq\left(\frac{1}{\beta}\right)^{\alpha-\frac{1}{p^{\prime}}} c_{4}\left\|x^{\alpha} f(x)\right\|_{L_{p}(0, \infty)}
$$

Remark 2.2. Taking $\beta=1$ in the above corollary, we get Theorem 1.1.
For the next results we need the following
Lemma 2.1. Let $0<p<1$. Suppose that a non-negative function f satisfies the condition: there is a positive constant c_{5} such that for all $x>0$,

$$
\begin{equation*}
f(x) \leq \frac{c_{5}}{x}\left(\int_{x}^{\infty} f^{p}(y) y^{p-1} d y\right)^{\frac{1}{p}} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\int_{x}^{\infty} f(y) d y\right)^{p} \leq c_{6} \int_{x}^{\infty} f^{p}(y) y^{p-1} d y \tag{2.2}
\end{equation*}
$$

where

$$
c_{6}=c_{5}^{p(1-p)} .
$$

Proof. Note that

$$
f(x)=\left(f^{p}(x) x^{p}\right)^{\frac{1}{p}-1} f^{p}(x) x^{p-1}
$$

Using (2.1), we have

$$
x^{p} f^{p}(x) \leq c_{5}^{p}\left(\int_{x}^{\infty} f^{p}(y) y^{p-1} d y\right)
$$

therefore,

$$
\left(x^{p} f^{p}(x)\right)^{\frac{1}{p}-1} \leq c_{5}^{1-p}\left(\int_{x}^{\infty} f^{p}(y) y^{p-1} d y\right)^{\frac{1}{p}-1}
$$

Multiplying by $f^{p}(x) x^{p-1}$ and putting $0<t \leq x$, we get

$$
f(x) \leq c_{5}^{1-p}\left(\int_{t}^{\infty} f^{p}(y) y^{p-1} d y\right)^{\frac{1}{p}-1} f^{p}(x) x^{p-1}
$$

consequently,

$$
\begin{aligned}
\int_{t}^{\infty} f(x) d x & \leq c_{5}^{1-p}\left(\int_{t}^{\infty} f^{p}(y) y^{p-1} d y\right)^{\frac{1}{p}-1} \int_{t}^{\infty} f^{p}(x) x^{p-1} d x \\
& =c_{5}^{1-p}\left(\int_{t}^{\infty} f^{p}(x) x^{p-1} d x\right)^{\frac{1}{p}-1} \int_{t}^{\infty} f^{p}(x) x^{p-1} d x \\
& =c_{5}^{1-p}\left(\int_{t}^{\infty} f^{p}(x) x^{p-1} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

Theorem 2.2. Let $0<p<1, \alpha>1-\frac{1}{p}$ and $c_{1}>0$. If f is a non-negative measurable function on $(0, \infty)$ and satisfies (2.1) for all $x>0$, then

$$
\left\|x^{\alpha}\left(T_{2} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq c_{7}\left\|x^{\frac{1}{p^{\prime}}}\left(a^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}
$$

where

$$
c_{7}=c_{5}^{1-p}((\alpha-1) p+1)^{-\frac{1}{p}}
$$

Proof. Put $t=a(x)$, then $x=a^{-1}(t)$, where $a^{-1}(t)$ is the reciprocal function of $a(t)$. Applying inequality (2.2) and Fubini's Theorem, we get

$$
\begin{aligned}
\left\|x^{\alpha}\left(T_{2} f\right)(x)\right\|_{L_{p}(0, \infty)} & =\left(\int_{0}^{\infty}\left(a^{-1}(t)\right)^{(\alpha-1) p}\left(\int_{t}^{\infty} f(y) d y\right)^{p}\left(a^{-1}(t)\right)^{\prime} d t\right)^{\frac{1}{p}} \\
& \leq\left(c_{6}\right)^{\frac{1}{p}}\left(\int_{0}^{\infty}\left(a^{-1}(t)\right)^{(\alpha-1) p}\left(\int_{t}^{\infty} f^{p}(y) y^{p-1} d y\right)\left(a^{-1}(t)\right)^{\prime} d t\right)^{\frac{1}{p}} \\
& =\left(c_{6}\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} f^{p}(y) y^{p-1}\left(\int_{0}^{y}\left(a^{-1}(t)\right)^{\prime}\left(a^{-1}(t)\right)^{(\alpha-1) p} d t\right) d y\right)^{\frac{1}{p}}
\end{aligned}
$$

Since $\alpha>1-\frac{1}{p}$ and $a^{-1}(0)=0$, we have

$$
\int_{0}^{y}\left(a^{-1}(t)\right)^{\prime}\left(a^{-1}(t)\right)^{(\alpha-1) p} d t=\frac{1}{(\alpha-1) p+1}\left[a^{-1}(y)\right]^{(\alpha-1) p+1}
$$

consequently,

$$
\begin{aligned}
\left\|x^{\alpha}\left(T_{2} f\right)(x)\right\|_{L_{p}(0, \infty)} & \leq\left(\frac{c_{5}^{p(1-p)}}{(\alpha-1) p+1}\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} f^{p}(y) y^{p-1}\left(a^{-1}(y)\right)^{(\alpha-1) p+1} d y\right)^{\frac{1}{p}} \\
& =c_{7}\left\|x^{\frac{1}{p^{\prime}}}\left(a^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}
\end{aligned}
$$

Choosing $a(x)=\lambda x$ in Theorem 2.2, where $\lambda>0$, we obtain the following
Corollary 2. Let f satisfy the assumptions of Theorem 2.2 and

$$
\left(S_{2} f\right)(x)=\frac{1}{x} \int_{\lambda x}^{\infty} f(y) d y \text { for } x>0
$$

Then the inequality

$$
\left\|x^{\alpha}\left(S_{2} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq\left(\frac{1}{\lambda}\right)^{\alpha-\frac{1}{p^{\prime}}} c_{7}\left\|x^{\alpha} f(x)\right\|_{L_{p}(0, \infty)}
$$

holds.
Remark 2.3. Taking $\lambda=1$, we get

$$
\left\|x^{\alpha}\left(H_{2} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq c_{7}\left\|x^{\alpha} f(x)\right\|_{L_{p}(0, \infty)}
$$

Now, we have obtained the analogue of Theorem 1.1 for H_{2} which is the dual of Hardy averaging operator H_{1}.

For the next theorem we need the following lemmas.
Lemma 2.2. Let $0<p<1, c_{8}>0$ and $a(x), b(x)$ be under the conditions of operator T_{3} such that for almost all $x>0$,

$$
\begin{equation*}
f(x) \leq \frac{c_{8}}{x}\left(\int_{a(x)}^{b(x)} f^{p}(y) y^{p-1} d y\right)^{\frac{1}{p}} \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\int_{a(x)}^{b(x)} f(y) d y\right)^{p} \leq c_{8}^{p(1-p)} \int_{a(x)}^{b(x)} f^{p}(y) y^{p-1} d y \tag{2.4}
\end{equation*}
$$

Proof. The proof is similar to that of Lemma 2.1.
Lemma 2.3. Let $0<p<1$ and $0<B<A$, then

$$
\begin{equation*}
A^{p}-B^{p} \leq(A-B)^{p} \tag{2.5}
\end{equation*}
$$

Proof. It is well known that for $0<B<A$ and $0<p<1$,

$$
(A+B)^{p} \leq A^{p}+B^{p}
$$

Replacing A by $A-B$, we get

$$
A^{p} \leq(A-B)^{p}+B^{p}
$$

For more details, see [1].
Theorem 2.3. Let $0<p<1, \alpha>1-\frac{1}{p}$ and $c_{1}>0$. If f is a non-negative measurable function on $(0, \infty)$ and satisfies (2.3) for all $x>0$, then

$$
\begin{aligned}
& \left\|x^{\alpha}\left(T_{3} f\right)(x)\right\|_{L_{p}(0, \infty)} \\
& \quad \leq c_{9}\left(\left\|x^{\frac{1}{p^{\prime}}}\left(a^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}-\left\|x^{\frac{1}{p^{\prime}}}\left(b^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}\right)
\end{aligned}
$$

where

$$
c_{9}=c_{8}^{1-p}((\alpha-1) p+1)^{-\frac{1}{p}}
$$

Proof. Taking into account (2.4), we get

$$
\left\|x^{\alpha}\left(T_{3} f\right)(x)\right\|_{L_{p}(0, \infty)}^{p}=\int_{0}^{\infty} x^{(\alpha-1) p}\left(\int_{a(x)}^{b(x)} f(y) d y\right)^{p} d x \leq c_{8}^{p(1-p)} \int_{0}^{\infty} x^{(\alpha-1) p}\left(\int_{a(x)}^{b(x)} f^{p}(y) y^{p-1} d y\right) d x
$$

Since $a(x)<y<b(x)$, we have $b^{-1}(y)<x<a^{-1}(y)$. Apply Fubini's Theorem, we get

$$
\int_{0}^{\infty} x^{(\alpha-1) p}\left(\int_{a(x)}^{b(x)} f^{p}(y) y^{p-1} d y\right) d x=\int_{0}^{\infty} f^{p}(y) y^{p-1}\left(\int_{b^{-1}(y)}^{a^{-1}(y)} x^{(\alpha-1) p} d x\right) d y
$$

In combination with $\alpha>1-\frac{1}{p}$ and $0<a(x)<b(x)<\infty$, this yields

$$
\int_{b^{-1}(y)}^{a^{-1}(y)} x^{(\alpha-1) p} d x=\frac{1}{(\alpha-1) p+1}\left(\left(a^{-1}(y)\right)^{(\alpha-1) p+1}-\left(b^{-1}(y)\right)^{(\alpha-1) p+1}\right) .
$$

Consequently,

$$
\begin{aligned}
& \left\|x^{\alpha}\left(T_{3} f\right)(x)\right\|_{L_{p}(0, \infty)}^{p} \\
& \quad \leq \frac{c_{8}^{p(1-p)}}{(\alpha-1) p+1}\left(\int_{0}^{\infty} f^{p}(y) y^{p-1}\left[\left(a^{-1}(y)\right)^{(\alpha-1) p+1}-\left(b^{-1}(y)\right)^{(\alpha-1) p+1}\right] d y\right) \\
& \quad=\frac{c_{8}^{p(1-p)}}{(\alpha-1) p+1}\left(\left\|x^{\frac{1}{p^{\prime}}}\left(a^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}^{p}-\left\|x^{\frac{1}{p^{\prime}}}\left(b^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}^{p}\right) .
\end{aligned}
$$

Using (2.5), we deduce

$$
\begin{aligned}
& \left\|x^{\alpha}\left(T_{3} f\right)(x)\right\|_{L_{p}(0, \infty)}^{p} \\
& \quad \leq \frac{c_{8}^{p(1-p)}}{(\alpha-1) p+1}\left(\left\|x^{\frac{1}{p^{\prime}}}\left(a^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}-\left\|x^{\frac{1}{p^{\prime}}}\left(b^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}\right)^{p}
\end{aligned}
$$

hence

$$
\begin{aligned}
& \left\|x^{\alpha}\left(T_{3} f\right)(x)\right\|_{L_{p}(0, \infty)} \\
& \leq c_{8}^{1-p}((\alpha-1) p+1)^{-\frac{1}{p}}\left(\left\|x^{\frac{1}{p^{\prime}}}\left(a^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}-\left\|x^{\frac{1}{p^{\prime}}}\left(b^{-1}(x)\right)^{\alpha-\frac{1}{p^{\prime}}} f(x)\right\|_{L_{p}(0, \infty)}\right) .
\end{aligned}
$$

Setting $a(x)=\lambda x$ and $b(x)=\beta x$, where $0<\lambda<\beta<\infty$, in Theorem 2.3 above, leads to the following
Corollary 3. Let f satisfies the assumptions of Theorem 2.3 and

$$
\left(S_{3} f\right)(x)=\frac{1}{x} \int_{\lambda x}^{\beta x} f(y) d y \text { for } x>0
$$

then

$$
\left\|x^{\alpha}\left(S_{3} f\right)(x)\right\|_{L_{p}(0, \infty)} \leq c_{8}\left(\left(\frac{1}{\lambda}\right)^{\alpha-\frac{1}{p^{\prime}}}-\left(\frac{1}{\beta}\right)^{\alpha-\frac{1}{p^{\prime}}}\right)\left\|x^{\alpha} f(x)\right\|_{L_{p}(0, \infty)}
$$

Remark 2.4. Taking $\lambda=\frac{1}{2}$ and $\beta=1$, we obtain the analogous result for the Pachepatte type operator P :

$$
\left\|x^{\alpha}(P f)(x)\right\|_{L_{p}(0, \infty)} \leq c_{8}\left(2^{\alpha-\frac{1}{p^{\prime}}}-1\right)\left\|x^{\alpha} f(x)\right\|_{L_{p}(0, \infty)}
$$

where

$$
(P f)(x)=\frac{1}{x} \int_{\frac{x}{2}}^{x} f(y) d y \text { for } x>0
$$

Acknowledgements

The authors are very grateful to the referees for helpful comments and valuable suggestions.
This work was supported by the Directorate-General for Scientific Research and Technological Development (DGRSDT) Algeria.

References

[1] B. Benaissa, Some inequalities on time scales similar to reverse Hardy's inequality. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 26(551) (2022), 113-126.
[2] V. I. Burenkov, On the exact constant in the Hardy inequality with $0<p<1$ for monotone functions. (Russian) Trudy Mat. Inst. Steklov. 194 (1992), Issled. po Teor. Differ. Funktsiĭ Mnogikh Peremen. i ee Prilozh. 14, 58-62; translation in Proc. Steklov Inst. Math. 1993, no. 4(194), 59-63.
[3] A. Senouci and T. V. Tararykova, Hardy type inequality for $0<p<1$. Evraziiskii Matematicheskii Zhurnal 2 (2007), 112-116.
(Received 02.03.2023; revised 07.04.2023; accepted 11.04.2023)

Authors' addresses:

Abdelaziz Gherdaoui Department of Mathematics, Laboratory of Informatics and Mathematics, University of Tiaret, Algeria.

E-mail: gherdaouiabdelazize2022@gmail.com
Abdelkader Senouci Department of Mathematics, Laboratory of Informatics and Mathematics, University of Tiaret, Algeria.

E-mail: kamer295@yahoo.fr

Bouharket Benaissa

Faculty of Material Science, Laboratory of Informatics and Mathematics, University of Tiaret, Algeria.

E-mail: bouharket.benaissa@univ-tiaret.dz

