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SOME ESTIMATES FOR HARDY-STEKLOV TYPE OPERATORS



Abstract. The aim of this work is to establish some new integral inequalities for 0 < p < 1 under
weaker condition than monotonicity via Hardy–Steklov-type operators.
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1 Introduction
It is well-known that for Lebesgue spaces Lp with 0 < p < 1, the Hardy inequality is not satisfied for
arbitrary non-negative measurable functions, but is satisfied for monotone functions (see [2]). In 2007,
the Hardy type inequality was obtained under a still weaker condition than monotonicity (see [3]).
Namely, the following statements were proved.

Lemma 1.1. Let 0 < p < 1, c1 > 0 and f be a non-negative measurable function on (0,∞) such that
for all x > 0,

f(x) ≤ c1
x

( x∫
0

fp(y)yp−1 dy

) 1
p

. (1.1)

Then ( x∫
0

f(y) dy

)p

≤ c2

x∫
0

fp(y)yp−1 dy, (1.2)

where
c2 = c

p(1−p)
1 .

The classical Hardy operators are defined as follows:

(H1f)(x) =
1

x

x∫
0

f(y) dy, (H2f)(x) =
1

x

∞∫
x

f(y) dy.

Theorem 1.1 ([3]). Let 0 < p < 1, α < 1− 1
p and c1 > 0. If f is non-negative measurable function

on (0,∞) and satisfies (1.1) for all x > 0, then∥∥xα(H1f)(x)
∥∥
Lp(0,∞)

≤ c3∥xαf(x)∥Lp(0,∞), (1.3)

where
c3 = c1−p

1

(
1− α− 1

p

)− 1
p

p−
1
p .

The constant c3 is sharp (the best possible).

Remark 1.1. If f is a non-increasing function on (0,∞), then (1.1) is satisfied with c1 = p
1
p . For

such functions inequality (1.3) takes the form

∥xα(H1f)(x)∥Lp(0,∞) ≤
(
pp
(
1− α− 1

p

))− 1
p ∥xαf(x)∥Lp(0,∞). (1.4)

The factor (pp(1− α− 1
p ))

− 1
p is sharp. Inequality (1.4) was proved earlier (for more details, see [2]).

The well-known Hardy–Steklov operator is defined as

(Tf)(x) =
1

x

b(x)∫
a(x)

f(y) dy

with the boundary functions a(x), b(x) satisfying the following conditions:

(1) a(x), b(x) are differentiable and strictly increasing functions on [0,∞],

(2) 0 < a(x) < b(x) < ∞ for 0 < x < ∞, a(0) = b(0) = 0 and a(∞) = b(∞) = ∞,
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where f is a non-negative Lebesgue measurable function on (0,∞).
The objective of this work is to extend the results of [3] to Hardy–Steklov type operators T1, T2

and T3 defined as follows:

(T1f)(x) =
1

x

b(x)∫
0

f(y) dy

with boundary function b(x) satisfying the following conditions:

(1) b(x) is differentiable and strictly increasing function on (0,∞],

(2) 0 < b(x) < ∞ for 0 < x < ∞ and b(∞) = ∞;

(T2f)(x) =
1

x

∞∫
a(x)

f(y) dy

with boundary function a(x) satisfying the following conditions:

(1) a(x) is differentiable and strictly increasing function on [0,∞),

(2) 0 < a(x) < ∞ for 0 < x < ∞ and a(0) = 0;

(T3f)(x) =
1

x

b(x)∫
a(x)

f(y) dy,

where

(1) a(x), b(x) are differentiable and strictly increasing functions on (0,∞),

(2) 0 < a(x) < b(x) < ∞ for 0 < x < ∞.

2 Main results
Throughout the paper, we assume that the function f is a non-negative Lebesgue measurable function
on (0,∞).

Theorem 2.1. Let 0 < p < 1, α < 1− 1
p and 1

p + 1
p′ = 1. If f is a non-negative measurable function

on (0,∞) and satisfies (1.1) for all x > 0, then∥∥xα(T1f)(x)
∥∥
Lp(0,∞)

≤ c4

∥∥∥x 1
p′ (b−1(x))

α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

,

where
c4 = c1−p

1

(
(1− α)p− 1

)− 1
p .

Proof. Choose t = b(x), hence x = b−1(t), where b−1(t) is the reciprocal function of b(t). Applying
(1.2) and Fubini’s Theorem, we get

∥∥xα(T1f)(x)
∥∥
Lp(0,∞)

=

( ∞∫
0

(b−1(t))(α−1)p

( t∫
0

f(y) dy

)p

(b−1(t))′ dt

) 1
p

≤ (c2)
1
p

( ∞∫
0

(b−1(t))(α−1)p

( t∫
0

fp(y)yp−1 dy

)
(b−1(t))′ dt

) 1
p

= (c2)
1
p

( ∞∫
0

fp(y)yp−1

( ∞∫
y

(b−1(t))′(b−1(t))(α−1)p dt

)
dy

) 1
p

.
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Since α < 1− 1
p and b−1(∞) = ∞, we have

∞∫
y

(b−1(t))′(b−1(t))(α−1)p dt =
1

(1− α)p− 1
[b−1(y)](α−1)p+1,

consequently,

∥∥xα(T1f)(x)
∥∥
Lp(0,∞)

≤
(

c
p(1−p)
1

(1− α)p− 1

) 1
p
[ ∞∫

0

fp(y)yp−1(b−1(y))(α−1)p+1 dy

] 1
p

= c1−p
1

(
(1− α)p− 1

)− 1
p

[ ∞∫
0

(
f(y)y1−

1
p (b−1(y))α−1+ 1

p

)p

dy

] 1
p

.

We get the desired inequality.

Remark 2.1. If f is a non-increasing function on (0,∞), we obtain the following inequality:

∥∥xα(T1f)(x)
∥∥
Lp(0,∞)

≤
( p1−p

(1− α)p− 1

) 1
p
∥∥∥x 1

p′ (b−1)
α− 1

p′ (x)f(x)
∥∥∥
Lp(0,∞)

.

Choosing b(x) = βx in Theorem 2.1, where β > 0, we have the following

Corollary 1. Let f satisfy the assumptions of Theorem 2.1 and

(S1f)(x) =
1

x

βx∫
0

f(y) dy for x > 0,

then ∥∥xα(S1f)(x)
∥∥
Lp(0,∞)

≤
( 1

β

)α− 1
p′
c4∥xαf(x)∥Lp(0,∞).

Remark 2.2. Taking β = 1 in the above corollary, we get Theorem 1.1.

For the next results we need the following

Lemma 2.1. Let 0 < p < 1. Suppose that a non-negative function f satisfies the condition: there is
a positive constant c5 such that for all x > 0,

f(x) ≤ c5
x

( ∞∫
x

fp(y)yp−1 dy

) 1
p

, (2.1)

then ( ∞∫
x

f(y) dy

)p

≤ c6

∞∫
x

fp(y)yp−1 dy, (2.2)

where
c6 = c

p(1−p)
5 .

Proof. Note that
f(x) =

(
fp(x)xp

) 1
p−1

fp(x)xp−1.

Using (2.1), we have

xpfp(x) ≤ cp5

( ∞∫
x

fp(y)yp−1 dy

)
,
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therefore, (
xpfp(x)

) 1
p−1 ≤ c1−p

5

( ∞∫
x

fp(y)yp−1 dy

) 1
p−1

.

Multiplying by fp(x)xp−1 and putting 0 < t ≤ x, we get

f(x) ≤ c1−p
5

( ∞∫
t

fp(y)yp−1 dy

) 1
p−1

fp(x)xp−1,

consequently,
∞∫
t

f(x) dx ≤ c1−p
5

( ∞∫
t

fp(y)yp−1 dy

) 1
p−1

∞∫
t

fp(x)xp−1 dx

= c1−p
5

( ∞∫
t

fp(x)xp−1 dx

) 1
p−1

∞∫
t

fp(x)xp−1 dx

= c1−p
5

( ∞∫
t

fp(x)xp−1 dx

) 1
p

.

Theorem 2.2. Let 0 < p < 1, α > 1− 1
p and c1 > 0. If f is a non-negative measurable function on

(0,∞) and satisfies (2.1) for all x > 0, then∥∥xα(T2f)(x)
∥∥
Lp(0,∞)

≤ c7

∥∥∥x 1
p′ (a−1(x))

α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

,

where
c7 = c1−p

5

(
(α− 1)p+ 1

)− 1
p .

Proof. Put t = a(x), then x = a−1(t), where a−1(t) is the reciprocal function of a(t). Applying
inequality (2.2) and Fubini’s Theorem, we get

∥∥xα(T2f)(x)
∥∥
Lp(0,∞)

=

( ∞∫
0

(a−1(t))(α−1)p

( ∞∫
t

f(y) dy

)p

(a−1(t))′ dt

) 1
p

≤ (c6)
1
p

( ∞∫
0

(a−1(t))(α−1)p

( ∞∫
t

fp(y)yp−1 dy

)
(a−1(t))′ dt

) 1
p

= (c6)
1
p

( ∞∫
0

fp(y)yp−1

( y∫
0

(a−1(t))′(a−1(t))(α−1)p dt

)
dy

) 1
p

.

Since α > 1− 1
p and a−1(0) = 0, we have

y∫
0

(a−1(t))′(a−1(t))(α−1)p dt =
1

(α− 1)p+ 1

[
a−1(y)

](α−1)p+1
,

consequently,

∥∥xα(T2f)(x)
∥∥
Lp(0,∞)

≤
( c

p(1−p)
5

(α− 1)p+ 1

) 1
p

( ∞∫
0

fp(y)yp−1(a−1(y))(α−1)p+1 dy

) 1
p

= c7

∥∥∥x 1
p′ (a−1(x))

α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

.
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Choosing a(x) = λx in Theorem 2.2, where λ > 0, we obtain the following

Corollary 2. Let f satisfy the assumptions of Theorem 2.2 and

(S2f)(x) =
1

x

∞∫
λx

f(y) dy for x > 0.

Then the inequality ∥∥xα(S2f)(x)
∥∥
Lp(0,∞)

≤
( 1

λ

)α− 1
p′
c7
∥∥xαf(x)

∥∥
Lp(0,∞)

holds.

Remark 2.3. Taking λ = 1, we get∥∥xα(H2f)(x)
∥∥
Lp(0,∞)

≤ c7∥xαf(x)∥Lp(0,∞).

Now, we have obtained the analogue of Theorem 1.1 for H2 which is the dual of Hardy averaging
operator H1.

For the next theorem we need the following lemmas.

Lemma 2.2. Let 0 < p < 1, c8 > 0 and a(x), b(x) be under the conditions of operator T3 such that
for almost all x > 0,

f(x) ≤ c8
x

( b(x)∫
a(x)

fp(y)yp−1 dy

) 1
p

. (2.3)

Then ( b(x)∫
a(x)

f(y) dy

)p

≤ c
p(1−p)
8

b(x)∫
a(x)

fp(y)yp−1 dy. (2.4)

Proof. The proof is similar to that of Lemma 2.1.

Lemma 2.3. Let 0 < p < 1 and 0 < B < A, then

Ap −Bp ≤ (A−B)p. (2.5)

Proof. It is well known that for 0 < B < A and 0 < p < 1,

(A+B)p ≤ Ap +Bp.

Replacing A by A−B, we get
Ap ≤ (A−B)p +Bp.

For more details, see [1].

Theorem 2.3. Let 0 < p < 1, α > 1− 1
p and c1 > 0. If f is a non-negative measurable function on

(0,∞) and satisfies (2.3) for all x > 0, then∥∥xα(T3f)(x)
∥∥
Lp(0,∞)

≤ c9

(∥∥∥x 1
p′ (a−1(x))

α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

−
∥∥∥x 1

p′ (b−1(x))
α− 1

p′ f(x)
∥∥∥
Lp(0,∞)

)
,

where
c9 = c1−p

8

(
(α− 1)p+ 1

)− 1
p .
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Proof. Taking into account (2.4), we get

∥∥xα(T3f)(x)
∥∥p
Lp(0,∞)

=

∞∫
0

x(α−1)p

( b(x)∫
a(x)

f(y) dy

)p

dx ≤ c
p(1−p)
8

∞∫
0

x(α−1)p

( b(x)∫
a(x)

fp(y)yp−1 dy

)
dx.

Since a(x) < y < b(x), we have b−1(y) < x < a−1(y). Apply Fubini’s Theorem, we get
∞∫
0

x(α−1)p

( b(x)∫
a(x)

fp(y)yp−1 dy

)
dx =

∞∫
0

fp(y)yp−1

( a−1(y)∫
b−1(y)

x(α−1)p dx

)
dy.

In combination with α > 1− 1
p and 0 < a(x) < b(x) < ∞, this yields

a−1(y)∫
b−1(y)

x(α−1)p dx =
1

(α− 1)p+ 1

(
(a−1(y))(α−1)p+1 − (b−1(y))(α−1)p+1

)
.

Consequently,∥∥xα(T3f)(x)
∥∥p
Lp(0,∞)

≤ c
p(1−p)
8

(α− 1)p+ 1

( ∞∫
0

fp(y)yp−1
[
(a−1(y))(α−1)p+1 − (b−1(y))(α−1)p+1

]
dy

)

=
c
p(1−p)
8

(α− 1)p+ 1

(∥∥∥x 1
p′ (a−1(x))

α− 1
p′ f(x)

∥∥∥p
Lp(0,∞)

−
∥∥∥x 1

p′ (b−1(x))
α− 1

p′ f(x)
∥∥∥p
Lp(0,∞)

)
.

Using (2.5), we deduce∥∥xα(T3f)(x)
∥∥p
Lp(0,∞)

≤ c
p(1−p)
8

(α− 1)p+ 1

(∥∥∥x 1
p′ (a−1(x))

α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

−
∥∥∥x 1

p′ (b−1(x))
α− 1

p′ f(x)
∥∥∥
Lp(0,∞)

)p

,

hence∥∥xα(T3f)(x)
∥∥
Lp(0,∞)

≤ c1−p
8

(
(α− 1)p+ 1

)− 1
p

(∥∥∥x 1
p′ (a−1(x))

α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

−
∥∥∥x 1

p′ (b−1(x))
α− 1

p′ f(x)
∥∥∥
Lp(0,∞)

)
.

Setting a(x) = λx and b(x) = βx, where 0 < λ < β < ∞, in Theorem 2.3 above, leads to the
following
Corollary 3. Let f satisfies the assumptions of Theorem 2.3 and

(S3f)(x) =
1

x

βx∫
λx

f(y) dy for x > 0,

then ∥∥xα(S3f)(x)
∥∥
Lp(0,∞)

≤ c8

(( 1

λ

)α− 1
p′ −

( 1

β

)α− 1
p′
)∥∥xαf(x)

∥∥
Lp(0,∞)

.

Remark 2.4. Taking λ = 1
2 and β = 1, we obtain the analogous result for the Pachepatte type

operator P : ∥∥xα(Pf)(x)
∥∥
Lp(0,∞)

≤ c8
(
2
α− 1

p′ − 1
)∥∥xαf(x)

∥∥
Lp(0,∞)

,

where

(Pf)(x) =
1

x

x∫
x
2

f(y) dy for x > 0.
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