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PERIODIC SOLUTIONS FOR FOURTH-ORDER
DIFFERENTIAL EVOLUTION EQUATION
INVOLVING POLY-HARMONIC OPERATOR



Abstract. In this note, we analyze the existence and uniqueness of periodic solutions for a fourth-
order evolution differential equation involving the well known poly-harmonic operator. The right-hand
term of the equation is taken in some anistropic Hölder spaces. Our approach is based on the study of
a fourth- order abstract differential equation. To this end, we opt for the use of analytic semigroup’s
techniques.
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1 Motivation and statement of the problem
The theory of boundary value problems involving the poly-harmonic operator is a well-developed
subject. For more information, we can refer the reader to [1–4, 17]. These works discuss a classical
situation and establish the elliptic theory for the following model problem

∆mu = f. (1.1)

This differential equation is called the Kirchhoff–Love model for the vertical deflection of a thin
elastic plate. The investigation of equation (1.1) was considered under different boundary conditions.
The techniques of investigation are based on the use of the well-known potential theory or via the
variational techniques. For the reader convenience, we just recall the classical poly-harmonic operator
∆m which can be regarded as iterations of the Laplace operator, that is,

∆m = ∆(∆m−1).

On the other hand, there exists another research axis which are concerned with the study of evolution
equations involving a poly-harmonic operator. For instance, we quote two famous model equations

Dtu+ (−∆)mu = f,

and
D2

t u+ (−∆)mu = f.

These classes of problems have been well investigated in different contexts and under several conditions.
For more details, we refer the readers to [6, 20] and the references therein. All these studies were
motivated by the fact that this kind of problems arise in several models describing various phenomena
in the applied sciences. In our situation, we deal with the solvability of Cauchy problems for the fourth-
order evolution equations involving a relaxed poly-harmonic operator. More precisely, we provide a
systematic study of the following equation:(

Dt + (−1)mLm

)4
u(t, x) = f(t, x), (t, x) ∈ R+ × Ω, m ∈ N− {0}, (1.2)

where Lm is the higher order differential operator defined by

Lm =
( 2∑

i=1

D2
xi

− λ
)m

, λ > 0,

Here, x = (x1, x2) is a generic point of R2 and Ω = [0, 1] × [0, 1]. The right-hand term of equation
(1.2) belongs to the anisotropic Hölder space Cθ(R+;Lp(Ω)) with 0 < θ < 1, 1 < p < +∞, consisting
of all θ-Hölder continuous functions f : R+ → Lp (Ω) such that

∥f∥Cθ(R+;Lp(Ω)) := ∥f∥Cb(R+;Lp(Ω)) + sup
t∈R+

∥f(t)− f(τ)∥Lp(Ω)

|t− τ |θ
< ∞,

where
Cb(R+;Lp(Ω)) =

{
f ∈ C(R+;Lp(Ω)) : lim

t→+∞
f(t, x) < +∞

}
.

We also assume that f is a T−periodic function in the first variable

f(t+ T, · ) = f(t, · ), t ∈ R+.

Let us supplement Eq. (1.2) with the following higher order boundary conditions:
[Lm]k

[ 1∑
j=0

(−1)j+1Dj
x1

]m
u

∣∣∣∣
R+×{0}×[0,1]

= 0,

[Lm]ku
∣∣
R+×{1}×[0,1]

= 0,

(1.3)
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and

[Lm]k
[ 2∑
j=0

Dj
x2
u
]m∣∣∣∣

R+×[0,1]×{1}
= 0, [Lm]k

[ 2∑
j=0

Dj
x2
u
]m∣∣∣∣

R+×[0,1]×{0}
= 0, (1.4)

where k ∈ {0, 1, 2, 3}. We also impose the following initial conditions of periodic type:

Dj
tu

∣∣
{0}×Ω

= Dj
tu

∣∣
{T}×Ω

, j = 0, . . . , 3. (1.5)

The boundary conditions (1.4) involve the well known Wentzell type boundary conditions which
were introduced in [22] in order to study a multidimensional Diffusion Processes. Note that in this
work, the diversity of boundary and initial conditions imposed on equation (1.2) and the character of
the functional framework make the use of classical approaches a difficult task. For these reasons, we
will opt for the use of an abstract point of view. As in [13], the abstract version of problem (1.2)–(1.5)
will be treated by using the theory of analytic semigroups. This allows us to obtain some interesting
regularity results for our problem.

2 Operational formulation of problem (1.2)–(1.5)
We set E = Lp(Ω) endowed with its natural norm and define the vector-valued functions

u : R+ → E; t → u(t); u(t)(x) = u(t, x),

f : R+ → E; t → f(t); f(t)(x) = f(t, x).

Consider the operator Am defined by

Amφ(x) = ((−1)mLm)φ(x) (2.1)

and its natural domain

D(Am) =

{
φ, [Lm]φ ∈ E : φ

∣∣
{1}×[0,1]

= 0 and

( 1∑
j=0

(−1)j+1Dj
x1

)m

φ
∣∣∣
{0}×[0,1]

= 0,
( 2∑

j=0

Dj
x2

)m

φ
∣∣∣
[0,1]×{0,1}

= 0

}
.

Then our problem (1.2) can be formulated as a complete fourth-order abstract differential equation
u(4)(t) +

3∑
k=1

(4k)Ak
mu(4−k)(t) +A4

mu(t) = f(t), t ∈ R+,

u(j)(0) = u(j)(T ), 1 ≤ j ≤ 3, T > 0,

(2.2)

with
Ak

m = Am(Ak−1
m ).

To establish our main results, we need to use some spectral properties of the operator Am defined by
(2.1). It is obvious that this study needs to introduce the operator (A0, D(A0)) defined as follows:

A0φ(x) =
( 2∑

i=1

D2
xi

− λ
)
φ(x), x = (x1, x2) ∈ Ω, (2.3)

and its natural domain

D(A0) =

{
φ,

2∑
i=1

D2
xi
φ ∈ E :

φ
∣∣
{0}×[0,1]

= 0,

1∑
j=0

(−1)j+1Dj
x1
φ
∣∣∣
{1}×[0,1]

= 0,

2∑
j=0

Dj
x2
φ
∣∣∣
[0,1]×{0,1}

= 0

}
.
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For f ∈ Cθ(R+;Lp(Ω)), we search for a strict solution u of problem (2.2), that is, a vectorial function
u such that (i) u ∈ C4

b (R+;E) ∩ Cb(R+;D(A4
m)),

(ii) u(4−k) ∈ Cb(R+;D(Ak
m)), k = 1, 2, 3.

3 On the elliptic character of the operator Am

The investigation of spectral properties of operator (2.3) is based on the study of the following spectral
problem: 

D2
x1
v(x1, x2) +D2

x2
v(x1, x2)− λv(x1, x2) = φ(x1, x2), (x1, x2) ∈ Ω,

v
∣∣
x1=1

= 0,

1∑
j=0

(−1)j+1Dj
x1
v
∣∣
x1=0

,

2∑
j=0

Dj
x2
v( · , 0) =

2∑
j=0

Dj
x2
v( · , 1) = 0.

(3.1)

The study of (3.1) is performed in the Lebesgue space Lp(Ω). As in [7], we use the commutative
version of the well-known sum’s operator theory developed by G. da Prato and P. Grisvard in [15].
Briefly, the abstract version of (3.1) can be formulated as follows:

Mv +N v − λv = φ, v ∈ D(M) ∩D(N ),

where (M, D(M)) and (N , D(N )) are the linear operators defined as

D(M) =
{
v, D2

x1
v ∈ Lp(0, 1) : Dx1υ

∣∣
x1=0

− υ
∣∣
x1=0

= 0, υ
∣∣
x1=1

= 0
}
, Mv = D2

x1
v(x1, x2) (3.2)

and

D(N ) =
{
v, D2

x2
v ∈ Lp(0, 1) :

2∑
j=0

Dj
x2
v
∣∣∣
x2=0

=

2∑
j=0

Dj
x2
v
∣∣∣
x2=1

= 0
}
, N v = D2

x2
v(x1, x2).

The basic spectral properties of the operator (M, D(M)) are summarized in the following

Lemma 3.1. Let (M, D(M)) be the linear operator defined by (3.2). Then M is a closed linear
operator satisfying the following properties:

(1) R+ ⊃ ρ(M) and ∃C > 0 : ∀µ ≥ 0,∥∥(M− µI)−1
∥∥
L(E)

≤ C

1 + µ
, (3.3)

(ρ(M) is the resolvent set of M);

(2) D(M) = Lp(0, 1).

Proof. As in [19, p. 89], an explicit calculus shows that

{
(M− µI)−1φ

}
(x1) = −

1∫
0

K(µ, s, x)φ(s) ds,

where φ ∈ Lp(0, 1) and

K(µ, s, x) =


sinh√

µ (1− x1)[sinh√
µ s+

√
µ cosh√

µ s]
√
µ [sinh√

µ+
√
µ cosh√

µ]
, 0 ⩽ s ⩽ x1,

sinh√
µ (1− s)[sinh√

µx1 +
√
µ cosh√

µx1]√
µ [sinh√

µ+
√
µ cosh√

µ]
, x1 ⩽ s ⩽ 1.
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Here, √µ is the analytic determination defined by Re√µ > 0. Note that

∣∣ sinh√
µ+

√
µ cosh√

µ
∣∣ = ∣∣∣eRe √

µ

2
(a√µ + ib√µ) +

e− Re √
µ

2
(c√µ + id√µ)

∣∣∣,
where 

a√µ = 1 + Re√µ cos Im√
µ− Im√

µ sin Im√
µ ,

b√µ = 1 + Re√µ sin Im√
µ+ Im√

µ cos Im√
µ ,

c√µ = (Re√µ− 1) cos Im√
µ− Im√

µ sin Im√
µ ,

d√µ = (1− Re√µ) sin Im√
µ+ Im√

µ cos Im√
µ .

So, we deduce that∣∣ sinh√
µ+

√
µ cosh√

µ
∣∣

≥ eRe √
µ

2

[(
1 + Re√µ

)2
+
(

Im√
µ
)2]1/2 − e− Re √

µ

2

[(
1− Re√µ

)2
+

(
Im√

µ
)2]1/2

≥ sinh Re√µ
[
1 +

(
Re√µ

)2
+ 2Re√µ

]1/2
,

which implies ∣∣ sinh√
µ+

√
µ cosh√

µ
∣∣ ≥ sinh Re√µ

[
1 +

(
Re√µ

)]
.

To obtain the desired result, it suffices to observe that

sinh(1− x1)Re√µ

sinh Re√µ [1 + (Re√µ)]
=

eRe √
µ(1−x1) − e− Re √

µ(1−x1)

(eRe √
µ − e− Re √

µ)(1 + (Re√µ))

=
e− Re √

µx1 [1− e− Re √
µ(2−x1)]

(1− e−2 Re √
µ)(1 + (Re√µ))

≤ Ce− Re √
µx1

(1 + (Re√µ))
,

from which it follows that
1∫

0

∣∣∣ sinh(1− x1)Re√µ

sinh Re√µ [1 + (Re√µ)]

∣∣∣p dx1 ≤
1∫

0

|e− Re √
µx1 |p dx1 ≤ 1

pRe√µ
.

The density of D(M) is obtained thanks to Proposition 1.1 in [18, p. 18].

Concerning the operator (N , D(N )), one has

Lemma 3.2. Let (N , D(N )) be the linear operator defined by (3.2). Then N is a closed linear
operator satisfying the following conditions:

(1) R+ ⊃ ρ(N ) and ∃C > 0 : ∀µ ≥ 0,∥∥(N − µI)−1
∥∥
L(E)

≤ C

1 + µ
; (3.4)

(2) D(N ) = Lp(0, 1).

Proof. These results use the same argument as in the previous lemma. In fact, using the classical
variation of a constant, we show that

{
(N − µI)−1φ

}
(x2) =

1

(1− e−2
√
µ)

1∫
0

e−
√
µ(s−x2−2)φ(s) ds+

1

(1− e−2
√
µ)

1∫
0

e−
√
µ(2−s+x2)φ(s) ds
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+
C(µ)

(1− e−2
√
µ)

1∫
0

e−
√
µ(2−s−x2)φ(s) ds+

S(µ)
(1− e−2

√
µ)

1∫
0

e−
√
µ(s+x2)φ(s) ds

+

1∫
0

e−
√
µ(s−x2)φ(s) ds+

1

2
√
µ

x2∫
0

e−
√
µ(x2−s)φ(s) ds+

1

2
√
µ

x2∫
0

e−
√
µ(s−x2)φ(s) ds,

where
C(µ) =

(µ−√
µ+ 1)

(µ+
√
µ+ 1)

and S(µ) = 1

C(µ)
.

At this level, a direct computation shows that∥∥(N − µI)−1
∥∥
L(E)

≤ C

1 + |µ|
.

Now, we have
Proposition 3.1. Let (A0, D(A0)) be the linear operator defined by (2.3). Then A0 is a closed linear
densely defined operator satisfying the natural ellipticity hypothesis

R+ ⊂ ρ(A0) and ∃C > 0, ∀ z ⩾ 0 ∥(A0 − zI)−1∥ ⩽ C

1 + z
. (3.5)

Proof. As a direct consequence of the use of the commutative version of the sum operators technique
due to [15], we conclude that the operator (A0 − zI)−1 is well defined and

(A0 − zI)−1φ = − 1

2iπ

∫
Γ

(N + zI)−1(M− zI − λI)−1φdz, (3.6)

where Γ is a suitable Jordan curve lying in σ(−N ) ∩ σ(M). Keeping in mind estimates (3.3) and
(3.4), estimate (3.5) can be easily deduced from formula (3.6). Furthermore, this estimate holds true
if we replace z by z + λ.

As a consequence of these results, we have
Lemma 3.3. The operator (Am, D(Am)) defined by (2.1) is closed, densely defined and satisfies the
Krein-ellipticity property, that is, R+ ⊆ ρ(Am) and there exists C > 0 such that for all z ≥ 0 we have∥∥(Am − zI)−1

∥∥
L(Lp(Ω))

≤ C

1 + z
. (3.7)

Proof. The proof is based on the use of the following algebraic formula:

(Am − λI)−1 = λ1− 1
m

m−1∑
k=0

bk
(
(A0 − εkλ

1
m I)−1

)
with

bk =
1

m−1∏
n=0

(εk − εn)

, n ̸= k,

where εk takes all the values of the mth root of unity. By adapting the same techniques used in [21],
we conclude that for λ > 0, ∥∥(Am − λI)−1

∥∥
E
= O

( 1

λ

)
.

Remark 3.1. Using the classical argument of continuation of the resolvent, we know that estimate
(3.7) holds true in a sector of the form

Σ =
{
z ∈ C∗ : | arg z| ≤ π

(
1− 1

2m

)}
∪B(0, ϵ0)

with some small ϵ0 > 0.
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4 Construction of the solution of (2.2)
Differently from [9] and [10], we use another approach based essentially on the semigroup theory. In
fact, from [5] we know that estimate (3.7) implies that the operator

B = −(−Am)1/4

is well defined and it is the infinitesimal generator of a generalized analytic semigroups (etB)ξ>0. More
precisely, there exists a sector

Πδ,r0 =
{
z ∈ C∗ : | arg z| ≤ δ +

π

2

}
∪B(0, r0)

(with some positive δ, r0) and C > 0 such that

ρ(B) ⊃ Πδ,r0 and ∀ z ∈ Πδ,r0 , ∥(B − zI)−1∥ ≤ C

1 + |z|
.

Thus, for all t > 0 and φ ∈ E, one has

etBφ =
1

2iπ

∫
γ

ezt(B − zI)−1φdz,

where γ = ∂Πδ,r0 (the sectorial boundary curve of Πδ,r0 oriented from ∞ei(δ+π/2) to ∞e−i(δ+π/2)).
Then we have the following auxiliary results:

(1) ∀ k ∈ N, ∃mk ≥ 1, ω > 0:
∥tkBketB∥L(E) ≤ mke

−ωt, (4.1)

(2) lim
t→0

etBφ = φ if and only if φ ∈ D(B).

Using the same reasoning as in [13], the representation formula of the solution for problem (2.2)
can be deduced from the scalar case. Putting

Ψ(B) = (1− eTB)−1

and
Φ(B) = −1

2
(1 + 4eBT + e2BT )T 3,

the formal solution of (2.2) is formulated as follows:

u(t) =

4∑
k=1

uk(t) (4.2)

with

u1(t) =
Ψ(B)
6

t+T∫
t

(s− t)3e(t+T−s)Bf(s) ds,

u2(t) = −Ψ2(B)
2

T

t+T∫
t

(s− t)2e(t+T−s)Bf(s) ds,

u3(t) =
Ψ3(B)

2
T 2

t+T∫
t

(s− t)e(t+T−s)Bf(s) ds,

u4(t) = −Φ(B)Ψ4(B)
2

T 3

t+T∫
t

e(t+T−s)Bf(s) ds.
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Remark 4.1. For the sake of convenience, we note here that due to Lemma 3 in [21], the operator
(1 − eTB)−1 is well defined. In fact, it suffices to adapt the proof of [21, p. 59]. Note also that the
absolute convergence of these integrals is justified by the key estimate (4.1).

First of all, we have

Proposition 4.1. Let f ∈ Cθ(R+;E) with θ ∈ ]0, 1[ . Then, for all t ≥ 0 and k ∈ N,

u(t) ∈ D(Bk).

Proof. It suffices to show that
∥Bku(t)∥Cθ(R+;E) < ∞,

which means that for i = 1, 2, 3, 4, we have

∥Bkui(t)∥Cθ(R+;E) < ∞.

Since these vectorial functions can be treated similarly, we restrict ourselves on the first one. First,
recall that

u1(t) =
e(t+T )BΨ(B)

6

t+T∫
t

(s− t)3e−Bsf(s) ds,

since
e−tB ⊂

⋂
k≥1

D(Bk),

and the Banach valued functions Ψ and Φ are regular in the sense that there are bounded quantities.
Then it follows that

Bku1(t) =
Bke(t+T )B

6
Ψ(B)

( t+T∫
t

(s− t)3e−Bs(f(s)− f(t)) ds−
t+T∫
t

(s− t)3Bke−Bsf(t) ds

)
,

and, clearly,

∥Bku1(t)∥E ⩽ C

( +∞∫
0

(s− t)3+θe−ωs ds

)
∥f∥Cθ(R+;E) + C ′∥f(t)∥E

⩽ CΓ(2 + θ)∥f∥Cθ(R+;E) + C ′∥f(t)∥E ⩽ C∥f∥Cθ(R+;E),

where Γ is the usual Euler function defined by

Γ(z) =

+∞∫
0

e−wwz−1 dw, Re z > 0.

The study of the regularity of solution (4.2) is purely technical. As for the techniques, we refer
the reader to [8, 11–14, 16, 16] and the references therein, in which the kernel semigroups appearing
in formula (4.2) were extensively used in different situation to provide some interesting results for
different abstract differential equation under abstract boundary conditions.

Proposition 4.2. Let f ∈ Cθ(R+;E) with θ ∈ ]0, 1[ . Then:

(1) for all j ∈ {1, 2, 3} : u(j) ∈ Cb(R+;E).

(2) for all k ∈ {0, 1, 2, 3} : A4−k
m u ∈ Cb(R+;E).

Summing up, we are able to state our main regularity results for Problem (2.2).
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Proposition 4.3. Let f ∈ Cθ(R+;E) with θ ∈ ]0, 1[ . Then Problem (2.2) has a unique solution(i) u ∈ C4
b (R+;E) ∩ Cb(R+;D(A4)),

(ii) u(j) ∈ Cb(R+;D(A4−j)), j ∈ {1, 2, 3}.

Moreover, the solution u satisfies the following maximal regularity property

u(4),Aj
mu(4−j),A4

mu ∈ Cθ(R+;E).

Now, we are able to give our main regularity results for our concrete problem (1.2)–(1.5) which
can be formulated as follows.

Proposition 4.4. Let f ∈ Cθ(R+;Lp(Ω)) with 0 < θ < 1, 1 < p < +∞. Then Problem (1.2)–(1.5)
has a unique strict solution

u ∈ C4
b (R+;Lp(Ω))

such that for all (t, x) ∈ R+ × Ω, we have

(1) D2m
x1

u(t, x), D2m
x2

u(t, x) ∈ Cb(R+;W 8m,p(Ω));

(2) D4
t u(t, x) ∈ C4

b (R+;Lp(Ω));

(3) D4−k
t [D2

x1
+D2

x2
]ku(t, x) ∈ Cb(R+;Lp(Ω)), k ∈ {1, 2, 3}.

Proof. First, the use of the sum operator technique allows us to conclude that

D2
x1
u( · , x), D2

x2
u( · , x) ∈ Lp(Ω),

which justify the first assertion. The assertions (2) and (3) are viewed as direct consequence of the
preceding theorem.
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