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1 Introduction
In the last years one may see a strong development of the theory of differential equations and inclusions
of fractional order. The main reason is that fractional differential equations are very useful tools in
order to model many physical phenomena. In the fractional calculus, there are several fractional
derivatives. From them, the fractional derivative introduced by Caputo in [7] allows to use Cauchy
conditions which have physical meanings.

Recently, a new fractional order derivative with a regular kernel has been introduced by Caputo
and Fabrizio [8]. The Caputo–Fabrizio operator is useful for modeling several classes of problems with
the dynamics having the exponential decay law. This new definition is able to describe better hetero-
geneousness (heterogeneity?), systems with different scales with memory effects, the wave movement
on a surface of shallow water, the heat transfer model, mass-spring-damper model. Another good
property of this new definition is that, using the Laplace transform of the fractional derivative, the
fractional differential equation turns into a classical differential equation of integer order. The prop-
erties of this definition have been studied in [1,2,8,9]. Several recent papers are devoted to qualitative
results for fractional differential equations and inclusions defined by the Caputo–Fabrizio fractional
derivative (see [18–20], etc.).

The present paper is devoted to the following boundary value problem:

Dρ
CFx(t) + λx(t) ∈ F (t, x(t)) a.e. ([0, T ]), x(0) = −x(T ), (1.1)

where F ( · , · ) : [0, T ] × R → P(R) is a set-valued map, P(R) is a family of all nonempty subsets of
R, λ > 0 and Dρ

CF denotes a Caputo–Fabrizio’s fractional derivative of order ρ ∈ (0, 1).
Our study is motivated by the recent paper [5], where problem (1.1) is studied in the situation

when F ( · , · ) is single valued and the existence of solutions is obtained by using a nonlinear alternative
of Leray–Schauder type and by a monotone iterative method of coupled lower and upper solutions.

The aim of our paper is to consider the set-valued problems in a more general framework and to
present three existence results for problem (1.1). Our results are obtained under several hypotheses
concerning the regularity of the set-valued map F and are based on a nonlinear alternative of Leray–
Schauder type, on Bressan–Colombo selection theorem for lower semicontinuous set-valued maps with
decomposable values and on Kuratowski and Ryll–Nardzewski selection theorem. We underline that
the methods used are quite well known in the theory of differential inclusions, however, their exposition
in the framework of problem (1.1) is new.

Also, we mention that similar results for an anti-periodic boundary problem associated with a
fractional differential inclusion defined by the original Caputo fractional derivative are obtained in [10],
for a Cauchy and for a bilocal problem associated with the Caputo–Fabrizio fractional differential
inclusion can be found in our previous papers [11] and [12].

The paper is organized as follows. In Section 2, we recall some preliminary facts that will be
needed in the sequel. In Section 3, we prove our results by using fixed point techniques. In Section 4,
we provide a Filippov type existence result.

2 Preliminaries
In this section, we sum up some basic facts that we are going to use later. Let (X, d) be a metric
space with the corresponding norm | · | and denote I = [0, T ]. Denote by L(I) the σ-algebra of all
Lebesgue measurable subsets of I, by P(X) the family of all nonempty subsets of X and by B(X) the
family of all Borel subsets of X. If A ⊂ I, then χ

A
( · ) : I → {0, 1} denotes the characteristic function

of A. For any subset A ⊂ X, we denote by A the closure of A. Recall that the Pompeiu–Hausdorff
distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max
{
d∗(A,B), d∗(B,A)

}
,

where
d∗(A,B) = sup

{
d(a,B) : a ∈ A

}
and d(x,B) = inf

y∈B
d(x, y).
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As usual, we denote by C(I,X) the Banach space of all continuous functions x( · ) : I → X endowed
with the norm

|x( · )|C = sup
t∈I

|x(t)|,

by AC(I,X) the Banach space of all absolutely continuous functions x( · ) : I → X and by Lp(I,X)
the Banach space of all (Bochner) p-integrable functions x( · ) : I → X; in particular, L1(I,X) is the
Banach space of all (Bochner) integrable functions x( · ) : I → X endowed with the norm

|x( · )|1 =

∫
I

|x(t)| dt.

A subset D ⊂ L1(I,X) is said to be decomposable if for any u( · ), v( · ) ∈ D and any subset A ∈ L(I)
one has uχ

A
+ vχ

B
∈ D, where B = I \A.

Consider M : X → P(X) a set-valued map. A point x ∈ X is called a fixed point for M( · ) if
x ∈ M(x). M( · ) is said to be bounded on bounded sets if M(B) :=

⋃
x∈B

M(x) is a bounded subset

of X for all bounded sets B in X. M( · ) is said to be compact if M(B) is relatively compact for any
bounded sets B in X. M( · ) is said to be totally compact if M(X) is a compact subset of X. M( · )
is said to be upper semicontinuous if for any x0 ∈ X, M(x0) is a nonempty closed subset of X and
if for each open set D of X containing M(x0) there exists an open neighborhood V0 of x0 such that
M(V0) ⊂ D. Let E be a Banach space, Y ⊂ E be a nonempty closed subset and M( · ) : Y → P(E)
be a multifunction with nonempty closed values. M( · ) is said to be lower semicontinuous if for any
open subset D ⊂ E, the set {y ∈ Y : M(y) ∩D ̸= ∅} is open. M( · ) is called completely continuous
if it is upper semicontinuous and totally compact on X. It is well known that a compact set-valued
map M( · ) with nonempty compact values is upper semicontinuous if and only if M( · ) has a closed
graph.

The next results are the key tools in the proof of our theorems. We recall, first, the following
Leray–Schauder type nonlinear alternative proved in [17] and its consequences.

Theorem 2.1. Let D and D be the open and closed subsets in a normed linear space X such that
0 ∈ D, and let M : D → P(X) be a completely continuous set-valued map with compact convex values.
Then either

(i) the inclusion x ∈M(x) has a solution, or

(ii) there exists x ∈ ∂D (the boundary of D) such that λx ∈M(x) for some λ > 1.

Corollary 2.1. Let Br(0) and Br(0) be the open and closed balls in a normed linear space X centered
at the origin and of radius r, and let M : Br(0) → P(X) be a completely continuous set-valued map
with compact convex values. Then either

(i) the inclusion x ∈M(x) has a solution, or

(ii) there exists x ∈ X with |x| = r and λx ∈M(x) for some λ > 1.

Corollary 2.2. Let Br(0) and Br(0) be the open and closed balls in a normed linear space X centered
at the origin and of radius r, and let M : Br(0) → X be a completely continuous single valued map
with compact convex values. Then either

(i) the equation x =M(x) has a solution, or

(ii) there exists x ∈ X with |x| = r and x = λM(x) for some λ < 1.

If G( · , · ) : I × X → P(X) is a set-valued map with compact values, we define SG : C(I,X) →
P(L1(I,X)) by

SG(x) :=
{
g ∈ L1(I,X) : g(t) ∈ G(t, x(t)) a.e. (I)

}
.

We say that G( · , · ) is of lower semicontinuous type if SG( · ) is lower semicontinuous with nonempty
closed and decomposable values. The next result is proved in [6].
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Theorem 2.2. Let S be a separable metric space and G( · ) : S → P(L1(I,X)) be a lower semicon-
tinuous set-valued map with closed decomposable values.

Then G( · ) has a continuous selection (i.e., there exists a continuous mapping g( · ) : S → L1(I,X)
such that g(s) ∈ G(s) for all s ∈ S).

A set-valued map G : I → P(X) with nonempty compact convex values is said to be measurable if
for any x ∈ X, the function t→ d(x,G(t)) is measurable. A set-valued map G( · , · ) : I ×X → P(X)
is said to be Carathéodory if t → G(t, x) is measurable for any x ∈ X and x → G(t, x) is upper
semicontinuous for almost all t ∈ I. Moreover, G( · , · ) is said to be L1-Carathéodory if for any r > 0,
there exists pr( · ) ∈ L1(I,R) such that sup{|v| : v ∈ G(t, x)} ≤ pr(t) a.e. (I), ∀x ∈ Br(0). The
following theorem is proved in [16].

Theorem 2.3. Let X be a Banach space, let G( · , · ) : I × X → P(X) be an L1-Carathéodory set-
valued map with SG(x) ̸= ∅ for all x( · ) ∈ C(I,X) and let Γ : L1(I,X) → C(I,X) be a linear
continuous mapping.

Then the set-valued map Γ ◦ SG : C(I,X) → P(C(I,X)) defined by

(Γ ◦ SG)(x) = Γ(SG(x))

has compact convex values and has a closed graph in C(I,X)× C(I,X).

Note that if dimX <∞, and G( · , · ) is as in Theorem 2.3, then SG(x) ̸= ∅ for any x( · ) ∈ C(I,X)
(see, e.g., [16]).

We recall also a selection result in [3] which is a version of the celebrated Kuratowski and Ryll–
Nardzewski selection theorem.

Lemma 2.1. Consider X is a separable Banach space, B is the closed unit ball in X, H : I → P(X) is
a set-valued map with nonempty closed values and g : I → X, L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e. (I),

then the set-valued map t→ H(t) ∩ (g(t) + L(t)B) has a measurable selection.

The next definitions were introduced by Caputo and Fabrizio in [8].

Definition 2.1.

(a) The Caputo–Fabrizio integral of order ρ ∈ (0, 1) of a function f ∈ L1(I,R) is defined by

IρCF f(t) =
2(1− ρ)

M(ρ)(2− ρ)
f(t) +

2ρ

M(ρ)(2− ρ)

t∫
0

f(s) ds,

where M(ρ) is a normalization constant depending on ρ.

(b) The Caputo–Fabrizio fractional derivative of order ρ ∈ (0, 1) of a function f ∈ AC(I,R) is
defined by

Dρ
CF f(t) =

M(ρ)(2− ρ)

2(1− ρ)

t∫
0

e−
ρ

1−ρ (t−s)f ′(s) ds.

Definition 2.2. A mapping x( · ) ∈ AC(I,R) is called a solution of problem (1.1) if there exists a
function f( · ) ∈ L1(I,R) such that

f(t) ∈ F (t, x(t)) a.e. (I),
Dρ

CFx(t) = f(t), t ∈ I, x(0) = −x(T ).

In order to prove our results, we also need the following result proved in [5] (namely, Lemma 2).
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Lemma 2.2. If f( · ) ∈ L1(I,R), then the problem

Dρ
CFx(t) + λx(t) = f(t) a.e. (I), x(0) = −x(T ),

has a unique solution given by x(t) =
T∫
0

G(t, s)f(s) ds, where

G(t, s) :=


e

λρ
1+λ(1−ρ)

(T−t+s)

e
λρ

1+λ(1−ρ)
T + 1

if 0 ≤ s < t ≤ T,

− e
λρ

1+λ(1−ρ)
(s−t)

e
λρ

1+λ(1−ρ)
T + 1

if 0 ≤ t < s ≤ T.

Note that for any s, t ∈ I, |G(t, s)| ≤ e2λT

2 .

3 Existence via fixed points
We now present the existence results for problem (1.1). Let us first the case when F ( · , · ) is convex
valued and upper semicontinuous in the state variable.

Hypothesis H1.

(i) F ( · , · ) : I × R → P(R) has nonempty compact convex values and is Carathéodory.

(ii) There exist φ( · ) ∈ L1(I,R) with φ(t) > 0 a.e. (I) and a nondecreasing function ψ : [0,∞) →
(0,∞) such that

sup
{
|v| : v ∈ F (t, x)

}
≤ φ(t)ψ(|x|) a.e. (I), ∀x ∈ R.

Theorem 3.1. Assume that Hypothesis H1 is satisfied and there exists r > 0 such that

r >
e2λT

2
|φ|1ψ(r). (3.1)

Then problem (1.1) has at least one solution x( · ) such that |x( · )|C < r.

Proof. Let X = C(I,R) and consider r > 0 as in (3.1). It is obvious that the existence of solutions to
problem (1.1) reduces to the existence of solutions of the integral inclusion

x(t) ∈
T∫

0

G(t, s)F (s, x(s)) ds, t ∈ I.

Consider the set-valued map S : Br(0) → P(C(I,R)) defined by

S(x) :=

{
v( · ) ∈ C(I,R) : v(t) :=

T∫
0

G(t, s)f(s) ds, f ∈ SF (x)

}
.

We show that S( · ) satisfies the hypotheses of Corollary 2.1. First, we show that S(x) ⊂ C(I,R)
is convex for any x ∈ C(I,R).

If vi ∈ S(x), then there exists fi ∈ SF (x) such that for any t ∈ I one has

vi(t) =

T∫
0

G(t, s)fi(s) ds, i = 1, 2.
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Let 0 ≤ α ≤ 1. Then for any t ∈ I we have

(αv1 + (1− α)v2)(t) =

T∫
0

G(t, s)
[
αf1(s) + (1− α)f2(s)

]
ds.

The values of F ( · , · ) are convex, thus SF (x) is a convex set and hence αf1 + (1− α)f2 ∈ S(x).
Secondly, we show that S( · ) is bounded on the bounded sets of C(I,R).
Let B ⊂ C(I,R) be a bounded set. Then there exists m > 0 such that |x|C ≤ m, ∀x ∈ B. If

v ∈ T (x), there exists f ∈ SF (x) such that v(t) =
T∫
0

G(t, s)f(s) ds. For any t ∈ I, one can write

|v(t)| ≤
T∫

0

|G(t, s)| · |f(s)| ds ≤
T∫

0

|G(t, s)|φ(s)ψ(|x(t)|) ds

and therefore
|v|C ≤ e2λT

2
|φ|1ψ(m), ∀ v ∈ S(x),

i.e., S(B) is bounded.
We show next that S( · ) maps the bounded sets into the equi-continuous sets.
Let B ⊂ C(I,R) be a bounded set as before and v ∈ S(x) for some x ∈ B. There exists f ∈ SF (x)

such that v(t) =
T∫
0

G(t, s)f(s) ds. Then for any t, τ ∈ I, we have

|v(t)− v(τ)| ≤
∣∣∣∣

T∫
0

G(t, s)f(s) ds−
T∫

0

G(τ, s)f(s) ds

∣∣∣∣
≤

T∫
0

|G(t, s)−G(τ, s)| · |f(s)| ds ≤
T∫

0

|G(t, s)−G(τ, s)|φ(s)ψ(m) ds.

It follows that |v(t)− v(τ)| → 0 as t→ τ . Therefore, S(B) is an equi-continuous set in C(I,R).
We apply now Arzela–Ascoli’s theorem and deduce that S( · ) is completely continuous on C(I,R).
In the next step of the proof, we prove that S( · ) has a closed graph.
Let xn ∈ C(I,R) be a sequence such that xn → x∗ and vn ∈ S(xn), ∀n ∈ N such that vn → v∗. We

prove that v∗ ∈ S(x∗). Since vn ∈ S(xn), there exists fn ∈ SF (xn) such that vn(t) =
T∫
0

G(t, s)fn(s) ds.

Define Γ : L1(I,R) → C(I,R) by

(Γ(f))(t) :=

T∫
0

G(t, s)f(s) ds.

One has
max
t∈I

∣∣vn(t)− v∗(t)
∣∣ = ∣∣vn( · )− v∗( · )

∣∣
C
→ 0 as n→ ∞.

We apply Theorem 2.3 to find that Γ ◦ SF has a closed graph and from the definition of Γ, we get
vn ∈ Γ ◦ SF (xn). Since xn → x∗, vn → v∗, it follows the existence of f∗ ∈ SF (x

∗) such that

v∗(t) =

T∫
0

G(t, s)f∗(s) ds.

Therefore, S( · ) is upper semicontinuous and compact on Br(0). We apply Corollary 2.1 to deduce
that either (i) the inclusion x ∈ S(x) has a solution in Br(0), or (ii) there exists x ∈ X with |x|C = r
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and λx ∈ S(x) for some λ > 1. Assume that (ii) is true. With the same arguments as in the second
step of our proof, we get

r = |x( · )|C ≤ e2λT

2
|φ|1ψ(r)

which contradicts (3.1). Hence only (i) is valid and theorem is proved.

We consider now the case when F ( · , · ) is not necessarily convex valued. Our existence result in
this case is based on the Leray–Schauder alternative for single valued maps and on Bressan Colombo
selection theorem.
Hypothesis H2.

(i) F ( · , · ) : I×R → P(R) has compact values, F ( · , · ) is L(I)⊗B(R) measurable and x→ F (t, x)
is lower semicontinuous for almost all t ∈ I.

(ii) There exist φ( · ) ∈ L1(I,R) with φ(t) > 0 a.e. (I) and a nondecreasing function ψ : [0,∞) →
(0,∞) such that

sup
{
|v| : v ∈ F (t, x)

}
≤ φ(t)ψ(|x|) a.e. (I), ∀x ∈ R.

Theorem 3.2. Assume that Hypothesis H2 is satisfied and there exists r > 0 such that condition (3.1)
is satisfied.

Then problem (1.1) has at least one solution on I.

Proof. We note first that if Hypothesis H2 is satisfied, then F ( · , · ) is of lower semicontinuous type
(e.g., [15]). Therefore, we apply Theorem 2.2 with S = C(I,R) and G( · ) = SF ( · ) to deduce that
there exists a continuous mapping f( · ) : C(I,R) → L1(I,R) such that f(x) ∈ SF (x), ∀x ∈ C(I,R).
We consider the corresponding problem

x(t) =

T∫
0

G(t, s)f(x(s)) ds, t ∈ I, (3.2)

in the space X = C(I,R). It is clear that if x( · ) ∈ C(I,R) is a solution of problem (3.2), then x( · )
is a solution to problem (1.1).

Let r > 0 satisfy condition (3.1) and define the set-valued map U : Br(0) → P(C(I,R)) by

(U(x))(t) :=

T∫
0

G(t, s)f(x(s)) ds.

Obviously, the integral equation (3.2) is equivalent to the operator equation

x(t) = (U(x))(t), t ∈ I.

It remains to show that U( · ) satisfies the hypotheses of Corollary 2.2.
We show that U( · ) is continuous on Br(0). From Hypotheses H2 (ii), we have

|f(x(t))| ≤ φ(t)ψ(|x(t)|) a.e. (I)

for all x( · ) ∈ C(I,R). Let xn, x ∈ Br(0) such that xn → x. Then

|f(xn(t))| ≤ φ(t)ψ(r) a.e. (I).

From Lebesgue’s dominated convergence theorem and the continuity of f( · ), we find that for
all t ∈ I,

lim
n→∞

(U(xn))(t) =

T∫
0

G(t, s)f(xn(s)) ds =

T∫
0

G(t, s)f(x(s)) ds = (U(x))(t)
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i.e., U( · ) is continuous on Br(0).
Repeating the arguments in the proof of Theorem 3.1 with the corresponding modifications, it

follows that U( · ) is compact on Br(0). We apply Corollary 2.2 and find that either (i) the equation
x = U(x) has a solution in Br(0), or (ii) there exists x ∈ X with |x|C = r and x = λU(x) for
some λ < 1.

As in the proof of Theorem 3.1, if the statement (ii) holds true, then we obtain a contradiction
to (3.1). Thus only the statement (i) is true and problem (1.1) has a solution x( · ) ∈ C(I,R) with
|x( · )|C < r.

4 A Filippov type existence result
In this section, we consider the even more general problem

Dρ
CFx(t) + λx(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, T ]), x(0) = −x(T ), (4.1)

where F : [0, T ] × R × R → P(R) is a set-valued map, V : C([0, T ],R) → C([0, T ],R) is a nonlinear

Volterra integral operator defined by V (x)(t) =
t∫
0

k(t, s, x(s)) ds with a given function k( · , · , · ) :

[0, T ]×R×R → R. We show that Filippov’s ideas in [14] may be suitably adapted in order to obtain
the existence of solutions to problem (4.1).
Hypothesis H3.

(i) F ( · , · ) : I × R × R → P(R) has nonempty closed values and is L(I)⊗ B(R × R) measurable.

(ii) There exists L( · ) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, · , · ) is L(t)-Lipschitz in
the sense that

dH
(
F (t, x1, y1), F (t, x2, y2)

)
≤ L(t)

(
|x1 − x2|+ |y1 − y2|

)
, ∀x1, x2, y1, y2 ∈ R.

(iii) k( · , · , · ) : I × R × R → R is a function such that ∀x ∈ R, (t, s) → k(t, s, x) is measurable.

(iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

Below we use the following notation:

M(t) := L(t)

(
1 +

t∫
0

L(u) du

)
, t ∈ I, M0 =

T∫
0

M(t) dt.

Theorem 4.1. Assume that Hypothesis H3 is satisfied and e2λTM0 < 2. Let y( · ) ∈ C(I,R) be such
that y(0) = −y(T ) and there exists p( · ) ∈ L1(I,R+) with

d
(
Dρ

CF y(t) + λy(t), F
(
t, y(t), V (y)(t)

))
≤ p(t) a.e. (I).

Then there exists a solution x( · ) of problem (4.1) satisfying

|x(t)− y(t)| ≤ e2λT

2−M0e2λT

T∫
0

p(t) dt for all t ∈ I.

Proof. The set-valued map t→ F (t, y(t), V (y)(t)) is measurable with closed values and

F (t, y(t), V (y)(t)) ∩
{
Dρ

CF y(t) + λy(t) + p(t)[−1, 1]
}
̸= ∅ a.e. (I).

It follows from Lemma 2.1 that there exists a measurable selection f1(t) ∈ F (t, y(t), V (y)(t)) a.e.
(I) such that ∣∣f1(t)−Dρ

CF y(t)− λy(t)
∣∣ ≤ p(t) a.e. (I). (4.2)
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Define x1(t) =
T∫
0

G(t, s)f1(s) ds and one has

|x1(t)− y(t)| ≤ e2λT

2

T∫
0

p(t) dt.

We claim that it is sufficient to construct the sequences xn( · ) ∈ C(I,R), fn( · ) ∈ L1(I,R), n ≥ 1,
with the following properties:

xn(t) =

T∫
0

G(t, s)fn(s) ds, t ∈ I, (4.3)

fn(t) ∈ F
(
t, xn−1(t), V (xn−1)(t)

)
a.e. (I), (4.4)

|fn+1(t)− fn(t)| ≤ L(t)

(
|xn(t)− xn−1(t)|+

t∫
0

L(s)|xn(s)− xn−1(s)| ds
)

a.e. (I). (4.5)

If this construction is realized, then from (4.2)–(4.5) for almost all t ∈ I, we have

|xn+1(t)− xn(t)| ≤
e2λT

2

(e2λTM0

2

)n
T∫

0

p(t) dt, ∀n ∈ N.

Indeed, assume that the last inequality is true for n− 1 and prove it for n. One has

|xn+1(t)− xn(t)| ≤
T∫

0

|G(t, t1)| ·
∣∣fn+1(t1)− fn(t1)

∣∣ dt1
≤ e2λT

2

T∫
0

L(t1)

[∣∣xn(t1)− xn−1(t1)
∣∣+ t1∫

0

L(s)|xn(s)− xn−1(s)| ds
]
dt1

≤ e2λT

2

T∫
0

L(t1)

(
1 +

t1∫
0

L(s) ds

)
dt1 ·

(e2λT
2

)n

Mn−1
0

T∫
0

p(t) dt

=
e2λT

2

(e2λTM0

2

)n
T∫

0

p(t) dt.

Therefore, {xn( · )} is a Cauchy sequence in the Banach space C(I,R) converging uniformly to
some x( · ) ∈ C(I,R). Thus, by (4.5), for almost all t ∈ I, the sequence {fn(t)} is the Cauchy one in
R. Let f( · ) be the pointwise limit of fn( · ). Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤ e2λT

2

T∫
0

p(t) dt+

n−1∑
i=1

(
e2λT

2

T∫
0

p(t) dt

)(e2λTM0

2

)i

=

e2λT

2

T∫
0

p(t) dt

1− e2λTM0

2

. (4.6)
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On the other hand, from (4.2), (4.5) and (4.6), for almost all t ∈ I, we obtain

∣∣fn(t)−Dρ
CF y(t)− λy(t)

∣∣ ≤ n−1∑
i=1

|fi+1(t)− fi(t)|+
∣∣f1(t)−Dρ

CF y(t)− λy(t)
∣∣

≤ L(t)

e2λT
T∫
0

p(t) dt

2−M0e2λT
+ p(t).

Hence the sequence fn( · ) is integrable bounded and therefore f( · ) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (4.3), (4.4), we deduce

that x( · ) is a solution of (1.1). Finally, passing to the limit in (4.6), we obtain the required estimate
on x( · ).

It remains to construct the sequences xn( · ), fn( · ) with the properties (4.3)–(4.5). The construc-
tion will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1, we already constructed
xn( · ) ∈ C(I,R) and fn( · ) ∈ L1(I,R), n = 1, 2, . . . , N , satisfying (4.3), (4.5) for n = 1, 2, . . . N and
(4.4) for n = 1, 2, . . . , N − 1. The set-valued map t→ F (t, xN (t), V (xN )(t)) is measurable. Moreover,
the map

t→ L(t)

(
|xN (t)− xN−1(t)|+

t∫
0

L(s)|xN (s)− xN−1(s)| ds
)

is measurable. By the lipschitzianity of F (t, · ), for almost all t ∈ I, we have

F (t, xN (t)) ∩
{
fN (t) + L(t)

(
|xN (t)− xN−1(t)|+

t∫
0

L(s)|xN (s)− xN−1(s)| ds
)
[−1, 1]

}
̸= ∅.

Lemma 2.1 yields that there exists a measurable selection fN+1( · ) of F ( · , xN ( · ), V (xN )( · )) such
that

|fN+1(t)− fN (t)| ≤ L(t)

(
|xN (t)− xN−1(t)|+

t∫
0

L(s)|xN (s)− xN−1(s)| ds
)

for almost all t ∈ I.
We define xN+1( · ) as in (4.3) with n = N + 1. Thus fN+1( · ) satisfies (4.4) and (4.5) and the

proof is complete.

The assumptions in Theorem 4.1 are satisfied, in particular, for y( · ) = 0 and therefore with
p( · ) = L( · ). We obtain the following consequence of Theorem 4.1.

Corollary 4.1. Assume that Hypothesis H3 is satisfied, e2λTM0 < 2 and d(0, F (t, 0, V (0)(t)) ≤ L(t)
a.e. (I). Then there exists a solution x( · ) of problem (4.1) satisfying

|x(t)| ≤ e2λT

2−M0e2λT

T∫
0

L(t) dt for all t ∈ I.

If F does not depend on the last variable, Hypothesis H3 becomes

Hypothesis H4.

(i) F ( · , · ) : I × R → P(R) has nonempty closed values and is L(I)⊗ B(R) measurable.

(ii) There exists L( · ) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, · ) is L(t)-Lipschitz in the
sense that

dH
(
F (t, x1), F (t, x2)

)
≤ L(t)|x1 − x2|, ∀x1, x2 ∈ R.
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Denote

L0 =

T∫
0

L(t) dt.

Corollary 4.2. Assume that Hypothesis H4 is satisfied, e2λTL0 < 2 and d(0, F (t, 0)) ≤ L(t) a.e. (I).
Then there exists a solution x( · ) of problem (1.1) satisfying

|x(t)| ≤ e2λTL0

2− e2λTL0
for all t ∈ I. (4.7)

Remark. A result similar to Corollary 4.2 can be obtained by using the set-valued contraction
principle in [13]. Namely, we define M : C(I,R) → P(C(I,R)) by

M(x) :=

{
v( · ) ∈ C(I,R) : v(t) =

T∫
0

G(t, s)f(s) ds, f ∈ SF (x)

}
.

It can be shown that M(x) ̸= ∅ for any x ∈ C(I,R), M(x) is closed for any x ∈ C(I,R) and M( · )
is e2λTL0

2 -contraction. Therefore, by the Covitz–Nadler set-valued contraction principle, M( · ) has a
fixed point which is a solution to problem (1.1).

Unfortunately, this approach does not contain a priori bounds for solutions as in (4.7).

Example.

(a) Consider ρ = 1
2 , λ = 1

2 , T = 1, define F ( · , · ) : [0, 1]× R → P(R) by

F (t, x) =
[
0,

|x|
1 + |x|

]
.

Obviously, Hypothesis H1 is satisfied with φ = 1, ψ(z) ≡ 1
1+z , and consider r > e

2−1. Therefore,
by Theorem 3.1, there exists a solution of problem

D
1
2

CFx(t) +
1

2
x(t) ∈

[
0,

|x(t)|
1 + |x(t)|

]
, x(0) = −x(T )

such that |x(t)| ≤ r, ∀ t ∈ [0, 1].

(b) Consider ρ = 1
2 , λ = 1

2 , T = 1, define F ( · , · ) : [0, 1]× R × R → P(R) by

F (t, x, y) =
[
− 1

10
· |x|
1 + |x|

, 0
]
∪
[
0,

1

10
· |y|
1 + |y|

]
and k( · , · , · ) : [0, 1]× R × R → R by k(t, s, x) = 1

10 x.
Since

sup
{
|u| : u ∈ F (t, x, y)

}
≤ 1

10
, ∀ t ∈ [0, 1], x, y ∈ R,

dH

(
F (t, x1, y1), F (t, x2, y2)

)
≤ 1

10
|x1 − x2|+

1

10
|y1 − y2|, ∀x1, x2, y1, y2 ∈ R,

in this case

p(t) ≡ L(t) ≡ 1

10
, M(t) =

1

10

(
1 +

1

10
t
)

and M0 =
1

10
+

1

2

( 1

10

)2

.

Since
e
( 1

10
+

1

2

( 1

10

)2)
< 2,
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we apply Corollary 4.1 in order to deduce the existence of a solution of the problem

D
1
2

CFx(t) +
1

2
x(t) ∈

[
− 1

10
· |x(t)|
1 + |x(t)|

, 0
]
∪

[
0,

1

10
·

|
t∫
0

x(s) ds|

10 + |
t∫
0

x(s) ds|

]
, x(0) = −x(T )

that satisfies
|x(t)| ≤ 20e

400− 21e
, ∀ t ∈ [0, 1].

References
[1] M. Al-Refai and K. Pal, New aspects of Caputo–Fabrizio fractional derivative. Progr. Fract.

Differ. Appl. 5 (2019), no. 2, 157–166.
[2] T. M. Atanacković, S. Pilipović and D. Zorica, Properties of the Caputo–Fabrizio fractional

derivative and its distributional settings. Fract. Calc. Appl. Anal. 21 (2018), no. 1, 29–44.
[3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Systems & Control: Foundations & Appli-

cations, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.
[4] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical

Methods. Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2012.

[5] M. Benyoub and K. Belghaba, Anti-periodic boundary value problems for Caputo–Fabrizio frac-
tional impulsive differential equations. Math. Morav. 26 (2022), no. 2, 49–62.

[6] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values. Studia
Math. 90 (1988), no. 1, 69–86.

[7] M. Caputo, Elasticità e Dissipazione. Zanichelli, Bologna, 1969.
[8] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel.

Progr. Fract. Differ. Appl. 1 (2015), no. 2, 73–85.
[9] M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with

exponential kernels. Progr. Fract. Differ. Appl. 2 (2016), no. 1, 1–11.
[10] A. Cernea, On the existence of solutions for fractional differential inclusions with anti-periodic

boundary conditions. J. Appl. Math. Comput. 38 (2012), no. 1-2, 133–143.
[11] A. Cernea, On the solutions of a fractional differential inclusion of Caputo–Fabrizio type. J.

Nonlinear Evol. Equ. Appl. 2020, Paper no. 9, 163–176.
[12] A. Cernea, A bilocal problem associated to a fractional differential inclusion of Caputo–Fabrizio

type. Univers. J. Math. Appl. 3 (2020), no. 4, 133–137.
[13] H. Covitz, S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces.

Israel J. Math. 8 (1970), 5–11.
[14] A. F. Filippov, Classical solutions of differential equations with multi-valued right-hand side.

SIAM J. Control 5 (1967), 609–621.
[15] M. Frigon and A. Granas. Théorèmes d’existence pour les inclusions différentielles sans convexité.

C.R. Acad. Sci. Paris, Ser. I 310 (1990), 819–822.
[16] A. Lasota and Z. Opial, An application of the Kakutani—Ky Fan theorem in the theory of

ordinary differential equations. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13
(1965), 781–786.

[17] D. O’Regan, Fixed point theory for closed multifunctions. Equadiff 9 (Brno, 1997). Arch. Math.
(Brno) 34 (1998), no. 1, 191–197.

[18] A. Shaikh, A. Tassaddiq, K. S. Nisar and D. Baleanu, Analysis of differential equations involving
Caputo–Fabrizio fractional operator and its applications to reaction-diffusion equations. Adv.
Difference Equ. 2019, Paper no. 178, 14 pp.



14 Aurelian Cernea

[19] Ş. Toprakseven, The existence and uniqueness of initial-boundary value problems of the fractional
Caputo–Fabrizio differential equations. Univers. J. Math. Appl. 2 (2019), no. 2, 100–106.

[20] S. Zhang, L. Hu and S. Sun, The uniqueness of solution for initial value problems for fractional
differential equation involving the Caputo–Fabrizio derivative. J. Nonlinear Sci. Appl. 11 (2018),
no. 3, 428–436.

(Received 14.11.2023; revised 01.12.2023; accepted 13.12.2023)

Author’s address:

Aurelian Cernea
1. Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, Bucharest

010014, Romania.
2. Academy of Romanian Scientists, Ilfov 3, Bucharest 050044, Romania.
E-mail: acernea@fmi.unibuc.ro


