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Abstract. In this paper, we deduce several properties of Green’s functions related to Hill’s equation
coupled to various boundary value conditions. In particular, the idea is to study Green’s functions
of the second order differential operator coupled to the Neumann, Dirichlet, periodic and mixed
boundary conditions, by expressing Green’s function of a given problem as a linear combination of
Green’s functions of the other problems. This will allow us to compare different Green’s functions
when their sign is constant. Finally, such properties of Green’s function of the linear problem will be
fundamental to deduce the existence of solutions to the nonlinear problem. The results are derived
from the fixed point theory applied to the related operators defined on suitable cones in Banach spaces.
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1 Introduction
This paper deals with the study of Green’s functions related to Hill’s equation

u′′(t) + a(t)u(t) = 0.

This equation has many applications in several fields as it models a large set of physical problems.
Some examples of such applications are the inverted pendulum, Airy’s equation or Mathieu’s equation,
which can be found in [3, 10,12,14,15,18].

Furthermore, it is important to note that the results obtained for Hill’s equation can be easily
extended (with a suitable change of variable, see [14]) to a general second order linear differential
equation of the form

u′′(t) + a1(t)u
′(t) + a0 u(t) = 0

provided that the functions a0 and a1 have sufficient regularity.
Moreover, the nonhomogeneous problem related to Hill’s equation

u′′(t) + a(t)u(t) = σ(t)

has also been extensively studied (see [1, 3, 7, 9, 11, 13, 15–20] and the references therein), especially
coupled to periodic conditions. In this sense, a particularly interesting case happens when σ has
constant sign, which can be interpreted as the action of an external force acting over the system in a
certain direction (positive or negative). In such a case, the solutions of constant sign of the equation
can be interpreted as situations in which the deviation caused by the force is produced only in one
direction (that is, the object oscillates only above or below the equilibrium point of the system).

It is in this context when the study of Green’s functions gains importance, since the existence
of solutions of differential equations with constant sign is directly related to the constant sign of
Green’s functions. In particular, the fact that Green’s function related to a differential problem does
not change its sign, allows the application of several topological and iterative methods to deduce the
existence results for suitable nonlinear problems.

Having this idea in mind, in [6], the authors developed a method which allows to write Green’s
functions related to the Neumann, Dirichlet and mixed problems defined on the interval [0, T ] as
a linear combination of Green’s functions of some extended periodic problem (that is, the periodic
problem was considered either on the interval [0, 2T ] or on [0, 4T ] and the potentials for these problems
were the even extension ã to [0, 2T ] of the potential a(t) considered on [0, T ] and the even extension of
ã to [0, 4T ], respectively). As a consequence of such decomposition, the authors were able to deduce
some comparison results between the solutions of the aforementioned problems.Moreover, they were
able to relate the constant sign of the corresponding Green’s functions.

This paper can be regarded then as a continuation of the work developed in [6], since our main
objective will also be the decomposition of some Green’s functions in terms of others. However, the
techniques used in this paper are completely different from those mentioned in [6]. More concretely,
we will consider two different ways of making the decomposition of Green’s functions. The first one
will be based on the superposition property of the solutions of a differential problem. On the other
hand, the second one will make use of a general formula proved in [8], which allows to relate two
different Green’s functions as long as the boundary value conditions of one of them can be rewritten
in terms of the other and both problems are nonresonant.

This way, we will consider periodic, Neumann, Dirichlet and mixed conditions and relate their
corresponding Green’s functions pairwise. One of the differences between this approach and the
one considered in [6] is the fact that here we are able to find a relation between any pair of the
aforementioned Green’s functions, not only between any of them and the periodic one. Another
difference is that in the present paper we are able to connect Green’s function related to the periodic
problem on [0, T ] with Green’s function related to any of the other cited boundary condition on [0, T ],
which was not possible with the techniques used in [6].

As a consequence of the expressions relating Green’s functions, we are able to find some connections
between their constant signs. Some of the results were already proved in [6] (although, the proof was
different) and some others are, as far as we know, new in the literature.
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The paper is divided into 5 sections. In Section 2, we compile some preliminary results from [8].
Sections 3 and 4 include the decomposition of Green’s functions using the two different approaches
mentioned before. Finally, Section 5 includes an application to ensure the existence and find some
bounds for the solution of nonlinear problems.

2 Preliminaries
Consider the second order linear operator

Lu(t) := u′′(t) + a(t)u(t), t ∈ I,

with I ≡ [0, 1], a : I → R, a ∈ L1(I), and

Bi(u) :=

1∑
j=0

(
αi
ju

(j)(a) + βi
ju

(j)(b)
)
, i = 1, 2,

where αi
j , βi

j are real constants for i = 1, 2, j = 0, 1.
We will work on the space

W 2,1(I) = {u ∈ C(I) : u′ ∈ AC(I)},

where AC(I) is the set of absolutely continuous functions on I. In particular, we will work with a
Banach space X ⊂W 2,1(I) in which the operator L is nonresonant, that is, the homogeneous equation

u′′(t) + a(t)u(t) = 0 a.e. t ∈ I, u ∈ X,

has as a unique solution the trivial one. In such a case, it occurs that for every σ ∈ L1(I), the
non-homogeneous problem

u′′(t) + a(t)u(t) = σ(t) a.e. t ∈ I, u ∈ X,

has a unique solution given by

u(t) =

1∫
0

G(t, s)σ(s) ds, ∀ t ∈ I,

where G denotes the corresponding Green’s function which is the unique function that satisfies the
following properties (see [4] for details)

Definition 2.1. We say that G : I × I → R is Green’s function for the problem

Lu(t) = σ(t), a.e. t ∈ I, B1(u) = h1, B2(u) = h2,

being σ ∈ L1(I) and h1, h2 ∈ R, if it satisfies the following properties:

• G ∈ C(I × I) ∩ C2((I × I) \ {(s, s), s ∈ I}).

• For each s ∈ (0, 1), G( · , s) solves the differential equation Ly(t) = 0 on [0, s)∪ (s, 1] and satisfies
the boundary conditions B1(G( · , s)) = B2(G( · , s)) = 0.

• For each t ∈ (0, 1), there exist the lateral limits

∂

∂t
G(t−, t) =

∂

∂t
G(t, t+) and ∂

∂t
G(t, t−) =

∂

∂t
G(t+, t)

and, moreover,

∂

∂t
G(t+, t)− ∂

∂t
G(t−, t) =

∂

∂t
G(t, t−)− ∂

∂t
G(t, t+) = 1.
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We compile now some properties of Green’s functions related to operator L. The following result
is an adaptation of [8, Lemma 3.1] to the problem considered in this paper.

Lemma 2.1. The problem

Lu(t) = σ(t), a.e. t ∈ I, B1(u) = B2(u) = 0, (2.1)

has a unique Green’s function if and only if following two problems

Lu(t) = 0, a.e. t ∈ I, B1(u) = 1, B2(u) = 0,

L u(t) = 0, a.e. t ∈ I, B1(u) = 0, B2(u) = 1,

have a unique solution that we denote as ω1 and ω2, respectively.
In such a case, for any σ ∈ L1(I), the problem

Lu(t) = σ(t), a.e. t ∈ I, B1(u) = λ1, B2(u) = λ2,

has a unique solution given by

u(t) =

1∫
0

g(t, s)σ(s) ds+ λ1 ω1(t) + λ2 ω2(t).

Here, by considering C1, C2 : C1(I) → R, two linear and continuous operators, we formulate
the following result for general second order non-local boundary value problems. This result is an
adaptation of [8, Theorem 3.2] to the second order problem. The general result (which proves an
analogous formula for the arbitrary n-th order problem) can be found in [8].

Theorem 2.1. Let us suppose that the homogeneous problem of (2.1) (σ ≡ 0) has a unique solution
(u ≡ 0) and let g be its related Green’s function. Let σ ∈ L1(I), and δ1, δ2 be such that

det(I −A) ̸= 0,

with I the identity matrix of order 2 and A = (aij)2×2 ∈ M2×2 given by

aij = δj Ci(ωj), i, j ∈ {1, 2}.

Then the problem

Lu(t) = σ(t), a.e. t ∈ I, B1(u) = δ1 C1(u), B2(u) = δ2 C2(u), (2.2)

has a unique solution u ∈ C2(I) given by the expression

u(t) =

1∫
0

G(t, s, δ1, δ2)σ(s) ds,

where

G(t, s, δ1, δ2) := g(t, s) +

2∑
i=1

2∑
j=1

δi bij ωi(t)Cj(g( · , s)), t, s ∈ I, (2.3)

with B = (bij)2×2 = (I −A)−1.

For any λ ∈ R, consider the operator L[λ] defined as follows:

L[λ]u(t) ≡ u′′(t) + (a(t) + λ)u(t), t ∈ I.

When working with this operator, to empasize the dependence of Green’s function on the parameter
λ, we denote by G[λ] Green’s function related to L[λ].

In this paper, we deal with some problems related to the operator L[λ], which will be described in
the sequel:
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• Neumann problem:

L[λ]u(t) = σ(t), a.e. t ∈ I, u ∈ XN =
{
u ∈W 2,1(I) : u′(0) = u′(1) = 0

}
. (2.4)

• Dirichlet problem:

L[λ]u(t) = σ(t), a.e. t ∈ I, u ∈ XD = {u ∈W 2,1(I) : u(0) = u(1) = 0
}
. (2.5)

• Mixed problem 1:

L[λ]u(t) = σ(t), a.e. t ∈ I, u ∈ XM1 =
{
u ∈W 2,1(I) : u′(0) = u(1) = 0

}
. (2.6)

• Mixed problem 2:

L[λ]u(t) = σ(t), a.e. t ∈ I, u ∈ XM2
=
{
u ∈W 2,1(I) : u(0) = u′(1) = 0

}
. (2.7)

• Periodic problem:

L[λ]u(t) = σ(t), a.e. t ∈ I, u ∈ XP =
{
u ∈W 2,1(I) : u(0) = u(1), u′(0) = u′(1)

}
. (2.8)

We denote by GD[λ], GP [λ], GN [λ], GM1
[λ] and GM2

[λ] Green’s function related to the Dirichlet,
Periodic, Neumann, Mixed 1 and Mixed 2 problems, respectively. Moreover, we denote by uD, uP ,
uN , uM1 and uM2 the solutions of the corresponding problems and by λD0 , λP0 , λN0 , λM1

0 and λM2
0 the

first eigenvalues of each problem.
Now, let us consider the following first order differential 2-dimensional linear system:

x′(t) = A(t)x(t) + f(t), a.e. t ∈ I, (2.9)

subject to the two-point boundary value condition

B x(0) + C x(1) = 0, (2.10)

being A ∈ L1(I,M2×2), f ∈ L1(I,R2), B,C ∈ M2×2, and x ∈ AC(I,R2).
From [4, pp. 9 and 15], we know that there is a unique Green’s function related to (2.9), (2.10),

denoted by g, if and only if det (Mϕ) ̸= 0, being

Mϕ := B ϕ(0) + C ϕ(1)

and ϕ any fundamental matrix related to (2.9) (in [4, Remark 1.2.6], it is shown that such a property
is independent of the choice of ϕ).

In such a case, the expression of the Green’s function g does not depend on the election of the
fundamental matrix ϕ and is given by

g(t, s) =

{
− ϕ(t)M−1

ϕ C ϕ(1)ϕ−1(s) + ϕ(t)ϕ−1(s), 0 ≤ s < t ≤ 1,

− ϕ(t)M−1
ϕ C ϕ(1)ϕ−1(s), 0 ≤ t < s ≤ 1.

(2.11)

Let
R(t) := g(t, 0) = −ϕ(t)M−1

ϕ C ϕ(1)ϕ−1(0) + ϕ(t)ϕ−1(0), t ∈ (0, 1].

We extend with continuity the function R to the interval I as R(0) = lim
t→0+

R(t).
By definition, it is immediate to verify that

R′(t) = A(t)R(t), a.e. t ∈ I.

Let us see that
BR(0) + C R(1) = B. (2.12)
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Indeed, using expression (2.11) we have that

BR(0) + C R(1) = −B ϕ(0)M−1
ϕ C ϕ(1)ϕ−1(0) +B − C ϕ(1)M−1

ϕ C ϕ(1)ϕ−1(0) + C ϕ(1)ϕ−1(0)

= −MϕM
−1
ϕ C ϕ(1)ϕ−1(0) +B + C ϕ(1)ϕ−1(0) = B.

Now, defining
S(t) := g(t, 1) = −ϕ(t)M−1

ϕ C ϕ(1)ϕ−1(1), t ∈ [0, 1),

and extending it to I, by S(1) = lim
t→1−

S(t), we have that

S′(t) = A(t)S(t), a.e. t ∈ I.

Now we verify that
B S(0) + C S(1) = −C. (2.13)

Again, using the expression (2.11) we have that

B S(0) + C S(1) =−B ϕ(0)M−1
ϕ C ϕ(1)ϕ−1(1)− C ϕ(1)M−1

ϕ C ϕ(1)ϕ−1(1)

=− (B ϕ(0) + C ϕ(1))M−1
ϕ C = −C.

Now, we observe that the equation

L[λ]u(t) = σ(t), a.e. t ∈ I, (2.14)

can be rewritten as a system of type (2.9) as follows:(
u(t)
u′(t)

)′

=

(
0 1

−a(t)− λ 0

)(
u(t)
u′(t)

)
+

(
0
σ(t)

)
. (2.15)

In this case, we have
A(t) =

(
0 1

−a(t)− λ 0

)
and f(t) =

(
0
σ(t)

)
.

Now, we give here the expression of different problems related to the operator L[λ] mentioned above
based on equation (2.10), by giving the corresponding matrices B and C in each case:

• Neumann problem:
B =

(
0 1
0 0

)
and C =

(
0 0
0 1

)
.

• Dirichlet problem:
B =

(
1 0
0 0

)
and C =

(
0 0
1 0

)
.

• Mixed problem 1:
B =

(
0 1
0 0

)
and C =

(
0 0
1 0

)
.

• Mixed problem 2:
B =

(
1 0
0 0

)
and C =

(
0 0
0 1

)
.

• Periodic problem:
B =

(
1 0
0 1

)
and C =

(
−1 0
0 −1

)
.

Remark 2.1. The matrices B and C are not unique, since we can take as B and C a multiple k B
and k C with k a nonzero real number. We can also swap the rows of the two matrices B and C.



8 Alberto Cabada, Lucía López-Somoza, Mouhcine Yousfi

Using [5, p. 11], we know that the matrix function

g[λ](t, s) =

 − ∂

∂s
G[λ](t, s) G[λ](t, s)

− ∂2

∂s∂t
G[λ](t, s)

∂

∂t
G[λ](t, s)


is Green’s function related to system (2.15) associated with the differential equation (2.14), coupled to
the boundary conditions (2.10), where G[λ] is Green’s function of the linear equation (2.14) coupled

to the boundary conditions (2.10) under the notation x =

(
u
u′

)
.

Now, we introduce some auxiliary functions that we are going to use throughout this paper to
relate the different problems that we have defined above.

Let us define r1[λ] as the unique solution to the problem

L[λ]u(t) = 0, a.e. t ∈ I, u(0) = 1, u(1) = 0, (2.16)

r2[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u(0) = 0, u(1) = 1, (2.17)

r3[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u(0)− u(1) = 1, u′(0)− u′(1) = 0,

r4[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u(0)− u(1) = 0, u′(0)− u′(1) = 1, (2.18)

r5[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u′(0) = 1, u′(1) = 0,

r6[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u′(0) = 0, u′(1) = 1,

r7[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u(0) = 1, u′(1) = 0,

r8[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u(0) = 0, u′(1) = 1,

r9[λ] as the unique solution to

L[λ]u(t) = 0, a.e. t ∈ I, u′(0) = 1, u(1) = 0,

r10[λ] as the unique solution of the problem

L[λ]u(t) = 0, a.e. t ∈ I, u′(0) = 0, u(1) = 1.

Now, using equalities (2.12) and (2.13), we will find the expression of r1[λ] as a function of Green’s
function of the Dirichlet problem.

For the Dirichlet problem, equation (2.13) becomes the following equality:

(
1 0
0 0

) − ∂

∂s
GD[λ](0, 0) GD[λ](0, 0)

− ∂2

∂s∂t
GD[λ](0, 0)

∂

∂t
GD[λ](0, 0)



+

(
0 0
1 0

) − ∂

∂s
GD[λ](1, 0) GD[λ](1, 0)

− ∂2

∂s∂t
GD[λ](1, 0)

∂

∂t
GD[λ](1, 0)

 =

(
1 0
0 0

)
.
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Therefore,

− ∂

∂s
GD[λ](0, 0) = 1,

∂

∂s
GD[λ](1, 0) = 0,

GD[λ](0, 0) = 0, GD[λ](1, 0) = 0.

By the uniqueness of the function r1[λ], it follows that

r1[λ](t) = − ∂

∂s
GD[λ](t, 0).

Making similar arguments, we can deduce that

r2[λ](t) =
∂

∂s
GD[λ](t, 1), r3[λ](t) = − ∂

∂s
GP [λ](t, 0), r4[λ](t) = GP [λ](t, 0),

r5[λ](t) = GN [λ](t, 0), r6[λ](t) = −GN [λ](t, 1), r7[λ](t) = − ∂

∂s
GM2 [λ](t, 0),

r8[λ](t) = −GM2 [λ](t, 1), r9[λ](t) = GM1 [λ](t, 0), r10[λ](t) = − ∂

∂s
GM1 [λ](t, 1).

3 Decomposing Green’s functions
This section is devoted to the study of the relationships between the expressions of Green’s functions
related to problems (2.4), (2.5), (2.6), (2.7) and (2.8).

Toward this end, we compare different expressions by putting each boundary condition as a com-
bination of the others.

Such expressions will be deduced from Lemma 2.1. We pay special attention to the fact that in
this case we are considering the potential a(t) and the definition on the interval [0, 1]. So, we make
a different approach to the one given in [6], where the expressions are obtained for the corresponding
extensions of the potential a(t) to the intervals [0, 2] and [0, 4].

3.1 Dirichlet and Periodic problems
In this subsection, we study the relation between Green’s functions of the Dirichlet and Periodic
problems.

Theorem 3.1. If the operator L[λ] is nonresonant both in XD and XP , then

GP [λ](t, s) = GD[λ](t, s)−
(
r1[λ](t) + r2[λ](t)

)
GP [λ](1, s)

= GD[λ](t, s) +
( ∂
∂s

GD[λ](t, 1)− ∂

∂s
GD[λ](t, 0)

)
GP [λ](1, s), ∀ (t, s) ∈ I × I. (3.1)

Proof. We express the Green’s function related to the Periodic problem (2.8) as a function of the
Dirichlet one (2.5) as follows:

L[λ]u(t) = σ(t), a.e. t ∈ I, u(0) = u(1), u(1) = u(1) + u′(0)− u′(1). (3.2)

Then, using Lemma 2.1, we find that the solution of problem (3.2) is given by the following expression:

uP (t) =

1∫
0

GP [λ](t, s)σ(s) ds

=

1∫
0

GD[λ](t, s)σ(s) ds+ r1[λ](t)uP (1) + r2[λ](t)
(
uP (1) + u′P (0)− u′P (1)

)

=

1∫
0

GD[λ](t, s)σ(s) ds+ r1[λ](t)

1∫
0

GP [λ](1, s)σ(s) ds
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+ r2[λ](t)

1∫
0

[
GP [λ](1, s) +

∂

∂t
GP [λ](0, s)−

∂

∂t
GP [λ](1, s)

]
σ(s) ds

=

1∫
0

[
GD[λ](t, s) +

(
r1[λ](t) + r2[λ](t)

)
GP [λ](1, s)

]
σ(s) ds,

where the last equality follows from Definition 2.1, condition (G6):

∂

∂t
GP [λ](0, s) =

∂

∂t
GP [λ](1, s), ∀ s ∈ (0, 1).

Since previous equalities hold for every σ ∈ L1(I), we obtain (3.1).

Remark 3.1. We point out that, as a direct consequence of Lemma 2.1, we have that both r1[λ] and
r2[λ] are uniquely determined. In fact, with the notation used in Lemma 2.1, we have B1(u) = u(0),
B2(u) = u(1), ω1 = r1[λ] and ω2 = r2[λ].

Next, we study the oscillation of the functions r1[λ] and r2[λ] by using the Sturm–Liouville theory
of eigenvalues. Let {λDn }∞n=0 be the sequence of eigenvalues of the Dirichlet problem

(Dλ) L[λ]u(t) = 0, a.e. t ∈ I, u(0) = u(1) = 0.

It is well-known that lim
n→∞

λDn = ∞ (see [21, Theorem 4.3.1]) and that any of the eigenvalues has a
single associated eigenvector vn such that

(Dn) L[λDn ] vn(t) = 0, a.e. t ∈ I, vn(0) = vn(1) = 0,

with exactly n zeros in (0, 1).
Moreover, this eigenfunction satisfies the condition v′n(0) ̸= 0.

Lemma 3.1. Problem (2.16) has a unique solution if and only if λ ̸= λDn , n = 0, 1, . . . .

Lemma 3.2. The unique solution r1[λ] of problem (2.16) has exactly n zeros in (0, 1) if and only if
λ ∈ (λDn−1, λ

D
n ), n = 1, 2, . . . , and r1[λ] > 0 on [0, 1) if and only if λ < λD0 . In addition, (−1)nr′1(1) < 0

for all λ ∈ (λDn−1, λ
D
n ), n = 1, 2, . . . , and r′1[λ](1) < 0, for all λ < λD0 .

Lemma 3.3. Problem (2.17) has a unique solution if and only if λ ̸= λDn , n = 0, 1, . . . .

Lemma 3.4. The unique solution of problem (2.17) r2[λ] has exactly n zeros in (0, 1) if and only if λ ∈
(λDn−1, λ

D
n ), n = 1, 2, . . . and r2[λ] > 0 on (0, 1] if and only if λ < λD0 . In addition, (−1)nr′2[λ](0) > 0

for all λ ∈ (λDn−1, λ
D
n ), n = 1, 2, . . . and r′2[λ](0) > 0, for all λ < λD0 .

Remark 3.2. Lemmas 3.1 and 3.3 are corollaries of Lemma 2.1. Lemmas 3.2 and 3.4 follow from
Sturm’s comparison theorem.

As a direct consequence of equality (3.1), we deduce the following comparison between the values
of Green’s functions related to the Dirichlet and Periodic problems.

Theorem 3.2. The following inequality holds:

GP [λ](t, s) < GD[λ](t, s) < 0, ∀ (t, s) ∈ (0, 1)× (0, 1), ∀λ < λP0 . (3.3)

Proof. It is immediately can be verified that the function r[λ](t) := r1[λ](t) + r2[λ](t) solves the
following problem:

L[λ] r[λ](t) = 0, a.e. t ∈ I, r[λ](0) = r[λ](1) = 1.

From Lemmas 3.2 and 3.4, it is obvious that if λ < λD0 , then r[λ](t) > 0 for all t ∈ I.
Moreover, we know that GP [λ] is negative on I × I for all λ < λP0 and GD[λ] is negative on

(0, 1)× (0, 1) for all λ < λD0 (see [6, Lemma 2.9]). In addition, λP0 < λD0 [7, p. 44].
As r[λ](t) > 0 for all t ∈ I when λ < λD0 , using (3.1), we obtain the result.
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Remark 3.3. From equality (3.1) it follows that

GD[λ](t, s)−GP [λ](t, s)

GP [λ](1, s)
= −r[λ](t),

if λ is not an eigenvalue of the Dirichlet and Periodic problems.
Deriving the above equality with respect to s, we obtain the following identity

∂

∂s

(
GD[λ](t, s)−GP [λ](t, s)

)
GP [λ](1, s)

=
(
GD[λ](t, s)−GP [λ](t, s)

) ∂
∂s

GP [λ](1, s), ∀ (t, s) ∈ I × I.

In the sequel, we will carryout an alternative study to the one done in Theorem 3.1. In this case,
we consider the Dirichlet conditions as a combination of the periodic ones.

Let us write the Dirichlet problem as a function of the periodic problem as follows:

L[λ]u(t) = σ(t), a.e. t ∈ I, u(0)− u(1) = −u(1), u′(0)− u′(1) = u′(0)− u′(1) + u(1).

Taking into account that r4[λ](t) = GP [λ](t, 0) solves (2.18), performing the calculations in an analo-
gous way as before, using Lemma 2.1, the following result is attained.

Theorem 3.3. Assume that the operator L[λ] is nonresonant both in XD and XP , then there holds:

GD[λ](t, s) = GP [λ](t, s) + r4[λ](t)
( ∂
∂t
GD[λ](0, s)− ∂

∂t
GD[λ](1, s)

)
= GP [λ](t, s) +GP [λ](t, 0)

( ∂
∂t
GD[λ](0, s)− ∂

∂t
GD[λ](1, s)

)
, ∀ (t, s) ∈ I × I. (3.4)

Remark 3.4. Notice that if λ < λD0 , we have GD[λ] < 0 on (0, 1)× (0, 1) and, as a consequence,

∂

∂t
GD[λ](0, s) < 0 <

∂

∂t
GD[λ](1, s), s ∈ (0, 1).

Moreover, if λ < λD0 , then GP [λ] < 0 on I × I. So, from (3.4) and the fact that λP0 < λD0 , we
deduce inequality (3.3) again.

3.2 Dirichlet and Neumann problems
In this section, we continue the work done in the previous section. In this case, we will consider the
Dirichlet and Neumann problems. We will obtain some expressions that allow us to connect both
Green’s functions.

Theorem 3.4. Assume that the operator L[λ] is nonresonant in the spaces XD and XN . Then the
following equality is satisfied:

GN [λ](t, s) = GD[λ](t, s) + r1[λ](t)GN [λ](0, s) + r2[λ](t)GN [λ](1, s)

= GD[λ](t, s)− ∂

∂s
GD[λ](t, 0)GN [λ](0, s)

+
∂

∂s
GD[λ](t, 1)GN [λ](1, s), ∀ (t, s) ∈ I × I. (3.5)

Proof. Let us rewrite the Neumann problem in the following way:

L[λ]u(t) = σ(t), a.e. t ∈ I, u(0) = u(0) + u′(0), u(1) = u(1) + u′(1).
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Using Lemma 2.1, the solution to the above problem is

uN (t) =

1∫
0

GN [λ](t, s)σ(s) ds =

1∫
0

GD[λ](t, s)σ(s) ds+ r1[λ](t)uN (0) + r2[λ](t)uN (1)

=

1∫
0

GD[λ](t, s)σ(s) ds+ r1[λ](t)

1∫
0

GN [λ](0, s)σ(s) ds+ r2[λ](t)

1∫
0

GN [λ](0, s)σ(s) ds.

Therefore, since the previous equalities hold for every σ ∈ L1(I), we obtain (3.5).

Corollary 3.1. The following inequality holds:

GN [λ](t, s) < GD[λ](t, s) < 0, ∀ (t, s) ∈ (0, 1)× (0, 1), ∀λ < λN0 . (3.6)

Proof. We know that, from Lemmas 3.2 and 3.4, r1[λ] and r2[λ] are positive on (0, 1) for all λ < λD0 .
In addition, λN0 ≤ λP0 < λD0 (see [7, p. 44]), GN [λ] < 0 on I × I for all λ < λN0 (see [6, Corollary 4.5])
and GD[λ] < 0 on (0, 1) × (0, 1) for all λ < λD0 (see [6, Lemma 2.9]). Then for all λ < λN0 , r1[λ] and
r2[λ] are positive on (0, 1). Hence, using (3.5), we obtain the result.

Remark 3.5. The above result can be deduced from [6, Corollaries 4.5, 4.8 and 4.10], but in a different
way than that we have explained here. In such reference, the argument used is based on considering
the even extension of the solution to the interval [0, 2]. In any case, expression (3.5) relating GN [λ]
and GD[λ] is different from the one obtained in that article.

For the reverse process, by writing the Dirichlet problem as a function of Neumann problem as

L[λ]u(t) = σ(t), a.e. t ∈ I, u′(0) = u(0) + u′(0), u′(1) = u(1) + u′(1),

we arrive at the next result as a consequence of Lemma 2.1.

Theorem 3.5. Assume that the operator L[λ] is nonresonant in the spaces XD and XN . Then the
following equalities are satisfied:

GD[λ](t, s) = GN [λ](t, s) + r5[λ](t)
∂

∂t
GD[λ](0, s) + r6[λ](t)

∂

∂t
GD[λ](1, s)

= GN [λ](t, s) +GN [λ](t, 0)
∂

∂t
GD[λ](0, s)

−GN [λ](t, 1)
∂

∂t
GD[λ](1, s), ∀ (t, s) ∈ I × I. (3.7)

Remark 3.6. Since for λ < λN0 , we have GN [λ] < 0 on I × I and GD[λ] < 0 on (0, 1) × (0, 1), we
conclude from (3.7) that inequality (3.6) is valid again.

3.3 Dirichlet and Mixed problems
In this case, we carry out an analysis of the relationship between Green’s functions of the Dirichlet
and Mixed problems. Following the same steps as before in the previous subsection, we get the next
result.

Theorem 3.6. Assume that L[λ] is nonresonant both in XD and XM1
, then

GM1
[λ](t, s) = GD[λ](t, s) + r1[λ](t)GM1

[λ](0, s)

= GD[λ](t, s)− ∂

∂s
GD[λ](t, 0)GM1

[λ](0, s), ∀ (t, s) ∈ I × I. (3.8)

As a consequence, we deduce the following result.
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Corollary 3.2. The following inequality holds:

GM1
[λ](t, s) < GD[λ](t, s) < 0, ∀ (t, s) ∈ (0, 1)× (0, 1), ∀λ < λM1

0 . (3.9)

Proof. The inequality λM1
0 < λD0 is provided in [6, Remark 4.19]. In addition, we have that GM1

[λ] < 0
on [0, 1)× [0, 1) if and only if λ < λM1

0 (see [6, Corollary 4.7]) and GD[λ] < 0 on (0, 1)× (0, 1) if and
only if λ < λD0 , which implies that ∂

∂s GD(t, 0) < 0 for all λ < λD0 and t ∈ (0, 1).
Therefore, using (3.8), we deduce the inequality.

Similarly, for Mixed 2 problem, we arrive at the following results.

Theorem 3.7. If the operator L[λ] is nonresonant in XD and XM2
, then the following equality holds:

GM2
[λ](t, s) = GD[λ](t, s) + r2[λ](t)GM2

[λ](1, s)

= GD[λ](t, s) +
∂

∂s
GD[λ](t, 1)GM2

[λ](1, s), ∀ (t, s) ∈ I × I, (3.10)

Corollary 3.3. The following inequality holds:

GM2
[λ](t, s) < GD[λ](t, s) < 0, ∀ (t, s) ∈ (0, 1)× (0, 1), ∀λ < λM2

0 .

Remark 3.7. The above inequality between GM2
[λ] and GD[λ] can be deduced from [6, Corollar-

ies 4.7, 4.8, 4.13]. Moreover, expression (3.10) relating GM2
[λ] and GD[λ] is different from the one

obtained in that reference.
However, as far as we know, there is no expression in the literature that relate GM1 and GD and,

as a consequence, equality (3.8) and inequality (3.9) are new.

Analogously to previous sections, we can relate expressions of Green’s function of the Dirichlet
problem and the ones of the Mixed problems.

Theorem 3.8. If the operator L[λ] is nonresonant in XD and XM2
, then

GD[λ](t, s) = GM2
[λ](t, s) + r8[λ](t)

∂

∂t
GD[λ](1, s)

= GM2
[λ](t, s)−GM2

[λ](t, 1)
∂

∂t
GD[λ](1, s), t, s ∈ I.

Theorem 3.9. If the operator L[λ] is nonresonant in XD and XM1 , then

GD[λ](t, s) = GM1 [λ](t, s) + r9[λ](t)
∂

∂t
GD[λ](0, s)

= GM1
[λ](t, s) +GM1

[λ](t, 0)
∂

∂t
GD[λ](0, s), t, s ∈ I.

Remark 3.8. Notice that from two previous results we can deduce Corollaries 3.2 and 3.3.

3.4 Neumann and Mixed problems
In this section, arguing in a similar manner as in the previous ones, we can relate the expression of
Green’s functions of the Neumann problem and the ones of the corresponding Mixed ones.

Theorem 3.10. Assume that the operator L[λ] is nonresonant in XN and XM1
. Then

GM2 [λ](t, s) = GN [λ](t, s) + r5[λ](t)
∂

∂t
GM2 [λ](0, s)

= GN [λ](t, s) +GN [λ](t, 0)
∂

∂t
GM2 [λ](0, s), ∀ (t, s) ∈ I × I. (3.11)

Corollary 3.4. The following inequality holds:

GN [λ](t, s) < GM2 [λ](t, s) < 0, ∀ (t, s) ∈ (0, 1]× (0, 1], ∀λ < λN0 . (3.12)
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Proof. We know that GM2 [λ](t, s) < 0 for all (t, s) ∈ (0, 1] × (0, 1] if and only if λ < λM2
0 (see [6,

Corollary 4.6]). Since GM2
[λ](0, s) = 0, we deduce that ∂

∂tGM2
[λ](0, s) < 0 for such λ. In addition,

λN0 < λM1
0 (see [6, Remark 4.19]). Therefore, using equality (3.11), we obtain the result.

Analogously, for Mixed 1 problem, we have the following results.

Theorem 3.11. Assume that L[λ] is nonresonant in XM1 and XN , then

GM1 [λ](t, s) = GN [λ](t, s) + r6[λ](t)
∂

∂t
GM1 [λ](1, s)

= GN [λ](t, s)−GN [λ](t, 1)
∂

∂t
GM1

[λ](1, s), ∀ (t, s) ∈ I × I. (3.13)

Corollary 3.5. The following equality is fulfilled:

GN [λ](t, s) < GM1 [λ](t, s) < 0, ∀ (t, s) ∈ [0, 1)× [0, 1), ∀λ < λN0 . (3.14)

Remark 3.9. Inequality (3.14) can be deduced from [6, Corollaries 4.5, 4.8, 4.13]. Identities (3.11)
and (3.13) together with inequality (3.12) are new.

By the reciprocal process, we can obtain additional relations between Green’s function of the
Neumann problem and the ones of the Mixed problems as follows.

Theorem 3.12. If the operator L[λ] is nonresonant in XN and XM2
, then

GN [λ](t, s) = GM2
[λ](t, s) + r7[λ](t)GN [λ](0, s)

= GM2
[λ](t, s)− ∂

∂s
GM2

[λ](t, 0)GN [λ](0, s), t, s ∈ I.

Theorem 3.13. If the operator L[λ] is nonresonant in XN and XM1
, then

GN [λ](t, s) = GM1
[λ](t, s) + r10[λ](t)GN [λ](1, s)

= GM1
[λ](t, s)− ∂

∂s
GM1

[λ](t, 1)GN [λ](1, s), t, s ∈ I.

Remark 3.10. Notice that Corollaries 3.4 and 3.5 can be deduced from Theorem 3.12 and 3.13,
respectively.

3.5 Periodic and Neumann problems
Concerning the Neumann and Periodic problems and arguing as before, we arrive at the next theorem.

Theorem 3.14. If the operator L[λ] is nonresonant both in XN and XP , the following equality is
fulfilled:

GP [λ](t, s) = GN [λ](t, s) +
(
r5[λ](t) + r6[λ](t)

) ∂
∂t
GP [λ](0, s)

= GN [λ](t, s) +
(
GN [λ](t, 0)−GN [λ](t, 1)

) ∂
∂t
GP [λ](0, s), ∀ (t, s) ∈ I × I. (3.15)

Remark 3.11. From (3.15) and due to the symmetry of GP [λ] and GN [λ], we deduce that

(
GN [λ](t, 0)−GN [λ](t, 1)

) ∂
∂t
GP [λ](0, s)

=
(
GN [λ](s, 0)−GN [λ](s, 1)

) ∂
∂t
GP [λ](0, t), ∀ (t, s) ∈ I × I.

If ∂
∂t GP [λ](0, t) ̸= 0 and ∂

∂t GP [λ](0, s) ̸= 0, then

GN [λ](t, 0)−GN [λ](t, 1)
∂
∂t GP [λ](0, t)

=
GN [λ](s, 0)−GN [λ](s, 1)

∂
∂t GP [λ](0, s)

= c1 ∈ R.
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We know that

∂

∂t
GP [λ](t, s) =

∂

∂s
GP [λ](s, t) and ∂

∂s
GP [λ](t, s) =

∂

∂t
GP [λ](s, t).

Then
GN (t, 0)−GN (t, 1) = c1

∂

∂t
GP [λ](0, t) = c1

∂

∂s
GP [λ](t, 0).

With the reverse process we arrive at the following result.

Theorem 3.15. Assume that L[λ] is nonresonant in XN and XP , then

GN [λ](t, s) = GP [λ](t, s) + r3[λ](t) (GN [λ](0, s)−GN [λ](1, s))

= GP [λ](t, s)−
∂

∂s
GP [λ](t, 0) (GN [λ](0, s)−GN [λ](1, s)), ∀ (t, s) ∈ I × I.

3.6 Periodic and Mixed problems
The same arguments as in the previous subsections are applicable to the Periodic and Mixed 1 prob-
lems. We omit the proof, which is analogous to those of previous cases.

Theorem 3.16. Assume that L[λ] is nonresonant in XP and XM1
. Then

GM1
[λ](t, s) = GP [λ](t, s) + r3[λ](t)GM1

[λ](0, s)− r4[λ](t)
∂

∂t
GM1

[λ](1, s)

= GP [λ](t, s)−
∂

∂s
GP [λ](t, 0)GM1

[λ](0, s)

−GP [λ](t, 0)
∂

∂t
GM1 [λ](1, s), ∀ (t, s) ∈ I × I.

Next example shows that, in general, Green’s functions of Periodic and Mixed 1 problems are not
comparable.

Example 3.1. We consider the differential equation u′′(t) −m2 u(t) = 0, t ∈ I and m ∈ (0,∞). In
this case, a(t) = −m2, t ∈ I, λ = 0 and m ∈ (0,∞).

Green’s functions GP and GM1 are comparable for small values of m. Figure 3.1 represents
Green’s functions GP and GM1

for m = 1 (in which case GP < GM1
) and for m = 2 (which are not

comparable).

Figure 3.1: The blue graph corresponds to function GM1
and the orange graph represents the function

GP on I × I. The figure on the left is the case m = 1 and the figure on the right is the case m = 2.

Analogously, we study the relationship between Green’s functions of Periodic and Mixed 2 prob-
lems.
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Theorem 3.17. Assume that L[λ] is nonresonant in XP and XM2 , then

GM2 [λ](t, s) = GP [λ](t, s)− r3[λ](t)GM2 [λ](1, s) + r4[λ](t)
∂

∂t
GM2 [λ](0, s)

= GP [λ](t, s) +
∂

∂s
GP [λ](t, 0)GM2 [λ](1, s)

+GP [λ](t, 0)
∂

∂t
GM2

[λ](0, s), ∀ (t, s) ∈ I × I.

The above equation is analogous to the equation relating Periodic to Mixed 1 problems. So, in
general, Green’s functions of the Periodic and Mixed 2 problems will not be comparable either.
Example 3.2. In this example, we use the same equation as in Example 3.1.

Green’s functions GP and GM2
are comparable for small values of m. Figure 3.2 represents

Green’s functions GP and GM2
for m = 1 (in which case GP < GM2

) and for m = 3 (which are not
comparable).

Figure 3.2: The blue graph corresponds to the function GM2
and the orange graph represents the

function GP on I × I. The figure on the left is the case m = 1 and the figure on the right is the case
m = 3.

Finally, for the reverse process, we can obtain additional relations for Green’s function of the
Periodic and the ones related to Mixed problems.
Theorem 3.18. If the operator L[λ] is nonresonant both in XP and XM2

, then

GP [λ](t, s) = GM2
[λ](t, s) + r7[λ](t)GP [λ](1, s) + r8[λ](t)

∂

∂t
GP [λ](0, s)

= GM2
[λ](t, s)− ∂

∂s
GM2

[λ](t, 0)GP [λ](1, s)−GM2
[λ](t, 1)

∂

∂t
GP [λ](0, s), t, s ∈ I.

Theorem 3.19. If the operator L[λ] is nonresonant both in XP and XM1 , then

GP [λ](t, s) = GM1
[λ](t, s) + r9[λ](t)

∂

∂t
GP [λ](1, s) + r10[λ](t)GP [λ](0, s)

= GM1 [λ](t, s) +GM1 [λ](t, 0)
∂

∂t
GP [λ](1, s)−

∂

∂s
GM1 [λ](t, 1)GP [λ](0, s), (t, s) ∈ I × I.

4 Alternative decomposition of Green’s functions
This section is devoted to the derivation of additional relationships between the expressions of Green’s
functions related to different boundary value conditions studied in the previous section. The main
difference consists in the fact that in this case, instead of Lemma 2.1 as in the previous section, we
use Theorem 2.1.

It is important to point out that in this situation, as an application of equality (2.3), we are able
to express any considered Green’s function explicitly from any other one.

The obtained expressions will be different to the ones deduced in the previous section.
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4.1 Dirichlet and Mixed problems
We start this subsection by expressing Green’s function of Mixed 2 problem in terms of Green’s
function of Dirichlet problem.

Theorem 4.1. If the operator L[λ] is nonresonant in XD and r′2[λ](1) ̸= 0, then the following equality
holds:

GM2
[λ](t, s) = GD[λ](t, s)− r2[λ](t)

r′2[λ](1)

∂

∂t
GD[λ](1, s)

= GD[λ](t, s)−
∂
∂s GDλ](t, 1)
∂2

∂s∂t GD[λ](1, 1)

∂

∂t
GD[λ](1, s), ∀ (t, s) ∈ I × I. (4.1)

Proof. We write Mixed 2 problem based on the Dirichlet problem as follows:

L[λ]u(t) = σ(t), a.e. t ∈ I, u(0) = 0, u(1) = u(1) + u′(1). (4.2)

Using the notation of Theorem 2.1, we have that in this case C1(u) = 0, C2(u) = u(1) + u′(1) and
δ1 = δ2 = 1. Moreover, ω1(t) = r1[λ](t), ω2(t) = r2[λ](t) and the matrix A1

D in this case is

A1
D =

(
0 0

r′1[λ](1) 1 + r′2[λ](1)

)
and |I −A1

D[λ]| = −r′2[λ](1) ̸= 0. So,

b1D = (I −A1
D[λ])−1 =

 1 0

−r
′
1[λ](1)

r′2[λ](1)
− 1

r′2[λ](1)

 .

In consequence, as a direct application of equality (2.3), we obtain the result.

Corollary 4.1. For all λ < λM2
0 , we infer that r′2[λ](1) > 0.

Proof. From Corollary 3.3, we have GM2
[λ] < GD[λ] < 0 for all λ < λM2

0 and, as a direct consequence,
∂
∂t GD[λ](1, s) > 0. Lemma 3.4 says us that r2[λ] > 0 on (0, 1] for all λ < λD0 . Since (see λM2

0 < λD0 [7,
p. 108]), we deduce from equality (4.1) that r′2[λ](1) > 0.

Similarly, we study Mixed 1 problem as a function of the Dirichlet one.

Theorem 4.2. If the operator L[λ] is nonresonant in XD and r′1[λ](0) ̸= 0, then the following equality
holds:

GM1
[λ](t, s) = GD[λ](t, s)− r1[λ](t)

r′1[λ](0)

∂

∂t
GD[λ](0, s)

= GD[λ](t, s)−
∂
∂s GDλ](t, 0)
∂2

∂s∂t GD[λ](0, 0)

∂

∂t
GD[λ](0, s), ∀ (t, s) ∈ I × I.

Proof. Let us rewrite Mixed 1 problem in the following way:

L[λ]u(t) = σ(t), a.e. t ∈ I, u(0) = u(0) + u′(0), u(1) = 0. (4.3)

In this case, we have that C1(u) = u(0)+u′(0), C2(u) = 0 and δ1 = δ2 = 1. Moreover, ω1(t) = r1[λ](t),
ω2(t) = r2[λ](t) and the matrix A2

D[λ] is

A2
D[λ] =

(
1 + r′1[λ](0) r′2[λ](0)

0 0

)
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and |I −A2
D[λ]| = −r′1[λ](0) ̸= 0. So,

b2D = (I −A2
D[λ])−1 =

− 1

r′1[λ](0)
−r

′
2[λ](0)

r′1[λ](0)

0 1

 .

Therefore, using (2.3), we deduce the equality.

Corollary 4.2. For all λ < λM1
0 , we infer that r′1[λ](0) < 0.

Proof. From Lemma 3.2, we know that r1[λ] > 0 on [0, 1) for all λ < λD0 . Corollary 3.2 ensures that
GM1

[λ] < GD[λ] for all λ < λM1
0 . Since λM1

0 < λD0 (see [7, p. 108]), we arrive at the result.

Remark 4.1. In problem (4.2), we can perform the calculations in a simpler way by taking C1(u) =
u(0) + u′(0), C2(u) = 0, δ1 = 1 and δ2 = 0. The same can be done with problem (4.3) by taking
C1(u) = C2(u) = u(1) + u′(1), δ1 = 0 and δ2 = 1.

We now carryout the process backwards by writing the Dirichlet problem based on the Mixed ones.
We arrive at the following results.

Theorem 4.3. If the operator L[λ] is nonresonant in XM2 and r8[λ](1) ̸= 0, then

GD[λ](t, s) = GM2 [λ](t, s)−
r8[λ](t)

r8[λ](1)
GM2 [λ](1, s)

= GM2
[λ](t, s)− GM2

[λ](t, 1)

GM2 [λ](1, 1)
GM2

[λ](1, s), ∀ (t, s) ∈ I × I.

Theorem 4.4. If the operator L[λ] is nonresonant in XM1
and r9[λ](0) ̸= 0, then

GD[λ](t, s) = GM1 [λ](t, s)−
r9[λ](t)

r9[λ](0)
GM1 [λ](0, s)

= GM1
[λ](t, s)− GM1

[λ](t, 0)

GM1
[λ](0, 0)

GM1
[λ](0, s), ∀ (t, s) ∈ I × I.

4.2 Neumann and Dirichlet problems
In this case, we study the relationships between Green’s function of the Neumann and Dirichlet
problems. Reasoning as in the previous subsection, we have the next result.

Theorem 4.5. If the operator L[λ] is nonresonant in XD and

|I −A3
D[λ]| := r′1[λ](0) r

′
2[λ](1)− r′2[λ](0) r

′
1[λ](1) ̸= 0,

then

GN [λ](t, s) = GD[λ](t, s)− r′2[λ](1)

|I −A3
D[λ]|

r1[λ](t)
∂

∂t
GD[λ](0, s) +

r′1[λ](1)

|I −A3
D[λ]|

r2[λ](t)
∂

∂t
GD[λ](0, s)

+
r′2[λ](0)

|I −A3
D[λ]|

r1[λ](t)
∂

∂t
GD[λ](1, s)− r′1[λ](0)

|I −A3
D[λ]|

r2[λ](t)
∂

∂t
GD[λ](1, s)

= GD[λ](t, s) +
1

|I −A3
D[λ]|

∂2

∂s∂t
GD[λ](1, 1)

∂

∂s
GD[λ](t, 0)

∂

∂t
GD[λ](0, s)

− 1

|I −A3
D[λ]|

∂2

∂s∂t
GD[λ](1, 0)

∂

∂s
GD[λ](t, 1)

∂

∂t
GD[λ](0, s)

− 1

|I −A3
D[λ]|

∂2

∂s∂t
GD[λ](0, 1)

∂

∂s
GD[λ](t, 0)

∂

∂t
GD[λ](1, s)

+
1

|I −A3
D[λ]|

∂2

∂s∂t
GD[λ](0, 0)

∂

∂s
GD[λ](t, 1)

∂

∂t
GD[λ](1, s), ∀ (t, s) ∈ I × I.
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We now reverse the process by studying the Dirichlet problem as a function of the Neumann one
and apply analogous calculations.

Theorem 4.6. Assume that L[λ] is nonresonant in XN and

|I −A1
N [λ]| := r5[λ](0) r6[λ](1)− r6[λ](0) r5[λ](1) ̸= 0,

then

GD[λ](t, s) = GN [λ](t, s)− 1

|I −A1
N [λ]|

(
r5[λ](t)

(
− r6[λ](1)GN [λ](0, s) + r6[λ](0)GN [λ](1, s)

)
+ r6[λ](t)

(
r5[λ](1)GN [λ](0, s)− r5[λ](0)GN [λ](1, s)

))
= GN [λ](t, s)− 1

|I−A1
N [λ]|

(
GN [λ](t, 0)

(
GN [λ](1,1)GN [λ](0,s)−GN [λ](0, 1)GN [λ](1,s)

)
−GN [λ](t, 1)

(
GN [λ](1, 0)GN [λ](0, s)−GN [λ](0, 0)GN [λ](1, s)

))
, ∀ (t, s)∈I×I.

4.3 Periodic and Dirichlet problems
In this section, we give a relationship between GP [λ] and GD[λ] following the same steps as in the
previous sections.

Theorem 4.7. Assume that L[λ] is nonresonant in XD and

|I −A4
D[λ]| := 2r′1[λ](1) + r′2[λ](1)− r′1[λ](0) ≠ 0,

then

GP [λ](t, s) = GD[λ](t, s) +
(r1[λ](t) + r2[λ](t))

|I −A4
D[λ]|

( ∂
∂t
GD[λ](0, s)− ∂

∂t
GD[λ](1, s)

)
= GD[λ](t, s) +

( ∂
∂s GD[λ](t, 1)− ∂

∂s GD[λ](t, 0))

|I −A4
D[λ]|

( ∂
∂t
GD[λ](0, s)− ∂

∂t
GD[λ](1, s)

)
,

∀ (t, s) ∈ I × I.

Remark 4.2. Notice that from (3.1), using the last equality, we have

GP [λ](1, s) =
1

|I −A4
D[λ]|

[ ∂
∂t
GD[λ](0, s)− ∂

∂t
GD[λ](1, s)

]
.

Finally, carrying out the process backwards by studying the Dirichlet problem as a function of the
Periodic one, we obtain the next theorem.

Theorem 4.8. If the operator L[λ] is nonresonant in XP and r4[λ](1) ̸= 0, then

GD[λ](t, s) = GP [λ](t, s)−
r4[λ](t)

r4[λ](1)
GP [λ](1, s)

= GP [λ](t, s)−
GP [λ](t, 0)

GP [λ](1, 0)
GP [λ](1, s), ∀ (t, s) ∈ I × I.

Remark 4.3. From Theorem 4.8, we deduce Theorem 3.2:

GP [λ](t, s) < GD[λ](t, s) < 0, ∀ (t, s) ∈ (0, 1)× (0, 1), ∀λ < λP0 .
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4.4 Neumann and Mixed problems
We operate in the same way as before to study the relationship between Green’s functions of Neumann
and Mixed problems 1 and 2.

Theorem 4.9. Assume that L[λ] is nonresonant in XN and r5[λ](0) ̸= 0, then

GM2
[λ](t, s) = GN [λ](t, s)− r5[λ](t)

r5[λ](0)
GN [λ](0, s)

= GN [λ](t, s)− GN [λ](t, 0)

GN [λ](0, 0)
GN [λ](0, s), ∀ (t, s) ∈ I × I.

Using the previous expression, we have another proof of Corollary 3.4. Indeed, we know that
GN [λ] < 0 for all λ < λN0 and r5[λ](t) = GN [λ](t, 0) < 0, using the above equality, we deduce for all
λ < λN0 that

GN [λ](t, s) < GM2 [λ](t, s) for all (t, s) ∈ I × I.

Remark 4.4. As a consequence of the last equality, we give a proof of Corollary 3.5. Taking into
account that GN [λ] < 0 for all λ < λN0 and r6[λ](t) > 0, t ∈ I, it follows that for all λ < λN0 ,

GN [λ](t, s) < GM1 [λ](t, s) < 0 for all (t, s) ∈ [0, 1)× [0, 1).

Performing the calculations analogously for the Mixed 1 problem as a function of Neumann prob-
lem, we have the relationship between Green’s functions given in the next theorem.

Theorem 4.10. Assume that L[λ] is nonresonant in XN and r6[λ](1) ̸= 0, then

GM1
[λ](t, s) = GN [λ](t, s)− r6[λ](t)

r6[λ](1)
GN [λ](1, s)

= GN [λ](t, s)− GN [λ](t, 1)

GN [λ](1, 1)
GN [λ](1, s), ∀ (t, s) ∈ I × I.

We now carry out the process backwards by writing the Neumann problem based on the Mixed
problems.

Performing the calculations in a similar way, we arrive at the next theorems.

Theorem 4.11. Assume that L[λ] is nonresonant in XM1 and r′10[λ](1) ̸= 0, then

GN [λ](t, s) = GM1
[λ](t, s)− r10[λ](t)

r′10[λ](1)

∂

∂t
GM1

[λ](1, s)

= GM1
[λ](t, s)−

∂
∂s GM1

[λ](t, 1)
∂2

∂s∂t GM1 [λ](1, 1)

∂

∂t
GM1

[λ](1, s), ∀ (t, s) ∈ I × I.

Theorem 4.12. Assume that L[λ] is nonresonant in XM2 and r7[λ](0) ̸= 0, then

GN [λ](t, s) = GM2
[λ](t, s)− r7[λ](t)

r′7[λ](0)

∂

∂t
GM2

[λ](0, s)

= GM2
[λ](t, s)−

∂
∂s GM2

[λ](t, 0)
∂2

∂s∂t GM2
[λ](0, 0)

∂

∂t
GM2

[λ](0, s), ∀ (t, s) ∈ I × I.

4.5 Periodic and Neumann problems
In this section, we look for a relationship between Green’s functions GP [λ] and GN [λ] following the
same steps as in the previous sections.
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Theorem 4.13. Assume that L[λ] is nonresonant in XP and r′3[λ](1) ̸= 0, then

GN [λ](t, s) = GP [λ](t, s)−
r3[λ](t)

r′3[λ](1)

∂

∂t
GP [λ](1, s)

= GP [λ](t, s)−
∂
∂s GP [λ](t, 0)
∂2

∂s∂t GP [λ](1, 0)

∂

∂t
GP [λ](1, s), ∀ (t, s) ∈ I × I.

Finally carrying out the reverse process by studying the Periodic problem as a function of the
Neumann one, we deduce the following result.

Theorem 4.14. If the operator L[λ] is nonresonant in XN and

|I −A2
N [λ]| := r5[λ](1)− r5[λ](0) + r6[λ](1)− r6[λ](0) ̸= 0,

then the following equality is fulfilled:

GP [λ](t, s) = GN [λ](t, s) +
1

|I −A2
N [λ]|

(
r5[λ](t) + r6[λ](t)

)(
GN [λ](0, s)−GN [λ](1, s)

)
= GN [λ](t, s) +

1

|I −A2
N [λ]|

(
GN [λ](t, 0)−GN [λ](t, 1)

)(
GN [λ](0, s)−GN [λ](1, s)

)
,

∀ (t, s) ∈ I × I.

4.6 Periodic and Mixed problems
The same arguments of the previous subsections are applicable to the Periodic and Mixed problems.

Theorem 4.15. If the operator L[λ] is nonresonant in XP and

|I −A2
P [λ]| :=

(
1− r3[λ](0)

)(
1 + r′4[λ](1)

)
+ r4[λ](0) r

′
3[λ](1) ̸= 0,

then the following equality is fulfilled:

GM1
[λ](t, s) = GP [λ](t, s) +

r3[λ](t)

|I −A2
P [λ]|

((
1 + r′4[λ](1)

)
GP [λ](0, s)− r4[λ](0)

∂

∂t
GP [λ](1, s)

)
− r4[λ](t)

|I −A2
P [λ]|

(
r′3[λ](1)GP [λ](0, s) +

(
1− r3[λ](0)

) ∂
∂t
GP [λ](1, s)

)
= GP [λ](t, s)−

1

|I −A2
P [λ]|

(
1 +

∂

∂t
GP [λ](1, 0)

) ∂

∂s
GP [λ](t, 0)GP [λ](0, s)

+
GP [λ](0, 0)

|I −A2
P [λ]|

∂

∂s
GP [λ](t, 0)

∂

∂t
GP [λ](1, s)

+
1

|I −A2
P [λ]|

∂2

∂s∂t
GP (1, 0)GP [λ](t, 0)GP [λ](0, s)

− 1

|I −A2
P [λ]|

(
1 +

∂

∂s
GP [λ](0, 0)

)
GP [λ](t, 0)

∂

∂t
GP [λ](1, s), ∀ (t, s) ∈ I × I.

Similarly, we study Mixed 2 problem as a function of the Periodic problem.

Theorem 4.16. If the operator L[λ] is nonresonant in XP and

|I −A3
P [λ]| =

(
1 + r3[λ](1)

)(
1− r′4[λ](0)

)
+ r′3[λ](0) r4[λ](1) ̸= 0,
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then the following equality is fulfilled:

GM2
[λ](t, s) = GP [λ](t, s)−

r3[λ](t)

|I −A3
P [λ]|

((
1− r′4[λ](0)

)
GP [λ](1, s) + r4[λ](1)

∂

∂t
GP [λ](0, s)

)
− r4[λ](t)

|I −A3
P [λ]|

(
r′3[λ](0)GP [λ](1, s)−

(
1 + r3[λ](1)

) ∂
∂t
GP [λ](0, s)

)
= GP [λ](t, s) +

1

|I −A3
P [λ]|

(
1− ∂

∂t
GP [λ](0, 0)

) ∂

∂s
GP [λ](t, 0)GP [λ](1, s)

+
GP [λ](1, 0)

|I −A3
P [λ]|

∂

∂s
GP [λ](t, 0)

∂

∂t
GP [λ](0, s)

+
1

|I −A3
P [λ]|

∂2

∂s∂t
GP [λ](0, 0)GP [λ](t, 0)GP [λ](1, s)

+
1

|I −A3
P [λ]|

(
1− ∂

∂s
GP [λ](1, 0)

)
GP [λ](t, 0)

∂

∂t
GP [λ](0, s), ∀ (t, s) ∈ I × I.

Now we do the process backwards by writing the Periodic problem based on the Mixed problems.
Performing the calculations analogously to the previous subsections, we deduce the next theorems.

Theorem 4.17. Assume that L[λ] is nonresonant in XM2 and

|I −AM2 | :=
(
1− r7[λ](1)

)(
1− r′8(0)

)
− r8[λ](1) r

′
7[λ](0) ̸= 0,

then

GP [λ](t, s) = GM2
[λ](t, s) +

1

|I −AM2
|

((
1− r′8[λ](0)

)
r7[λ](t)GM2

[λ](1, s)

+ r8[λ](1) r7[λ](t)
∂

∂t
GM2

[λ](0, s) + r′7[λ](0) r8[λ](t)GM2
(1, s)

+
(
1− r7[λ](1)

)
r8[λ](t)

∂

∂t
GM2

[λ](0, s)
)

= GM2
[λ](t, s) +

1

|I −AM2
|

(
−
(
1 +

∂

∂t
GM2

[λ](0, 1)
) ∂

∂s
GM2

[λ](t, 0)GM2
[λ](1, s)

+GM2
[λ](1, 1)

∂

∂s
GM2

[λ](t, 0)
∂

∂t
GM2

[λ](0, s)

+
∂2

∂s∂t
GM2 [λ](0, 0)GM2 [λ](t, 1)GM2(1, s)

−
(
1 +

∂

∂s
GM2

[λ](1, 0)
)
GM2

[λ](t, 1)
∂

∂t
GM2

[λ](0, s)
)
, ∀ (t, s) ∈ I × I.

Theorem 4.18. Assume that L[λ] is nonresonant in XM1
and

|I −AM1
[λ]| :=

(
1− r′9[λ](1)

)(
1− r10[λ](0)

)
− r9[λ](0) r

′
10[λ](1) ̸= 0,

then

GP [λ](t, s) = GM1
[λ](t, s) +

r9[λ](t)

|I −AM1
[λ]|

((
1− r10[λ](0)

) ∂
∂t
GM1

[λ](1, s) + r′10[λ](1)GM1
[λ](0, s)

)
+

r10[λ](t)

|I −AM1
[λ]|

(
r9[λ](0)

∂

∂t
GM1 [λ](1, s) +

(
1− r′9[λ](1)

)
GM1 [λ](0, s)

)
= GM1

[λ](t, s) +
1

|I −AM1
[λ]|

(
1 +

∂

∂s
GM1

[λ](0, 1)
)
GM1

[λ](t, 0)
∂

∂t
GM1

[λ](1, s)

− 1

|I −AM1
[λ]|

∂2

∂s∂t
GM1

[λ](1, 1)GM1
[λ](t, 0)GM1

[λ](0, s)
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− GM1
[λ](0, 0)

|I −AM1 [λ]|
∂

∂s
GM1

[λ](t, 1)
∂

∂t
GM1

[λ](1, s)

− 1

|I −AM1 [λ]|

(
1− ∂

∂t
GM1

[λ](1, 0)
) ∂

∂s
GM1

[λ](t, 1)GM1
[λ](0, s), ∀ (t, s) ∈ I × I.

5 Nonlinear problem
In this section, we study the existence of solutions of the nonlinear problem{

Ln u(t) = f(t, u(t)), a.e. t ∈ I,

Bi(u) = δi Ci(u), i = 1, . . . , n,
(5.1)

with
Lnu(t) := u(n)(t) + a1(t)u

(n−1)(t) + · · ·+ an(t)u(t)

the general n-th order linear operator.
The existence results will be deduced by applying Schaefer’s fixed point theorem of integral ope-

rators defined in the Banach spaces.
We also consider the homogeneous particular problem{

Ln u(t) = f(t, u(t)), a.e. t ∈ I,

Bi(u) = 0, i = 1, . . . , n.
(5.2)

We assume that the nonlinear part of problem (5.1) satisfies the following regularity conditions:

(H1) For n ≥ 2, the function f : I × R → R is a L1-Carathéodory function, that is,

- f( · , x) is measurable for all x ∈ R.

- f(t, · ) is continuous for a.e. t ∈ I.

- For every R > 0, there exists ϕR ∈ L1(R) such that

|f(t, x)| ≤ ϕR(t),

for all x ∈ [−R,R] and a.e. t ∈ I.

For n = 1, the function f : I × R → R is L∞-Carathéodory function, that is,

- f( · , x) is measurable for all x ∈ R.

- f(t, · ) is continuous for a.e. t ∈ I.

- For every r > 0, there exists hr ∈ L∞(R) such that

|f(t, x)| ≤ hr(t),

for all x ∈ [−r, r] and a.e. t ∈ I.

(H2) ∃K ∈ L1(I), K ≥ 0 such that

|f(t, x)− f(t, y)| ≤ K(t) |x− y| for all x, y ∈ R and t ∈ I.

Let us define X ≡ (C(I), ∥ · ∥∞), the real Banach space endowed with the supremum norm

∥u∥∞ = sup
t∈I

|u(t)|, for all u ∈ X.
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We denote by uA and uB the solutions of problems (5.1) and (5.2), respectively. We know that these
solutions are given by the following expressions:

uA(t) =

1∫
0

G(t, s, δ1, . . . , δn) f(s, uA(s)) ds,

uB(t) =

1∫
0

g(t, s) f(s, uB(s)) ds,

where G and g are Green’s functions related to the linear problems obtained from (5.1) and (5.2),
respectively. In particular, for n = 2, these problems are (2.2) and (2.1) and, for n ̸= 2, they
are formulated in an analogous way, with obvious notations. Furthermore, they are linked by the
generalization of formula (2.3) to arbitrary order:

G(t, s, δ1, . . . , δn) := g(t, s) +

n∑
i=1

n∑
j=1

δi bij ωi(t)Cj(g( · , s)), t, s ∈ I.

As we can see, this formula is totally analogous to (2.3), with obvious notations, and for its proof one
can consult in [8].

Let us define

K1 = max
t∈I

1∫
0

|g(t, s)|K(s) ds,

K2
ij = max

t∈I
|ωi(t)|

1∫
0

|Cj(g( · , s))|K(s) ds, ∀ i, j = 1, . . . , n,

K3
ij = max

t∈I
|ωi(t)|

1∫
0

|Cj(g( · , s)) f(s, 0)| ds, ∀ i, j = 1, . . . , n,

P = max
t∈I

1∫
0

|G(t, s, δ1, . . . , δn)|K(s) ds,

Q = max
t∈I

1∫
0

|G(t, s, δ1, . . . , δn) f(s, 0)| ds.

We assume that the following condition is fulfilled:

(H3) K1 < 1.

Theorem 5.1. If conditions (H2) and (H3) hold, then the following inequality is fulfilled:

∥uB − uA∥∞ ≤ 1

1−K1

( n∑
i=1

n∑
j=1

|δi bij |K2
ij ∥uA∥∞ +

n∑
i=1

n∑
j=1

|δi bij |K3
ij

)
. (5.3)

Proof. Using (2.3), we have

uB(t)− uA(t) =

1∫
0

g(t, s) f(s, uB(s)) ds−
1∫

0

G(t, s, δ1, . . . , δn) f(s, uA(s)) ds

=

1∫
0

g(t, s)
(
f(s, uB(s))− f(s, uA(s))

)
ds
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−
n∑

i=1

n∑
j=1

δi bij ωi(t)

1∫
0

Cj(g( · , s))
(
f(s, uA(s))− f(s, 0)

)
ds

−
n∑

i=1

n∑
j=1

δi bij ωi(t)

1∫
0

Cj(g( · , s)) f(s, 0) ds.

Then, for all t ∈ I, from (H2), we infer that

|uB(t)− uA(t)| ≤ ∥uB − uA∥∞

1∫
0

|g(t, s)|K(s) ds

+ ∥uA∥∞
n∑

i=1

n∑
j=1

|δi bij | |ωi(t)|
1∫

0

|Cj(g( · , s))|K(s) ds

+

n∑
i=1

n∑
j=1

|δi bij | |ωi(t)|
1∫

0

|Cj(g( · , s)) f(s, 0)| ds.

Therefore,

∥uB − uA∥∞ ≤ K1 ∥uB − uA∥∞ + ∥uA∥∞
n∑

i=1

n∑
j=1

|δi bij |K2
ij +

n∑
i=1

n∑
j=1

|δi bij |K3
ij ,

that is, using (H3),

∥uB − uA∥∞ ≤ 1

1−K1

( n∑
i=1

n∑
j=1

|δi bij |K2
ij ∥uA∥∞ +

n∑
i=1

n∑
j=1

|δi bij |K3
ij

)
.

Corollary 5.1. If conditions (H2) and (H3) hold, then the following inequalities are fulfilled:

∥uB∥∞ ≤

n∑
i=1

n∑
j=1

|δi bij |K2
ij −K1 + 1

1−K1
∥uA∥∞ +

n∑
i=1

n∑
j=1

|δi bij |K3
ij

1−K1
,

∥uB∥∞ ≥
1−K1 −

n∑
i=1

n∑
j=1

|δi bij |K2
ij

1−K1
∥uA∥∞ −

n∑
i=1

n∑
j=1

|δi bij |K3
ij

1−K1
.

Proof. The proof is an immediate consequence of (5.3) and the inequality∣∣∥uB∥∞ − ∥uA∥∞
∣∣ ≤ ∥uB − uA∥∞.

Next we state Scheafer’s fixed-point theorem (see [2]) that will be applied to the operator T : X →
X given by

T u(t) :=

1∫
0

G(t, s, δ1, . . . , δn) f(s, u(s)) ds, t ∈ I, (5.4)

to guarantee the existence of a solution of problem (5.1).

Theorem 5.2 (Schaefer). Let T : X → X be a continuous and compact mapping of a Banach space
X such that the set {

x ∈ X : x = µT x for some 0 ≤ µ ≤ 1
}

is bounded. Then T has a fixed point.
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Now, we use Schaefer’s theorem to ensure the existence of solutions of the nonlinear problem (5.1).

Theorem 5.3. Assume that (H1) and (H2) hold and P < 1. Then problem (5.1) has at least one
solution u ∈ X.

Proof. First, note that the fixed points of the operator T defined in (5.4) coincide with the solutions
of problem (5.1).

Now, we show that the operator T is compact. Since G(t, s, δ1, . . . , δn) is continuous and f is
Carathéodory, we have that the operator T is continuous too.

Next, we prove that T maps the bounded sets into relatively compact sets. Let H ⊂ X be a
bounded set. Since H is bounded, there exists r ∈ R, r > 0 such that ∥u∥∞ ≤ r for all u ∈ H. Then

|T u(t)| ≤
1∫

0

∣∣G(t, s, δ1, . . . , δn)∣∣ ∣∣f(s, u(s))− f(s, 0)
∣∣ ds+ 1∫

0

∣∣G(t, s, δ1, . . . , δn)∣∣ |f(s, 0)| ds
≤ ∥u∥∞

1∫
0

∣∣G(t, s, δ1, . . . , δn)∣∣K(s) ds+

1∫
0

∣∣G(t, s, δ1, . . . , δn)∣∣ |f(s, 0)| ds.
So, for all u ∈ H, we have

∥T u∥∞ ≤ r P +Q, (5.5)

that is, T (H) is bounded.
Let us show now the equicontinuity of T . For all t ∈ I and u ∈ H, we have

|(T u)′(t)| =
∣∣∣∣

1∫
0

∂

∂t
G(t, s, δ1, . . . , δn) f(s, u(s)) ds

∣∣∣∣ ≤
1∫

0

∣∣∣ ∂
∂t
G(t, s, δ1, . . . , δn)

∣∣∣ |f(s, u(s))| ds
≤

1∫
0

∣∣∣ ∂
∂t
G(t, s, δ1, . . . , δn)

∣∣∣ϕr(s) ds.
If n ≥ 2, then the regularity of Green’s function G(t, s, δ1, . . . , δn) allows us to guarantee that there
exists M ∈ R, M > 0 such that | ∂∂t G(t, s, δ1, . . . , δn)| ≤M . Therefore,

1∫
0

∣∣∣ ∂
∂t
G(t, s, δ1, . . . , δn)

∣∣∣ϕr(s) ds ≤M

1∫
0

ϕr(s) ds.

So, for all t1, t2 ∈ I, t1 < t2, we infer that

∣∣(T u)(t2)− (T u)(t1)
∣∣ = ∣∣∣∣

t2∫
t1

(T u)′(s) ds

∣∣∣∣ ≤
t2∫

t1

|(T u)′(s)|ds ≤ N(t2 − t1).

If n = 1, then the regularity of Green’s function G(t, s, δ1) allows us to ensure that there exists
Ñ ∈ R, Ñ > 0 such that

1∫
0

|G(t, s, δ1)|ϕr(s) ds ≤ Ñ .

Therefore,
1∫

0

∣∣∣ ∂
∂t
G(t, s, δ1)

∣∣∣ϕr(s) ds = 1∫
0

|a1(t)| |G(t, s, δ1)|ϕr(s) ds ≤ Ñ |a1(t)|.
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Then, for all t1, t2 ∈ I, t1 < t2, we have

∣∣(T u)(t2)− (T u)(t1)
∣∣ = ∣∣∣∣

t2∫
t1

(T u)′(s) ds

∣∣∣∣ ≤
t2∫

t1

|(T u)′(s)| ds ≤ Ñ

t2∫
t1

|a1(s)| ds.

Thus, T (H) is an equicontinuous set in X. By the Arzelà-Ascoli Theorem, we deduce that T (H)
is relatively compact, that is, T is a compact operator.

Let u ∈ X be such that u = µT u for some 0 ≤ µ ≤ 1. Then, using (5.5), we have

∥u∥∞ = µ∥T u∥∞ ≤ ∥T u∥∞ ≤ ∥u∥∞ P +Q.

Thus
∥u∥∞ ≤ Q

1− P
.

Therefore, applying Schaefer’s Theorem, we conclude that problem (5.1) has at least one solution
u ∈ X.

Remark 5.1. We note that by the definition of X, (T u) is not necessarily derivable. However, (T u)′
always exists because of the regularity of Green’s function.

Next, we apply the above results to the particular case of the nonlinear second order Dirichlet
problem.

Suppose there exists uD, a solution of the nonlinear Dirichlet problem

L[λ]u(t) = f(t, u(t)), a.e. t ∈ I, u(0) = u(1) = 0, (5.6)

and uP , a solution of the nonlinear Periodic problem

L[λ]u(t) = f(t, u(t)), a.e. t ∈ I, u(0)− u(1) = u′(0)− u′(1) = 0.

By the definition of Green’s functions, we have

uD(t) =

1∫
0

GD[λ](t, s) f(s, uD(s)) ds

and

uP (t) =

1∫
0

GP [λ](t, s) f(s, uP (s)) ds.

We know from Theorem 4.8 that

GD[λ](t, s) = GP [λ](t, s)−
GP [λ](t, 0)

GP [λ](1, 0)
GP [λ](1, s), ∀ (t, s) ∈ I × I.

Let us define

K1 = max
t∈I

1∫
0

|GP [λ](t, s)|K(s) ds,

K2 = max
t∈I

∣∣∣GP [λ](t, 0)

GP [λ](1, 0)

∣∣∣ 1∫
0

|GP [λ](1, s))|K(s) ds,

K3 = max
t∈I

∣∣∣GP [λ](t, 0)

GP [λ](1, 0)

∣∣∣ 1∫
0

∣∣GP [λ](1, s) f(s, 0)
∣∣ ds,
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PD = max
t∈I

1∫
0

|GD[λ](t, s)|K(s) ds,

QD = max
t∈I

1∫
0

∣∣GD[λ](t, s) f(s, 0)
∣∣ ds.

As a direct consequence of Theorem 5.1 and Corollary 5.1 we arrive at the follow results.

Theorem 5.4. Suppose that (H2) holds and K1 < 1, then the following inequality is fulfilled:

∥uD − uP ∥∞ ≤ 1

1−K1

(
K2 ∥uD∥∞ +K3

)
. (5.7)

Corollary 5.2. Assume that (H2) holds and K1 < 1. Then the following inequalities are fulfilled:

∥uP ∥∞ ≤ K2 −K1 + 1

1−K1
∥uD∥∞ +

K3

1−K1
,

∥uP ∥∞ ≥ 1−K1 −K2

1−K1
∥uD∥∞ − K3

1−K1
.

Theorem 5.5. Assume that (H1) and (H2) hold and PD < 1. Then the Dirichlet problem (5.6) has
at least one solution.

Remark 5.2. The same previous arguments can be applied to the rest of the problems discussed in
this article using the formulas that relate Green’s functions obtained in the previous section.

In the sequel, we present an example to illustrate our results.

Example 5.1. Consider the following equation:

u′′(t)− u(t) =
c√
t
e−u2(t), a.e. t ∈ I, and c > 0.

In this case, f(t, u) = c√
t
e−u2 is an L1-Carathéodory function and f(t, 0) = c√

t
̸= 0 for all

t ∈ (0, 1]. Moreover, it is immediately obvious that f satisfies condition (H2) with K(t) = c
√

2
e t for

a.e. t ∈ [0, 1].
We have that Green’s function of the periodic problem is given by

GP (t, s) =


es−t+1 + et−s

2(1− e)
, 0 ≤ s ≤ t ≤ 1,

et−s+1 + es−t

2(1− e)
, 0 ≤ t < s ≤ 1,

and that of the Dirichlet problem is

GD(t, s) =


− (e2s − 1)(e2 − e2t)e−(s+t)

2(e2 − 1)
, 0 ≤ s ≤ t ≤ 1,

(e2(s−1) − 1)(e2t − 1)e−(s+t−2)

2(e2 − 1)
, 0 ≤ t < s ≤ 1.

With the notation used in Theorem 5.4 and by a numerical approach, it can be seen that

K1 = max
t∈I

1∫
0

|GP (t, s)|K(s) ds ≈ 1.7472 c,
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K2 = max
t∈I

∣∣∣GP (t, 0)

GP (1, 0)

∣∣∣ 1∫
0

|GP (1, s))|K(s) ds ≈ 1.744 c,

K3 = max
t∈I

∣∣∣∣GP (t, 0)

GP (1, 0)

1∫
0

GP [λ](1, s) f(s, 0) ds

∣∣∣∣ ≈ 2.033 c,

PP = max
t∈I

1∫
0

|GP (t, s)|K(s) ds ≈ 1.7472 c,

QP = max
t∈I

1∫
0

∣∣GD(t, s) f(s, 0)
∣∣ ds ≈ 2.0369 c,

PD = max
t∈I

1∫
0

|GD(t, s)|K(s) ds ≈ 0.1651 c,

QD = max
t∈I

1∫
0

∣∣GD(t, s) f(s, 0)
∣∣ ds ≈ 0.179 c.

Then the conditions K1 < 1 and PD < 1 are fulfilled if and only if

0 < c < min
{ 1

0.1651
,

1

1.7472

}
≈ 0.572344.

Therefore, if 0 < c < 0.572344, then, by Theorem 5.5, there is at least one solution uD of the Dirichlet
problem

u′′(t)− u(t) =
c√
t
e−u2(t), a.e. t ∈ I, u(0) = u(1) = 0.

By the proof of Theorem 5.3, we have

∥uP ∥∞ ≤ QP

1− PP
≈ 2.0369 c

1− 1.7472 c

and
∥uD∥∞ ≤ QD

1− PD
≈ 0.179 c

1− 0.1651 c
.

As a consequence, we deduce that

∥uP − uD∥∞ ≤ ∥uP ∥∞ + ∥uD∥∞

≤ 2.0369 c

1− 1.7472 c
+

0.179 c

1− 0.1651 c
=

c (7.68176− 2.25 c)

c2 − 6.62928 c+ 3.46665
:= γ(c). (5.8)

On the other hand, if 0 < c < 0.572344, applying inequality (5.7), we obtain the following estimate of
the distance between the solutions:

∥uP − uD∥∞ ≤ 1

1−K1

(
K2 ∥uD∥∞ +K3

)
≤ 1

1−K1

(
K2

0.179 c

1− 0.1651 c
+K3

)
≈ 1

1− 1.7472 c

(
1.744 c

0.179 c

1− 0.1651 c
+ 2.033 c

)
=
c (7.0477− 0.0813703 c)

c2 − 6.62928 c+ 3.46665
:= ψ(c). (5.9)

Comparing (5.8) and (5.9) (see Figure 5.1), we have that estimate (5.9) is better than (5.8) for
0 < c < 0.2878 and worse for 0.2878 < c < 0.572344.
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Figure 5.1: Representation of the function ψ − γ on the interval (0, 0.572344).
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