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1 Introduction
Fractional calculus has long been an appealing research topic in functional space theory due to its
applicability in the modeling and practical understanding of natural phenomena. Indeed, various
applications in viscoelasticity and electrochemistry have been explored. Noninteger derivatives of
fractional order have been effectively applied to generalize the fundamental laws of nature. For more
details, we recommend [1–3, 10, 12, 15, 21–23, 25–30] and the references therein. Many papers and
monographs have lately been published in which the authors studied a wide range of results for
various forms of fractional differential equations, inclusions with different types of conditions. One
may see the papers [5–9,17,18] and the references therein.

Recently in [20], Khalil et al. gave a novel definition of fractional derivative which is a natural
extension to the standard first derivative. The conformable fractional derivative is natural and satisfies
most of the properties that the classical integral derivative has, such as linearity, product rule, quotient
rule, power rule, chain rule, and it bring us great convenience when it is applied for modeling many
physical problems [4, 11,24].

Very recently, in [13], F. Gao and C. Chi claimed that there are still shortcomings or disadvantages
for the conformable derivative and in order to overcome this difficulty, they proposed an improved
conformable fractional derivative. The benefit of the improved conformable derivative is that its phys-
ical behavior is closer than the conformable fractional derivative of Riemann–Liouville and Caputo.
This improved conformable fractional derivative has a great potential in simulating various physical
problems that typically employ the fractional derivative of Riemann–Liouville and Caputo.

In [16], the authors introduced a new conformable fractional derivative which obeys all the above-
mentioned classical properties. It can be considered as a generalization of the conformable derivatives
introduced by Khalil et al. [20] and Katugampola in [19]. Furthermore, because there are currently
few studies in the literature focusing on the generalized conformable fractional derivative, we have
an opportunity to make a substantial contribution to the field. We think that by researching the
conformable fractional derivative, we may obtain a better grasp of its traits and capabilities, as well
as contribute to the continued advancement of fractional calculus.

In this paper, we study the existence and uniqueness of solutions for the impulsive initial value prob-
lem with nonlinear fractional differential equation involving the improved Caputo-type conformable
fractional derivative with retardation and anticipation:

C
tk
T̃αy(t) = f(t, yt( · )), t ∈ Θ := Θ \ {t1, . . . , tm}, Θ := [κ1, κ2], (1.1)

∆y
∣∣
t=tk

= Φk(y(t
−
k )); k = 1, . . . ,m, (1.2)

y(t) = χ(t), t ∈ [κ1 − r, κ1], r > 0, (1.3)
y(t) = χ̃(t), t ∈ [κ2, κ2 + δ], δ > 0, (1.4)

where 0 < α < 1, and C
tk
T̃α is the improved Caputo-type conformable fractional derivative defined

in [13], f : Θ × PC([−r, δ]) → R and Φk : R → R are the given functions to be specified later,
χ̃ ∈ C([κ2, κ2 + δ],R) and χ ∈ C([κ1 − r, κ1],R) with

χ(κ1) = 0, κ1 = t0 < t1 < · · · < tm < tm+1 = κ2 <∞,

y(t+k ) = lim
ϵ→0+

y(tk + ϵ) and y(t−k ) = lim
ϵ→0−

y(tk + ϵ)

represent the right- and left-hand limits of y(t) at t = tk, ∆y|t=tk = y(t+k ) − y(t−k ). By yt we denote
the element of PC([−r, δ]) defined by

yt(s) = y(t+ s), s ∈ [−r, δ].

Next, we consider the impulsive boundary value problem with implicit nonlinear fractional dif-
ferential equation involving a generalization of the conformable fractional derivative with retardation
and anticipation:

e
tk
Dαy(t) = g(t, yt( · ), etkD

αy(t)), t ∈ Θ := Θ \ {t1, . . . , tm}, Θ := [κ1, κ2], (1.5)
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∆y
∣∣
t=tk

= Ψk(y(t
−
k )); k = 1, . . . ,m, (1.6)

ϑ1y(κ1) + ϑ2y(κ2) = ϑ3, (1.7)
y(t) = χ(t), t ∈ [κ1 − r, κ1], r > 0, (1.8)
y(t) = χ̃(t), t ∈ [κ2, κ2 + δ], δ > 0, (1.9)

where 0 < α < 1, and e
tk
Dα is a new generalized conformable fractional derivative defined in [16],

g : Θ × PC([−r, δ]) × R → R and Ψk : R → R are the given functions to be specified later, χ̃ ∈
C([κ2, κ2 + δ],R) and χ ∈ C([κ1 − r, κ1],R), ϑ1, ϑ2, ϑ3 ∈ R such that ϑ1 + ϑ2 6= 0.

The structure of this paper is as follows. Section 2 presents certain notations and preliminaries
about the improved conformable fractional derivatives used throughout this paper. In Section 3,
we present the existence and uniqueness result for problem (1.1)–(1.4) that is based on the Banach
contraction principle. Section 4 deals with the existence result of problem (1.5)–(1.9) using Schauder’s
fixed point theorem. In the last section, illustrative examples are provided in support of the obtained
results.

2 Preliminaries
First, we give the definitions and the notations that we will use throughout this paper. We denote by
C(Θ,R) the Banach space of all continuous functions from Θ into R with the norm

‖y‖∞ = sup
t∈Θ

{|y(t)|}.

AC(Θ,R) is the space of absolutely continuous functions on Θ. Consider the Banach space

PC(Θ,R) =
{
y : Θ → R : y ∈ C((tk, tk+1],R); k = 0, . . . ,m, and there exist

y(t−k ) and y(t+k ); k = 1, . . . ,m, with y(t−k ) = y(tk)
}
,

with the norm
‖y‖PC = sup

t∈Θ
|y(t)|.

Consider the Banach space

PC([−r, δ]) =
{
y : [−r, δ] → R : τ → y(τ) ∈ C((τk, τk+1],R); k = 0, . . . ,m,

and there exist y(τ−k ) and y(τ+k ); k = 1, . . . ,m,

with y(τ−k ) = y(τk) and τk = tk − t for each t ∈ (tk, tk+1]
}

with the norm
‖y‖[−r,δ] = sup

t∈[−r,δ]

|y(t)|.

Also, define the following space:

C =
{
y : [κ1 − r, κ2 + δ] 7→ R : y |[κ1−r,κ1]∈ C([κ1 − r, κ1]),

y
∣∣
[κ1,κ2]

∈ PC(Θ,R) and y
∣∣
[κ2,κ2+δ]

∈ C([κ2, κ2 + δ])
}

with the norm
‖y‖C = sup

{
|y(t)| : κ1 − r ≤ t ≤ κ2 + δ

}
.

Consider the space Xp
b (κ1, κ2) (b ∈ R, 1 ≤ p ≤ ∞) of those real-valued Lebesgue measurable functions

f on [κ1, κ2] for which ‖f‖Xp
b
<∞, where the norm is defined by

‖f‖Xp
b
=

( κ2∫
κ1

|tbf(t)|p dt
t

) 1
p

(1 ≤ p <∞, b ∈ R).
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Definition 2.1 (The conformable fractional derivative [20]). Let f : [0,+∞) → R be a given function,
then the conformable fractional derivative of f of order α is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for t > 0 and α ∈ (0, 1]. If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

Ta(f)(t) exists, then
define

Tα(f)(0) = lim
t→0+

Tα(f)(t).

If the conformable fractional derivative of f of order α exists, then we simply say that f is α-
differentiable. It is easy to see that if f is differentiable, then

Tα(f)(t) = t1−αf ′(t).

Definition 2.2 (Generalized conformable fractional derivative [20]). Let f : [0,+∞) → R be a given
function, then the new generalized conformable fractional derivative of f of order α is defined by

eDα(f)(t) = lim
ε→0

f(t+ εe(α−1)t)− f(t)

ε

for t > 0 and α ∈ (0, 1].

Definition 2.3 (The improved Caputo-type conformable fractional derivative [13]). Let f : R → R
be a given function. The improved Caputo-type conformable fractional derivative of f of order α is
defined by

C
a T̃α(f)(t) = lim

ε→0

[
(1− α)(f(t)− f(a)) + α

f(t+ ε(t− a)1−α)− f(t)

ε

]
,

where −∞ < a < t < +∞, a is a given number and α ∈ [0, 1].

Definition 2.4 (The improved Riemann–Liouville-type conformable fractional derivative [13]). Let f :
R → R be a given function. The improved Riemann–Liouville-type conformable fractional derivative
of f of order α is defined by

RL
a T̃α(f)(t) = lim

ε→0

[
(1− α)f(t) + α

f(t+ ε(t− a)1−α)− f(t)

ε

]
,

where −∞ < a < t < +∞, a is a given number and α ∈ [0, 1].

Lemma 2.1 ( [13]). If α ∈ [0, 1], f and g are two α-differentiable functions at a point t and m,
n are two given numbers, then the improved conformable fractional derivative satisfies the following
properties:

• C
a T̃α(λ) = 0 for any constant λ;

• C
a T̃α(mf + ng) = mC

a T̃α(f) + nCa T̃α(g);

• RL
a T̃α(mf + ng) = mRL

a T̃α(f) + nRL
a T̃α(g);

• RL
a T̃α(fg) = (1− α)RL

a T̃α(f)g + fRL
a T̃α(g)− (1− α)fg;

• RL
a T̃α(f(g(t))) = (1− α)f(g(t)) + αf ′(g(t))Tα(g(t)).

In order to proceed with our proofs, we have first to define the following fractional integral.

Definition 2.5 (The α-fractional integral). For α ∈ (0, 1] and a continuous function f , let

(Iα
a+f)(t) =

1

α

t∫
a

f(s)

(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds.

It is worth noting that when α = 1, I1
a+(f) =

t∫
a

f(s) ds coincides with the usual Riemann integral.
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Lemma 2.2. If α ∈ [0, 1], f is an α-differentiable function at a point t, then we have:

• (Iα
a+

C
a T̃α(f))(t) = f(t)− f(a);

• C
a T̃α(Iα

a+f)(t) = f(t).

Proof. Let α ∈ [0, 1]. Then for t > a, we have

(Iα C
a T̃αf)(t) =

1

α

t∫
a

(Ca T̃αf)(s)
(s− a)1−α

e
1−α

α2 [(s−a)α−(t−a)α] ds

=
1

α

t∫
a

(1− α)(f(s)− f(a)) + α(s− a)1−αf ′(s)

(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds

=
1− α

α

t∫
a

f(s)− f(a)

(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds+

t∫
a

f ′(s)e
1−α

α2 [(s−a)α−(t−a)α] ds

=
1− α

α

t∫
a

f(s)− f(a)

(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds+
[
f(s)e

1−α

α2 [(s−a)α−(t−a)α]
]t
a

− 1− α

α

t∫
a

f(s)

(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds

= f(t)− f(a)e
α−1

α2 (t−a)α − f(a)
1− α

α

t∫
a

1

(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds

= f(t)− f(a).

Now, let us consider the following equation:

(1− α)y(t) + α(t− a)1−αy′(t) = f(t). (2.1)

By a variation of the constant method, we can, on the one hand, obtain

y(t) =

t∫
a

f(s)

α(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds. (2.2)

On the other hand, we have

(Iα
a+f)(t) =

1

α

t∫
0

f(s)

(s− a)1−α
e

1−α

α2 [(s−a)α−(t−a)α] ds. (2.3)

From equations (2.1), (2.2) and (2.3), we can deduce that

C
a T̃α(Iα

a+f)(t) = RL
a T̃α(Iα

a+f)(t) = f(t).

Definition 2.6 ([16]). For α ∈ (0, 1] and a continuous function f , let

(J α
a+f)(t) =

t∫
a

f(s)e(1−α)s ds.
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Lemma 2.3 ([16]). If α ∈ [0, 1] and f is a continuous function, then for t > a, we have:

• (J α
a+

e
aDα(f))(t) = f(t)− f(a);

• e
aDα(J α

a+f)(t) = f(t).

Lemma 2.4. Let f : [κ1, κ2] × PC([−r, δ]) → R be a continuous function. Then y ∈ AC([κ1, κ2]) is
a solution of the differential equation

C
κ1
T̃αy(t) = f(t, yt( · )), t ∈ [κ1, κ2], 0 < α < 1, (2.4)

if and only if y satisfies the following equation:

y(t) = y(κ1) +
1

α

t∫
κ1

f(s, ys( · ))
(s− κ1)1−α

e
(1−α)

α2 [(s−κ1)
α−(t−κ1)

α] ds. (2.5)

Proof. To obtain the integral equation (2.5), we apply the α-fractional integral to both sides of (2.4),
and by Lemma 2.2, we get

y(t) = y(κ1) +
1

α

t∫
κ1

f(s, ys( · ))
(s− κ1)1−α

e
(1−α)

α2 [(s−κ1)
α−(t−κ1)

α] ds.

Now, we apply the improved Caputo-type conformable fractional derivative of order α to both sides
of (2.5), for t ∈ Θ and by Lemma 2.1 and Lemma 2.2, we obtain

C
κ1
T̃αy(t) = f(t, yt( · )).

Following the same steps as in the preceding lemma (i.e., by using Lemma 2.3), we can obtain the
following necessary result.

Lemma 2.5. Let g : [κ1, κ2] → R be a continuous function. Then y ∈ AC([κ1, κ2]) is a solution of
the differential equation

e
κ1
Dαy(t) = g(t), t ∈ [κ1, κ2], 0 < α < 1,

if and only if y satisfies the following equation:

y(t) = y(κ1) +

t∫
κ1

g(s)e(1−α)s ds.

3 Existence and uniqueness results for the first problem
Lemma 3.1. Let 0 < α < 1, χ̃ ∈ C([κ2, κ2 + δ],R) and χ ∈ C([κ1 − r, κ1],R) with χ(κ1) = 0, and
f : Θ×PC([−r, δ]) → R and Φk : R → R be the given continuous functions. Then problem (1.1)–(1.4)
has the following solution:

y(t) =



χ(t) if t ∈ [κ1 − r, κ1],

1

α

t∫
κ1

f(s, ys( · ))
(s− κ1)1−α

e
(1−α)

α2 [(s−κ1)
α−(t−κ1)

α] ds, t ∈ [κ1, t1],

k∑
i=1

Φi(y(t
−
i )) +

1

α

k∑
i=1

ti∫
ti−1

f(s, ys( · ))
(s− ti−1)1−α

e
(1−α)

α2 [(s−ti−1)
α−(ti−ti−1)

α] ds

+
1

α

t∫
tk

f(s, ys( · ))
(s− tk)1−α

e
(1−α)

α2 [(s−tk)
α−(t−tk)

α] ds, if t ∈ (tk, tk+1]; k = 1, . . . ,m,

χ̃(t) if t ∈ [κ2, κ2 + δ].

(3.1)
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Proof. Assume that y verifies (1.1)–(1.4). If t ∈ [κ1, t1], then we have

C
κ1
T̃αy(t) = f(t, yt( · )).

By Lemma 2.4, we obtain

y(t) =
1

α

t∫
κ1

f(s, ys( · ))
(s− κ1)1−α

e
(1−α)

α2 [(s−κ1)
α−(t−κ1)

α] ds, t ∈ [κ1, t1].

If t ∈ (t1, t2], then Lemma 2.4 implies

y(t) = y(t1
+) +

1

α

t∫
t1

f(s, ys( · ))
(s− t1)1−α

e
(1−α)

α2 [(s−t1)
α−(t−t1)

α] ds

= ∆y
∣∣
t=t1

+ y(t1
−) +

1

α

t∫
t1

f(s, ys( · ))
(s− t1)1−α

e
(1−α)

α2 [(s−t1)
α−(t−t1)

α] ds

= Φ1(y(t
−
1 )) +

1

α

t1∫
κ1

f(s, ys( · ))
(s− κ1)1−α

e
(1−α)

α2 [(s−κ1)
α−(t1−κ1)

α] ds

+
1

α

t∫
t1

f(s, ys( · ))
(s− t1)1−α

e
(1−α)

α2 [(s−t1)
α−(t−t1)

α] ds.

If t ∈ (t2, t3], then Lemma 2.4 implies

y(t) = y(t2
+) +

1

α

t∫
t2

f(s, ys( · ))
(s− t2)1−α

e
(1−α)

α2 [(s−t2)
α−(t−t2)

α] ds

= ∆y
∣∣
t=t2

+ y(t2
−) +

1

α

t∫
t2

f(s, ys( · ))
(s− t2)1−α

e
(1−α)

α2 [(s−t2)
α−(t−t2)

α] ds

= Φ1(y(t
−
1 )) + Φ2(y(t

−
2 )) +

1

α

t1∫
κ1

f(s, ys( · ))
(s− κ1)1−α

e
(1−α)

α2 [(s−κ1)
α−(t1−κ1)

α] ds

+
1

α

t2∫
t1

f(s, ys( · ))
(s− t1)1−α

e
(1−α)

α2 [(s−t1)
α−(t2−t1)

α] ds

+
1

α

t∫
t2

f(s, ys( · ))
(s− t2)1−α

e
(1−α)

α2 [(s−t2)
α−(t−t2)

α] ds.

Repeating the process in this way, the solution y(t) for t ∈ (tk, tk+1], where k = 1, . . . ,m, can be
written as

y(t) =

k∑
i=1

Φi(y(t
−
i )) +

1

α

k∑
i=1

ti∫
ti−1

f(s, ys( · ))
(s− ti−1)1−α

e
(1−α)

α2 [(s−ti−1)
α−(ti−ti−1)

α] ds

+
1

α

t∫
tk

f(s, ys( · ))
(s− tk)1−α

e
(1−α)

α2 [(s−tk)
α−(t−tk)

α] ds.
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Now, let us assume that y verifies equation (3.1). For t ∈ (tk, tk+1], where k = 0, . . . ,m, and by
Lemma 2.1 and Lemma 2.2, we can apply the fractional operator C

tk
T̃α( · ) to obtain

C
tk
T̃αy(t) = f(t, yt( · )).

Also, we can easily show that

∆y
∣∣
t=tk

= Φk(y(t
−
k )); k = 1, . . . ,m.

In the sequel, the following hypotheses are used:
(H1) The function f : Θ× PC([−r, δ]) → R is continuous.

(H2) There exists a constant ξ1 > 0 such that∣∣f(t, β1)− f(t, β2)
∣∣ ≤ ξ1‖β1 − β2‖[−r,δ]

for t ∈ Θ and β1, β2 ∈ PC([−r, δ]).

(H3) There exists a constant ξ2 > 0 such that∣∣Φk(β)− Φk(β)
∣∣ ≤ ξ2|β − β|

for any β, β ∈ R and k = 1, . . . ,m.
Now, we declare and demonstrate our first existence result for problem (1.1)–(1.4) based on the

Banach contraction principle [14].
Theorem 3.1. Assume that (H1)–(H3) hold. If

ℓ := mξ2 +
ξ1(1− e

α−1

α2 (κ2−κ1)
α

) (1 +m)

1− α
< 1, (3.2)

then problem (1.1)–(1.4) has a unique solution.
Proof. Let T : C 7→ C be the operator defined by

(Tx)(t) =



χ(t) if t ∈ [κ1 − r, κ1],

∑
κ1<tk<t

Φk(y(t
−
k )) +

1

α

∑
κ1<tk<t

tk∫
tk−1

f(s, ys( · ))
(s− tk−1)1−α

e
(1−α)

α2 [(s−tk−1)
α−(tk−tk−1)

α] ds

+
1

α

t∫
tk

f(s, ys( · ))
(s− tk)1−α

e
(1−α)

α2 [(s−tk)
α−(t−tk)

α] ds, t ∈ Θ,

χ̃(t) if t ∈ [κ2, κ2 + δ].

According to Lemma 3.1, the fixed points of T are the solutions of problem (1.1)–(1.4).
Let x1, x2 ∈ C. If t ∈ [κ1 − r, κ1] or t ∈ [κ2, κ2 + δ], then∣∣(Tx1)(t)− (Tx2)(t)

∣∣ = 0.

For t ∈ Θ, we have∣∣(Tx1)(t)− (Tx2)(t)
∣∣ ≤ ∑

κ1<tk<t

∣∣Φk(x1(t
−
k ))− Φk(x2(t

−
k ))

∣∣
+

1

α

∑
κ1<tk<t

tk∫
tk−1

|f(s, xs1( · ))− f(s, xs2( · ))|
(s− tk−1)1−α

e
(1−α)

α2 [(s−tk−1)
α−(tk−tk−1)

α] ds

+
1

α

t∫
tk

|f(s, xs1( · ))− f(s, xs2( · ))|
(s− tk)1−α

e
(1−α)

α2 [(s−tk)
α−(t−tk)

α] ds.
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By (H2) and (H3), we have

∣∣(Tx1)(t)− (Tx2)(t)
∣∣ ≤ ∑

κ1<tk<t

ξ2|x1(tk)− x2(tk)|

+
ξ1
α

∑
κ1<tk<t

tk∫
tk−1

‖x1 − x2‖[−r,δ]

(s− tk−1)1−α
e

(1−α)

α2 [(s−tk−1)
α−(tk−tk−1)

α] ds

+
ξ1
α

t∫
tk

‖x1 − x2‖[−r,δ]

(s− tk)1−α
e

(1−α)

α2 [(s−tk)
α−(t−tk)

α] ds,

therefore,

∣∣(Tx1)(t)− (Tx2)(t)
∣∣ ≤ m∑

k=1

ξ2|x1(tk)− x2(tk)|

+
ξ1
α

m∑
k=1

tk∫
tk−1

‖x1 − x2‖[−r,δ]

(s− tk−1)1−α
e

(1−α)

α2 [(s−tk−1)
α−(tk−tk−1)

α] ds

+
ξ1
α

t∫
tk

‖x1 − x2‖[−r,δ]

(s− tk)1−α
e

(1−α)

α2 [(s−tk)
α−(t−tk)

α] ds,

‖Tx1 − Tx2‖C ≤
[
mξ2 +

ξ1(1− e
α−1

α2 (κ2−κ1)
α

)(1 +m)

1− α

]
‖x1 − x2‖C

≤ ℓ‖x1 − x2‖C .

Hence, by the Banach contraction principle, T has a unique fixed point which is a unique solution of
problem (1.1)–(1.4).

4 Existence results for the second problem

We consider the following fractional differential equation:

e
tk
Dαy(t) = φ(t), t ∈ Θ := Θ \ {t1, . . . , tm}, Θ := [κ1, κ2], (4.1)

where 0 < α < 1, with the conditions

∆y
∣∣
t=tk

= Ψk(y(t
−
k )); k = 1, . . . ,m, (4.2)

ϑ1y(κ1) + ϑ2y(κ2) = ϑ3, (4.3)
y(t) = χ(t), t ∈ [κ1 − r, κ1], r > 0, (4.4)
y(t) = χ̃(t), t ∈ [κ2, κ2 + δ], δ > 0, (4.5)

where 0 < α < 1, φ ∈ C(Θ,R), χ̃ ∈ C([κ2, κ2 + δ],R) and χ ∈ C([κ1 − r, κ1],R), ϑ1, ϑ2, ϑ3 ∈ R such
that ϑ1 + ϑ2 6= 0.

The next lemma shows that problem (4.1)–(4.5) has a unique solution.
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Lemma 4.1. The function y( · ) satisfies problem (4.1)–(4.5) if and only if

y(t) =



χ(t) if t ∈ [κ1 − r, κ1],[
ϑ3

ϑ1 + ϑ2
− ϑ2
ϑ1 + ϑ2

m∑
i=1

Ψi(y(t
−
i ))−

ϑ2
ϑ1 + ϑ2

κ2∫
κ1

φ(s)e(1−α)s ds

]

+

t∫
κ1

φ(s)e(1−α)s ds, t ∈ [κ1, t1],

[
ϑ3

ϑ1 + ϑ2
− ϑ2
ϑ1 + ϑ2

m∑
i=1

Ψi(y(t
−
i ))−

ϑ2
ϑ1 + ϑ2

κ2∫
κ1

φ(s)e(1−α)s ds

]

+

k∑
i=1

Ψi(y(t
−
i )) +

t∫
κ1

φ(s)e(1−α)s ds, if t ∈ (tk, tk+1]; k = 1, . . . ,m,

χ̃(t) if t ∈ [κ2, κ2 + δ].

Proof. Assume that y verifies (4.1)–(4.5). If t ∈ [κ1, t1], then we have
e
κ1
Dαy(t) = φ(t).

By Lemma 2.5, we obtain

y(t) = y(κ1) +

t∫
κ1

φ(s)e(1−α)s ds, t ∈ [κ1, t1]. (4.6)

If t ∈ (t1, t2], then Lemma 2.5 implies

y(t) = y(t1
+) +

t∫
t1

φ(s)e(1−α)s ds = ∆y
∣∣
t=t1

+ y(t1
−) +

t∫
t1

φ(s)e(1−α)s ds

= Ψ1(y(t
−
1 )) + y(κ1) +

t1∫
κ1

φ(s)e(1−α)s ds+

t∫
t1

φ(s)e(1−α)s ds.

If t ∈ (t2, t3], then Lemma 2.5 implies

y(t) = y(t2
+) +

t∫
t2

φ(s)e(1−α)s ds = ∆y
∣∣
t=t2

+ y(t2
−) +

t∫
t2

φ(s)e(1−α)s ds

= y(κ1) + Ψ1(y(t
−
1 )) + Ψ2(y(t

−
2 )) +

t1∫
κ1

φ(s)e(1−α)s ds+

t2∫
t1

φ(s)e(1−α)s ds+

t∫
t2

φ(s)e(1−α)s ds.

By repeating the process in this way, the solution y(t) for t ∈ (tk, tk+1], where k = 1, . . . ,m, can be
written as

y(t) = y(κ1) +

k∑
i=1

Ψi(y(t
−
i )) +

t∫
κ1

φ(s)e(1−α)s ds. (4.7)

Applying the boundary condition (4.3), we obtain

ϑ1y(κ1) + ϑ2y(κ2) = ϑ3,

ϑ3 = (ϑ1 + ϑ2)y(κ1) + ϑ2

m∑
i=1

Ψi(y(t
−
i )) + ϑ2

κ2∫
κ1

φ(s)e(1−α)s ds.
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Thus

y(κ1) =
ϑ3

ϑ1 + ϑ2
− ϑ2
ϑ1 + ϑ2

m∑
i=1

Ψi(y(t
−
i ))−

ϑ2
ϑ1 + ϑ2

κ2∫
κ1

φ(s)e(1−α)s ds.

Replacing the value of y(κ1) in equations (4.6) and (4.7), we get

y(t) =



[
ϑ3

ϑ1 + ϑ2
− ϑ2
ϑ1 + ϑ2

m∑
i=1

Ψi(y(t
−
i ))−

ϑ2
ϑ1 + ϑ2

κ2∫
κ1

φ(s)e(1−α)s ds

]

+

t∫
κ1

φ(s)e(1−α)s ds, t ∈ [κ1, t1],

[
ϑ3

ϑ1 + ϑ2
− ϑ2
ϑ1 + ϑ2

m∑
i=1

Ψi(y(t
−
i ))−

ϑ2
ϑ1 + ϑ2

κ2∫
κ1

φ(s)e(1−α)s ds

]

+

k∑
i=1

Ψi(y(t
−
i )) +

t∫
κ1

φ(s)e(1−α)s ds if t ∈ (tk, tk+1]; k = 1, . . . ,m.

(4.8)

Now, let us assume that y verifies equation (3.1). Using the fact that e
tk
Dα(t) = e(α−1)tf ′(t) for all

t ∈ Θ (see [16]), for t ∈ (tk, tk+1], where k = 0, . . . ,m, and by Lemma 2.3, we can apply the fractional
operator e

tk
Dα( · ) on both sides of (4.8) to obtain

e
tk
Dαy(t) = φ(t).

Also, we can easily show that

∆y
∣∣
t=tk

= Ψk(y(t
−
k )), k = 1, . . . ,m.

As a consequence of Lemma 4.1, we have the following result.

Lemma 4.2. Let 0 < α < 1, χ̃ ∈ C([κ2, κ2+δ],R) and χ ∈ C([κ1−r, κ1],R), and g : Θ×PC([−r, δ])×
R → R and Ψk : R → R be the given continuous functions. Then y ∈ C verifies problem (1.5)–(1.9) if
and only if y is the fixed point of the operator S : C 7→ C given by

(Sy)(t) =



χ(t) if t ∈ [κ1 − r, κ1],[
ϑ3

ϑ1 + ϑ2
− ϑ2
ϑ1 + ϑ2

m∑
i=1

Ψi(y(t
−
i ))−

ϑ2
ϑ1 + ϑ2

κ2∫
κ1

φ(s)e(1−α)s ds

]

+
∑

κ1<tk<t

Ψk(y(t
−
k )) +

t∫
κ1

φ(s)e(1−α)s ds, if t ∈ Θ,

χ̃(t) if t ∈ [κ2, κ2 + δ],

where φ is a function satisfying the functional equation

φ(t) = g(t, yt( · ), φ(t)).

In this section, we demonstrate our existence result for (1.5)–(1.9) by employing the Schauder fixed
point theorem [14].

Assume that the following hypotheses hold:

(B1) The function g : Θ× PC([−r, δ])× R → R is continuous.

(B2) There exist the constants ϖ1 > 0 and 1 > ϖ2 > 0 such that∣∣g(t, β1, β1)− g(t, β2, β2)
∣∣ ≤ ϖ1‖β1 − β2‖[−r,δ] +ϖ2|β1 − β2|

for t ∈ Θ, β1, β2 ∈ R and β1, β2 ∈ PC([−r, δ]).
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(B3) There exist the constants ϖ3, ϖ4 > 0 such that

|Ψk(β)| ≤ ϖ3 +ϖ4|β|

for any β ∈ R and k = 1, . . . ,m.

Theorem 4.1. Assume that (B1)–(B3) hold. If

η :=
mϖ4|ϑ2|
|ϑ1 + ϑ2|

+mϖ4 +
ϖ1|ϑ2|(e(1−α)κ2 − e(1−α)κ1)

(1− α)(1−ϖ2)|ϑ1 + ϑ2|
+
ϖ1(e

(1−α)κ2 − e(1−α)κ1)

(1− α)(1−ϖ2)
< 1,

then problem (1.5)–(1.9) has at least one solution.

Proof. We establish the proof in several steps.
Step 1. S is continuous.

Let {yn} be a sequence such that yn → y in C. If t ∈ [κ1 − r, κ1] or t ∈ [κ2, κ2 + δ], then

|(Syn)(t)− (Sy)(t)| = 0. (4.9)

For t ∈ Θ, we have∣∣(Syn)(t)− (Sy)(t)
∣∣

≤ |ϑ2|
|ϑ1 + ϑ2|

m∑
i=1

∣∣Ψi(yn(t
−
i ))−Ψi(y(t

−
i ))

∣∣+ |ϑ2|
|ϑ1 + ϑ2|

κ2∫
κ1

|φn(s)− φ(s)|e(1−α)s ds

+
∑

κ1<tk<t

∣∣Ψk(yn(t
−
k ))−Ψk(y(t

−
k ))

∣∣+ t∫
κ1

|φn(s)− φ(s)|e(1−α)s ds, (4.10)

where
φn(t) = g(t, ytn( · ), φn(t))

and
φ(t) = g(t, yt( · ), φ(t)).

Since yn → y, and by (B1), we get φn(t) → φ(t) as n→ ∞ for each t ∈ Θ.
Then by Lebesgue dominated convergence theorem and (B1), equations (4.9) and (4.10) imply

‖S(yn)− S(y)‖C → 0 as n→ ∞.

Consequently, S is continuous.
Step 2. S(BR) ⊂ BR.

Let the constant R be such that

R ≥ max
{ η

1− η
, ‖χ‖[κ1−r,κ1], ‖χ̃‖[κ2,κ2+δ]

}
with

η =
mϖ4|ϑ2|
|ϑ1 + ϑ2|

+mϖ4 +
ϖ1|ϑ2|(e(1−α)κ2 − e(1−α)κ1)

(1− α)(1−ϖ2)|ϑ1 + ϑ2|
+
ϖ1(e

(1−α)κ2 − e(1−α)κ1)

(1− α)(1−ϖ2)
< 1

and

η =
|ϑ3|

|ϑ1 + ϑ2|
+
mϖ3|ϑ2|
|ϑ1 + ϑ2|

+
g∗|ϑ2|(e(1−α)κ2 − e(1−α)κ1)

(1− α)(1−ϖ2)|ϑ1 + ϑ2|
+mϖ3 +

g∗(e(1−α)κ2 − e(1−α)κ1)

(1− α)(1−ϖ2)
.

And we define the following ball:

BR =
{
y ∈ C : ‖y‖C ≤ R

}
.
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Then BR is a closed, convex and bounded subset of C.
Let y ∈ BR. We show that Sy ∈ BR.
If t ∈ [κ1 − r, κ1], then

|Sy(t)| ≤ ‖χ‖[κ1−r,κ1] ≤ R,

and if t ∈ [κ2, κ2 + δ], then
|Sy(t)| ≤ ‖χ̃‖[κ2,κ2+δ] ≤ R.

For t ∈ Θ, we get

|Sy(t)| ≤ |ϑ3|
|ϑ1 + ϑ2|

+
|ϑ2|

|ϑ1 + ϑ2|

m∑
i=1

|Ψi(y(t
−
i ))|

+
|ϑ2|

|ϑ1 + ϑ2|

κ2∫
κ1

|φ(s)|e(1−α)s ds+
∑

κ1<tk<t

|Ψk(y(t
−
k ))|+

t∫
κ1

|φ(s)|e(1−α)s ds. (4.11)

By the hypothesis (B2), for t ∈ Θ, we have

|φ(t)| =
∣∣g(t, yt( · ), φ(t))− g(t, 0, 0) + g(t, 0, 0)

∣∣
≤

∣∣g(t, yt( · ), φ(t))− g(t, 0, 0)
∣∣+ |g(t, 0, 0)|

≤ g∗ +ϖ1‖yt‖[−r,δ] +ϖ2|φ(t)|,

where g∗ = sup
t∈Θ

g(t, 0, 0), which implies that

|φ(t)| ≤ g∗ +ϖ1R

1−ϖ2
:= Λ.

Thus for t ∈ Θ, from (4.11) and by (B3), we obtain

|Sy(t)| ≤ |ϑ3|
|ϑ1 + ϑ2|

+
m(ϖ3 +ϖ4R)|ϑ2|

|ϑ1 + ϑ2|
+

Λ|ϑ2|
|ϑ1 + ϑ2|

κ2∫
κ1

e(1−α)s ds

+m(ϖ3 +ϖ4R) + Λ

t∫
κ1

e(1−α)s ds

≤ |ϑ3|
|ϑ1 + ϑ2|

+
m(ϖ3 +ϖ4R)|ϑ2|

|ϑ1 + ϑ2|
+

Λ|ϑ2|(e(1−α)κ2 − e(1−α)κ1)

(1− α)|ϑ1 + ϑ2|

+m(ϖ3 +ϖ4R) +
Λ

1− α
(e(1−α)κ2 − e(1−α)κ1)

≤ R.

Then for t ∈ [κ1 − r, κ2 + δ], we have |Sy(t)| ≤ R, which implies that ‖Sy‖C ≤ R. Consequently,

S(BR) ⊂ BR.

Step 3. S(BR) is equicontinuous and bounded.
By Step 2, we have S(BR) is bounded.
Let τ1, τ2 ∈ Θ, τ1 < τ2, and y ∈ BR, then

∣∣(Sy)(τ2)− (Sy)(τ1)
∣∣ ≤ ∑

τ1<tk<τ2

|Ψk(y(t
−
k ))|+

∣∣∣∣
τ2∫

κ1

φ(s)e(1−α)s ds−
τ1∫

κ1

φ(s)e(1−α)s ds

∣∣∣∣
≤

∑
τ1<tk<τ2

|Ψk(y(t
−
k ))|+

τ2∫
τ1

|φ(s)|e(1−α)s ds.
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By condition (B2), we obtain

∣∣(Sy)(τ2)− (Sy)(τ1)
∣∣ ≤ ∑

τ1<tk<τ2

|Ψk(y(t
−
k ))|+ Λ

τ2∫
τ1

e(1−α)s ds

≤
∑

τ1<tk<τ2

|Ψk(y(t
−
k ))|+

Λ

1− α

[
e(1−α)τ2 − e(1−α)τ1

]
.

As τ1 → τ2, the right-hand side of the above inequality tends to zero. The equicontinuity for the
other cases is obvious, thus we omit the details. As a consequence of Step 1 to Step 3, together
with the Arzelà–Ascoli theorem, we can conclude that S is continuous and completely continuous.
From Schauder’s theorem [14], we conclude that S has a fixed point which is a solution of problem
(1.5)–(1.9).

5 Examples
Example. We consider the following example of problem (1.1)–(1.4):

y(t) = et, t ∈
[
1,

5

4

]
,

C
tk
T̃ 1

2
y(t) =

sin(t) + 1

151t+4(1 + ‖y‖[−r,δ])
, t ∈ [0, 1] \

{1

3
,
2

3

}
,

∆y
∣∣
t=tk

=
|y(t−k )|

151 + |y(t−k )|
, k = 1, 2,

y(t) = t2, t ∈
[
− 1

4
, 0
]
,

(5.1)

where α = 1
2 , r = δ = 1

2 , κ1 = 0, κ2 = 1, t1 = 1
3 , t2 = 2

3 and m = 2.
Set

f(t, yt( · )) = sin(t) + 1

151et+4(1 + ‖y‖[−r,δ])

and
Φk(y(t

−
k )) =

|y(t−k )|
151 + |y(t−k )|

, k = 1, 2.

For each β1, β1 ∈ PC([−r, δ]) and t ∈ [0, 1], we have

|f(t, β1)− f(t, β1)| ≤
sin(t) + 1

151et+4
‖β1 − β1‖[−r,δ] ≤

1

151e4
‖β1 − β1‖[−r,δ],

and for each β2, β2 ∈ R, we have ∣∣Φk(β2)− Φk(β2)
∣∣ ≤ 1

151
|β2 − β2|.

Therefore, (H2) and (H3) are verified with

ξ1 =
1

151e4
and ξ2 =

1

151
.

Also, for t ∈ Θ, we have

ℓ =
2

151
+

6(1− e−2)

151e4
≈ 0.0138743133792875 < 1.

Then condition (3.2) is satisfied. Hence, since all conditions of Theorem 3.1 are satisfied, problem
(5.1) has a unique solution.
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Example. Let us now consider an example of problem (1.5)–(1.9). Let

e
tk
D 1

2 y(t) = g(t, yt( · ), etkD
1
2 y(t)), t ∈ [e, π] \ {3},

∆y
∣∣
t=t1

=
1 + |y(t−1 )|

212
,

y(e) + y(π) = 1,

y(t) = χ(t), t ∈ [0, e],

y(t) = χ̃(t), t ∈ [π, π + e],

(5.2)

where α = 1
2 , r = δ = e, κ1 = e, κ2 = π, t1 = 3, ϑ1 = ϑ2 = ϑ3 = 1 and m = 1.

Set
g(t, y, y) =

1 + ‖y‖[−r,δ] + |y|
312 + 312eπ−t

and
Ψ1(y) =

1 + |y|
212

for t ∈ [e, π], y ∈ PC([−r, δ]), y ∈ R, α = 1
4 and r = δ = 1.

All conditions of Theorem 4.1 are satisfied with ϖ1 = ϖ2 = 1
624 , ϖ3 = ϖ4 = 1

212 , and

η =
3

424
+

3(e
π
2 − e

e
2 )

623
≈ 0.0114942348091363 < 1.

Then it follows that problem (5.2) admits at least one solution.
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