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1 Introduction

The purpose of this paper is to study the existence of entropy solutions to the following nonlinear
elliptic problem:

(a(z,u, Vu) + ¢(u)) - n =0 on 99, (1.1)

{— div(a(z,u, Vu) + ¢(u)) + g(z,u, Vu) = g in Q,
where 7 is the outer unit normal vector on 99, a is a Leray-Lions type operator, ¢ € CO(R,R"™) and
u is a diffuse measure such that g = p|Q. The function g(z,u, Vu) is a nonlinear order term with
natural growth with respect to |Vu| satisfying the sign condition, that is, g(x, u, Vu)u > 0.

The study of PDEs with variable exponents experienced a revival of interest over the past few years
(see [6,11,12,18,34]) due to the fact that they can model various phenomena which arise in the study
of elastic mechanics (see [5]), electrorheological fluids(see [19,21,29]) or image restoration (see [18]).
The interest of the study of problem (1.1) is due to the fact that it can model various phenomena in
elasticity, non-Newtonian fluids (sometimes referred to as smart fluids), the flow through porous medias
and image processing. On the other hand, the introduction of the Neumann boundary condition brings
us to introduce new ideas for the survey of this problem.

Tt is important to remember that problem like (1.1) was studied by many authors in the case of
homogenous Dirichlet boundary condition (see [1,7,10,32]). More recently, Benboubker et al. [10]
established the existence of entropy and renormalized solutions for the problem

{— div(a(z,u, Vu) + ¢(u)) + g(z,u, Vu) = g in Q,

(1.2)
u=0 on 02,

where € LY(Q) + W1 ()(Q). Zhang and Zhou [32] have proved the existence of entropy and
renormalized solutions for problem (??) in the particular case, where a(z, s, &) = [£[P(*)=2¢, g = 0 and
¢=0.

In the last years, increasing attention has been devoted towards the study of elliptic problems
with measure data and Neumann boundary condition. The study of these problems is also based on
the decomposition of the measure in the context of constant exponent (cf. [3,14,15,23]) and in the
variable exponent setting (see [12,25-27]).

In this paper, our aim is to prove the existence of entropy solutions for the nonlinear boundary value
problem (1.1) in order to extend the results of [10] to the case of Neumann boundary condition and
general measure data. Let us recall that, when the boundary value condition is a Neumann boundary
condition in the context of a variable exponent, we must work with the space W1P(*) () instead of the
common space Wol’p( ' )(Q) (the closure of C§°(2) in W'P(*)(Q)). The main difficulty which appears
in this case is that for the proofs of some a priori estimates, the famous Poincaré inequality doesn’t
apply, even for the Poincaré—Sobolev inequality (since we have a homogeneous Neumann condition).

The plan of this paper is the following. In Section 2, we recall some basic notations and properties
about Sobolev spaces with variable exponents. In Section 3, we give our basic assumptions and some
fundamental lemmas. In Section 4, the definition of entropy solution as well as the main result are
given.

2 Preliminaries
For each open bounded subset € of RY (N > 2), we denote

C+(Q)={p: peC(), p(x)>1 forany z € Q}.
For every p € C4(Q), we define

p+ =supp(z) and p_ = inf p(x).
zeN zEN
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We denote the Lebesgue spaces with variable exponents LP()(Q) (see [19]) as the set of all measurable
functions v : 2 = R for which the convex modular

P (1) = / |u[P™) dz
Q

is finite.
If the exponent is bounded, i.e., if py < +00, then the expression

lullpy =it {A>0: gy () <1}

defines a norm in LP()(Q), called the Luxemburg norm.
The space (LP()(Q), ]| - llpc.y) is a separable Banach space. Moreover, if 1 < p_ < p; < o0,

then LP(*)(Q) is uniformly convex, hence reflexive and its dual space is isomorphic to L) (Q), where
1 1
COREICREES
Finally, we have the Holder type inequality

‘/uvdm
Q

for all u € LP()(Q) and v € L ()(Q).
Let

1 1
< (pi + W) [wllpc lollpr-

WP Q) = {u e LPF)(Q) : |Vu| € L) (Q)},
which is a Banach space equipped with the following norm:
lullipcy = lullpey + 1Vl )-

The space (WEPC)(Q), || - |1 (- y) is a separable and reflexive Banach space.
An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular p,.) of the space LPC)(Q). We have the following result.

Proposition 2.1 (see [20,34]). If un,u € LPC)(Q) and py < oo, the following properties hold true:
() lullpy > 1= W25, < pp (@) < ullZf
) ullpy < 1= [ull?f.) < ppsy () < llull22 )

(iii) |lullpc.y <1 (resp. = 1;> 1) <= pp(.y(u) < 1 (resp. = 1;> 1);

(iv) [Junllpc.y = 0 (resp. = +00) <= pp(.y(un) < 1 (resp. = +00);

) 2o () =

Proposition 2.2 (see [20,33]). If f : Q@ x R — R is a Carathéodory function satisfying
p1(z)
|f(z,s)] <a(z)+bls|2® for anyz € Q,s €R,

where p1,ps € C4(Q), a € LP2C)(Q) is a positive function and b > 0 is a constant, then the Nemytskii
operator from LP+()(Q) to LP2()(Q) defined by (Ny(u))(z) = f(z,u(z)) is a continuous and bounded
operator.

For a measurable function u : 2 — R, we introduce the following notation:

o (@) = [ 1ap@ do+ [ [9ur® de
Q Q
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Proposition 2.3 (see [30,31]). If u € WP )(Q), the following properties hold true:
) Nullipy > 1= llullf ) < prpc)(w) < lullh
(1) Nulapy < 1= JullZ ) < pro () <l

(iii) [Jull1,p(.) <1 (resp. = 1;> 1) <= p1 p(.y(u) <1 (resp. = 1;> 1).

Put
(N—Dp(z) o
p?(z) = (p(z))°{ N —p(x) f p(z) <N,
o0 if p(x) > N.

Proposition 2.4 (see [31]). Let p € C() and p_ > 1. If ¢ € C(09Q) satisfies the condition
1<q(z) < pa(x) YV e 09,

then there is a compact embedding WP )(Q) — LIC)(9Q). In particular, there is a compact embed-
ding W20 )(Q) — LPC)(0Q).

Proposition 2.5 (see [22]). Let p € C4 () be such that 1 < p_ < py < +oo. Assume that p satisfies
the log-Hdélder continuity condition, that is, there is a constant C' such that

C
Ip(z) — p(y)| < Tloglz —y|

(2.1)
for every x,y € Q with 0 < |z —y| < 1/2. Then the inequality
l[u = ug[p.y < C diam(Q) (1 + maX{|Q|(1/P+)*(1/P—)’ ‘Q|(1/P—)*(1/P+)}) [Vl

holds for every u € Whp(: )(Q), where ug = ﬁ [ udz. Here, the constant C' depends on the dimension
Q
N, Q and p.

Throughout this paper, we assume that p € C, (Q) satisfies the log-Holder continuity condition
(2.1). For any given k > 0, we define the truncation function T} by

—k if s < —Fk,
Ti(s) := max{—k,min{k,s}} = ¢ s if |s| <k,
k if s>k.

For all uw € W1P(:)(Q), we denote by 7(u) the trace of u on 99 in the usual sense.
In the sequel, we will identify at the boundary, v and 7(u).
Set

ThPC)(Q) = {u . Q — R, measurable such that Tj(u) € WP )(Q) for any k > O}.

Proposition 2.6 (see [13]). Let u € T+P()(Q). Then there exists a unique measurable function
v:Q — RY such that VT (u) = UX{juj<xy JOr all k> 0. The function v is denoted by Vu. Moreover,

if u e WhPC)(Q), then v € (LPC)(Q)N and v = Vu in the usual sense.

We denote by ’Ei’p( ' )(Q) (cf. [27,28]) the set of functions u € THP()(Q) such that there exists a
sequence (ty)nen C WP (Q) satisfying the following conditions:

(C1) uy — u a.e. in Q.
(C2) VTi(uy) — VTi(u) in (LY(Q))N for any k > 0.

(C3) There exists a measurable function v on 9 such that u,, — v a.e. on 9.
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The function v is the trace of u in the generalized sense introduced in [2,4]. In the sequel, the trace
of u € 7;1’1)(')(9) on 99 will be denoted by tr(u). If u € WHP()(Q), then tr(u) coincides with 7(u)
in the usual sense. Moreover, u € ﬁi’p(')(Q) and for every k > 0, 7(Tx(u)) = Ti(tr(u)), and if
@ € Whr()(Q) N L=(Q), then (u— @) € T-P0)(Q) and tr(u — @) = tr(u) — tr(yp).

We define M;,(X) as the space of bounded Radon measure in X equipped with its standard norm

I vty (0)-
In the context of a variable exponent, the p(-)-capacity of any subset B C X is defined by

Capr) (5, X) :uesi?_f)(B){/(IUI”(“') +|Vu|p(’))da;}
X

with

S

p(.)(B):{UGWOl’p(')(X): u > 1 in an open set containing B and » >0 in X}.

If Sp(y(B) = 9, we set Cap,,(.(B, X) = +o0.
For 1 € My(X), we say that p is diffuse with respect to the capacity W1P()(X) (p(-)-capacity,
for short) if u(B) = 0 for every set B such that Cap,(.\(B,X) = 0.

The set of bounded Radon diffuse measure in a variable exponent setting is denoted by /\/lf( ' )(X ).

3 Basic assumptions and some fundamental lemmas

We assume that €2 is a bounded open subset of RY (N > 2) with boundary 99 of class C'. Then
it has an extension domain (cf. [17]). So, for any fixed open bounded subset Ug of RY such that
Q C Ugq, there exists a bounded linear operator

B whO(@Q) — Wyt (Ug),
for which
(i) E(u) = u a.e. in Q for each u € WHP()(Q);
i) ||E(u Lp() < C|lullywi.ec ) (), where C' is a constant depending only on €.
W, (Uq) ()
0
We introduce the set
DJT]Z(')(Q) ={pe MIZ(')(UQ) : p is concentrated on }.

This definition is independent of the open set Ug. Note that for u € W'P()(Q) N L>(Q) and
e E)ﬁf(')(Q), we have
(n. Bw) = [ udp.
Q
On the other hand, as p is diffuse, there exist f € L'(Ug) and F € (LP()(Ug))YN such that p =
f—div(F) in D' (Uq) (see [25]).
Therefore, we can also write

(u, E(w)) = /fE(u)da:+/F-VE(u) dz.
Uq Ua

We consider a Leray-Lions operator from W1P(-)(Q) into its dual (WP(*)(Q))" defined by the
formula

Au = —diva(z, u, Vu),
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where a : Q x R x RN — R¥ is a Carathéodory function satisfying the following assumptions:

la(z, 5,8 < B[k(x) + |s[P 1 4 [gP 1], (3.1)
a(z, s, )¢ > al¢P™),
[a(x,s,f) - a(x,s,n)](f —n) >0 forall £€+#neRY, (3.3)

for a.e. 2 € Qand all (s,£) € RxRY, where k() is a positive function lying in L' (*)(Q) and o, 8 > 0.
The nonlinear term g : Q x R x R is a Carathéodory function satisfying.
lg(, 5, )] < b(ls|) (e() + [€[7), (3.4)
9(x,5,§)s =0, (3:5)
where b : RT — R is a continuous, nondecreasing function and ¢ : Q@ — RT with ¢ € L}(Q).

Moreover, assume that ¢ is a continuous function defined from R into RY and there exists a
positive real number My such that

lp(s)| < My for all s €R. (3.6)

Lemma 3.1 (see [9]). Let g € LPC)(Q) and g, € LPC)(Q) with llgnllLec) () < C for 1 < p(z) < oo.
If gn(z) — g(x) a.e. in Q, then g,(x) — g(x) in LPC)(Q).
Lemma 3.2. Assume that (3.1)(3.3) hold, let u, be a sequence in WHPC)(Q) such that u, — u in
Wi )(Q) and

/ [a(z,un, Vug) — a(@, uy, V)| V(u, —u) — 0. (3.7)

Q
Then w, — u in WHPC)(Q).
Proof. Let

D,, = [a(z,up, Vu,) — a(z, up, Vu) |V (u, — u).

Then by (3.3), D,, is a positive function and by (3.7), D,, — 0 in L*(Q). Extracting a subsequence,
still denoted by wu,,, we can write u, — u in WP(-)(Q) which implies u,, — v a.e. in Q. Similarly,
D,, = 0 a.e. in Q. Then there exists a subset B of Q of zero measure such that for x € Q\ B,

lu(z)] < oo, |Vu(z)| < oo, k(z) <oo, u,(x) = u(z), Dp(z)—0.
Defining ¢, = Vu,(x), £ = Vu(z), we have

Dn(z) = [a(x,un, &) — a(@, un, §)] (€n — €)
= a(z, tn, &n)én + a(@, un, §)§ — a(x, un, £n) — alz, un, §)&n
> algnl™™) + alg"™) = Blk() + fun "7+ g T g]
= Blk(x) + [un PO 4 P,
> algn " = Ca 1+ &7 + lgal], (38)
where C,, is a constant which depends on x, but does not depend on n. Since u,(x) — u(z), we have

|un(x)] < M,, where M, is some positive constant. Then, by a standard argument, &, is bounded
uniformly with respect to n, indeed, (3.8) becomes

C C C
> p(z) - _Zz Tz )
Dy (x) > |€nl (0‘ 6@ 6] \5n|p(w)—1)

If |€,] — oo (for a subsequence), then D, (x) — oo, which gives a contradiction. Let now &* be a
cluster point of &,. We have |£*| < co and by the continuity of a, we obtain

[a(z, u(z),£") — a(z, u(x),§)] (€ — €) = 0.
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In view of (3.3), we have £* = £. The uniqueness of the cluster point implies
Vu,, — Vu a.e. in .

Since the sequence a(x, un, Vi) is bounded in (LP'C)(Q)N and a(z, un, Vun) — a(z,u, Vu) a.e. in
), Lemma 3.1 implies that

a(@, U, V) — a(z,u, Vu) in (L7 Q)N ae. in Q.

We set 7,, = a(x, uy, Vu,)Vu, and § = a(z, u, Vu)Vu.

As in [16], we can write

7, — vy in LY(Q).

By (3.2), we have

a|Vuy| < a(z, un, Vug) Vi,

Let z, = |[Vu,|[P®), z = |[Vu[P®), 4, = % and y = g Then, by Fatou’s lemma,

/dea: < liminf/ (Y + Yn — |20 — 2|) da,
n—oo

Q Q
ie.,
0< —limsup/ |zn, — 2| dx.
n—oo
Q
Therefore,

n—roo n—oo

OSliminf/|zn—z|dacSlimsup/|zn—z|dx§0,
Q Q

which implies that
Vu, — Vu in (LPC)(Q))V. (3.9)

It remains to prove that u, — u in LP(")(Q). Since u,, — u in WP()(Q), by the compact embedding
witr()(Q) < LP-(Q), we have u,, — u in LP-(Q) and a.e. in Q. Owing to Proposition 2.5, we have

uf#/u dr — uf#/udm
" meas (Q) " meas ()
Q Q

1
(un—u)—m/(un—u)dx

Q

()

< OV (un = u)llp(),
p(-)

where C' is a positive constant which does not depend on n. Therefore, letting n — +00 and using
the fact that Vu,, converges strongly to Vu in (LP()(Q))V, we deduce that

1

1
n— —————— nd - dz in LPC)(Q 3.10
“ meaS(Q)/u v meaS(Q)/u v (@), (3.10)
Q )
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(un—meaim)ﬂ/undx>—(u—meai(m!udx>
+<meai(mg/undx—meai(mg/udx>

o o) o o)
o o) )
+H<meai(m/(un—u)dx)x1
<H<un—meai(9)h/undx>—<u—meai(m!udm)

[

[ ) s )

meas (Q)1/p— "m ™ P pe.y-
* meas (Q)l/p— [l ully (Q)H ||p( )

un — ullpy = ‘

()

()

()

2

||1Hp(')

p(-)
(3.11)
From (??) and the fact that w, — u in LP-(2), we pass to the limit as n tends to infinity in (??) to

obtain
u, — u in LPC)(Q). (3.12)

Therefore, by (3.9) and (??), we conclude that w, — u in WHP()(Q). O

4 Entropy Solutions

This section is devoted to the proof of the existence of an entropy solution for problem (1.1). Now,
we announce the concept of entropy solution for problem (1.1).

Definition 4.1. A measurable function u : 2 — R is called entropy solution of the elliptic problem

(1.1) ifu € 7;712]9(')((2), g(z,u, Vu) € L*(Q2) and for every k > 0,

a(x,u, Vu)VTi(u —v)de + [ g(z,u, Vu)Tp(u —v)de + | ¢(u)VTk(u—v)dz
/ / /

< /Tk(u—v)du

Q
for all ¢ € W) (Q) N L>®(Q).
The main result of this section is the following theorem.

Theorem 4.1. Assume that (3.1)—(3.6) hold true. Then there exists at least one entropy solution u
of problem (1.1).
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Proof. Step 1. The approzximate problems.

Since p € MP) (Ug), we have = f—div(F) in D' (Ug) with f € L}(Ug) and F € (L7 ()(Ug))¥,
where Ug, is the open bounded subset of RY which extends €2 via the operator E (see [25]).
We regularize p as follows: Ve > 0, V& € Ug, we define

fa(@) = To(f(2))xq ().
We consider Fg = x, F and p, = f, — div(Fg).
For any n € N, one has pu,, € Emg( )(Q) NL>®(Q) and p,, — p in ./\/lf( ' )(UQ). Furthermore, for any
k>0 and any & € THP()(Q),
[ 1€ d| < ),
Q

Let us define
bn(s) = ¢(Tn(s)),
1
h., — T |elp(z)—2
(,5) = = [sfP® =25

and ( )

g 1"7 57
dn ($7 5, f) = :
1+ gz, s,€)]
Now, we consider the approximated problem

—div(a(z, un, Vun) + én(tn)) + gn (@, tn, Vug) + by (2, uy) = pn in Q,
(a(x,un, vun) + an(un)) n=0 on 0N.

In the rest of the paper, we denote

R / = p(x)
po = inf p'(x) ( 5 p(fﬁ)) :

Let us prove the following result.

Lemma 4.1. There exists at least one weak solution w, for problem (4.1) in the sense that u, €
WPl )(Q) and for all v € WPC)(Q),

/a(x,un,Vun)Vvd:c—i—/gn(:c,un,Vun)vd:r—i—/hn(x,un)vdx—l—/qﬁn(un)Vvdx:/vdun. (4.2)
Q Q

Q Q Q

Proof. We define the operators A, G, R, : W'P()(Q) — (WHr(-)(Q)) by

(Aup,v) = /a(m,un,Vun)Vvdx, (Rntn,v) = /qbn(un)vdx Vo e whri)(Q)
Q Q

and

(Gpiup,v) = /gn(x,umVun)v dx—i—/hn(%un)vdx Vo e Whrt)(Q).

Q Q
Using [8, Lemma 4.5] and Lemma 3.2, one shows that the operator B,, = A + G,, + R,, is bounded
and pseudo-monotone from W1HP()(Q) into (WHP(-)(Q)).
For all u € WH(-)(Q), we have

(Bru,u) = (Au,u) + (Gpu, u) + (Ryu, u)
:/a(:z:,u,Vu)Vudx+/g(z,u,Vu)udx+/hn(x,u)udz+/gbn(u)Vudx

Q Q Q Q

> a/|Vu|p(””) dm+1/|u|1)<w> dm—/(—gbn(u))Vudac. (4.3)
n
Q Q

Q
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We use Young’s inequality to obtain

|¢n (u)] a ge)
/(—¢n(u))Vudx /(())p@ (<§p(x)) |Vu|> dx
o) )
P’ (z)
g/ [&n (E 0l d:z:—&—/%\Vu\p(z) dx
Q p 5}7( )) ) [9]
< pi/ WP’ I)+/% IVau|P@ dz
o) Q
1 P « (@)
- ‘d | VuP@ da.
Sp Q/|<n} s)|+1) m+ﬂ/2|Vu| x
Therefore,
~ [ Contu)Tude =~ meas (0 ) S (19(s)] + 1) - [5ivuran
o) o)

Combining (4.3) and (4.4), we get

(Bru, u) %/|Vu\p ) dx + = /|u\p ) da + C4

2min{—,— [VulP® dz + [ [uP® dz ) + C,
2'n
Q Q

> min{%v%}pl,pﬂ)(”) +C
> min {2, 2 ull], )+,
ie.,
Bt i { & D )+ O
llwllp() Le(:) HUH 1,p(+)
with
_ o i fluflipey <1,
- {p if Jullypc) > 1.
Then it follows that
B, u) — 400 as |lullypc.y = oo,
l[ull1,p(-)

which is equivalent to the operator B, being coercive.
Since we have proved that the operator B,, is bounded, pseudo-monotone and coercive, then there
exists at least one weak solution u, € WP(*)(Q) of problem (4.1) (cf. [24]). O

Step 2. A priori estimates.
Assertion 1. (VT (un))nen is bounded in (LP-(Q))V.
We take Ty (uy) as test function in (4.2) to get

/a(m,un,Vun)VTk(un) dx+/gn(x,un,Vun)Tk(un)dm
Q Q

1
+ f/|un|p(’”)_2unTk(un) da:+/gz5n(un)VTk(un)dx=/Tk(un)dun.
n
Q
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Since the second and the third terms on the left-hand side of the above equality is non-negative, from
(3.6) we have

a/|VTk(un)|p(w) dzx < /a(x,un,Vun)VTk(un)dx
Q Q

< —/¢n(un)VTk(un)dx+/Tk(un)dun
Q

Q

< [ 1otz |VTk<un>|dz+\ [ Tt
Q Q

< /M0|VTk(un)\ de + ‘ /Tk(un)d,un . (4.5)
Q Q
Now, we use Young’s inequality to get
My a Ea)
[ MalV ) o = [ 2 (5 p() ™7 9T (w))
J J (4 pla)) 7o
AP @) a VT (uy,)[P@)
M [T
o P'(@)(5plx)) 7@ 2 b
My +1)P
< (Mo + 1)P+ meas (€2) + %/|VTk(un)|p(w) dzx. (4.6)
Po J
Moreover, we know that
’/Tk(un) din| < kC(u, Q). (4.7)
Q
Therefore, using (4.5)—(4.7), we get
2 /(Mo + 1)¥"
/|VTk(un)\p(z) dr < = (w meas () + kC(#,Q)). (4.8)
@ Po
Q
We have
/|Tk(un)‘p(z) dr = / | T () [P da + / | T () [P d.
Q {lun|<k} {lun|>k}
Then it follows that
kP+ Q) if k>1
/ (T () [P) dar < / 1) g — meas () if k> 1,
meas (2) if k<1
{lun|<k} {lun|<k}
and
kP+ Q) if k>1
TP o= [ gy = S0 M) 2
meas (£2) if k<1
{lun|>k} {lun|>k}
This allows us to write
/ T3 (un ) [P daz < 2(1 + kP+) meas (). (4.9)

Q
Hence adding (4.8) and (4.9) yields

2 ((Mo + 1P

P1,p( ) (Th(un)) < o o meas () + k C(u, Q)) + 2(1 + kP*) meas ().
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For || Ty (wn)|l1,p(.) > 1, we have
1Tk (un) I}y < P1p() (The(un)),

which implies that

1

Tk () ll1p) < Prp() (Th(un)) ™=
The above inequality gives
||Tk(un)”1,p(-) S 1 + C(kv Q, Q7p+ap—7p/+7p/—)'

We deduce that for any k > 0, the sequence (T}, (un))nen is uniformly bounded in W*1P(*)(Q) and so,
in W1P-(Q). Then, up to a subsequence, we can assume that for any & > 0,

Ty (un) = vy in WHP=(Q)
and by a compact embedding, we have

Tk (un) — vg in LP~(Q) and a.e. in Q.

Assertion 2. (un)nen converges in measure to some function u.
Note that for k£ > 1 large enough, we have

/ VT (un)|P~ do = / VT (un)|P~ do + / |VT(upn)|P~ de
{IV T, (un)|<1} {IVTk(un)|>1}
< meas (Q) + / VT (un) [P®) da

{IVTk(un)|>1}

< kmeas () + / VT (u,)|P®) da.

Due to inequality (4.8), we have

/|VTk u,) [P~ d 2 ((MO;” meas (Q) +kC(u,Q)) + kmeas ()

< k(a ((]Vfop%l)* meas () + C(u, Q)) + meas (Q))

< kconst (a, Q, p, p—, p4, 0", D'} ). (4.10)
Next, we use the Poincaré—Wirtinger inequality to obtain

kP- meas {u, > k} = / T (un) [P~ dz

{un>k}
P—

dx

p_
) dx

1 1
T n) 1ol T n TOol T n
{un>k} Q Q

§2P1!<Tk(un)—é|/Tk(un) . ’Klzl/Tk(un)dx

p,fl

_ p—
< T p-
_C/|V ()P~ do + 2 \QIP* (/|un|dat>
Q Q
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C/IVT( )P~ d 2( L dp )
< Up) [P dx + /7un ) dx + )
g Q- \J p(x) p'(x)

Q Q

p_—1 1 1 p_

< - .
<C [ NIl do+ T (o= (o) + )

Q

The above inequality and (4.10) imply that

1
meas {un > k} < = const (o, O, . p—, p, (), (P)+)

-1 1 1 P
+ s (; pp(-)(Un) + (7) . (4.11)

Let s > 0 and k£ > 0 be fixed. We denote
E, = {\un\ > k}, E,, = {|um\ > k}, E, .= {|Tk(un) — T (wm)| > 5}

We have
{\un — U | > s} CE,UE,UE, n,

which implies that
meas {|u, — um| > s} < meas (E,) + meas (Ey,) + meas (Ey ). (4.12)

By (4.11), for any n > 0, k > 0, we have

1 or-—1 1 1 p—
meas (E,,) < o1 const (o, Q0,01 (0) -, (0')+) + woQp (pi Pp(-)(Un) + » ) :

Since the quantity p,.)(u,) is finite, we have

1

. 1 1 \p-
dm ([ Pp(-) (n) + (p/),) =0,

and, moreover, since p_ > 1, we get

lim const (o, Q, p,p—,py, (), ()+) = 0.

k—oo kP-—1
We deduce that
lim meas(E,) =0 and lim meas(E,)=0. (4.13)

k—o0 k—o0

So, we can write: Vn >0, m >0, Ve > 0, Ik = ko(e) such that k > ko,

meas (E,) < % and meas (E,,) < % (4.14)
Since (T (un))nen converges strongly in LP- (), it is a Cauchy sequence in LP-(§2). Thus,
1
meas (E,) = —— / [Ti(tn) = Tl P~ < (4.15)
P
Q

for all n,m > no(s,e€). Finally, from (4.12), (4.14) and (4.15), it follows that
meas {|u, — um| > s} <e forall n,m > ng(s,e).

This prove that the sequence (uy)nen is a Cauchy sequence in measure and then converges almost
everywhere to some measurable function wu.
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As for k > 0, Ty, is continuous, then Ty (un,) — Ti(u) a.e. in Q and vy, = Ty (u) a.e. in . Therefore,
Ty (up) — Ti(u) in WHP= (),
Ti(un) = Ti(u) in LP~(Q) and a.e. in Q.

Step 3. Strong convergence of truncations.
Let £ > 0 be fixed and h > k. We define the function v, by

Un = @(wn)a
Wn = TQk(un - Th(un) + Tk(un) - Tk(“))?

with b(k) 2
_ 2
p(s) = sexp(ys”), 7= ( % )
Thanks to [16], we have
b(k) 1
/!
_ Y >
#(5) - "D fp(s)| > ¢ Vs eR

Now, we take v, as a test function in (4.2) to obtain

/a(x,un,Vun)go’(wn)an dx
)

+ [ g(z,unVun)o(wn) dz + [ ¢n(un)e (wn)Vwnde = | o(wn) dp,.  (4.16)
/ / /

Taking M = 4k + h, using the facts that Vw,, = 0 on the set {|u,| > M} and g(x, un, Vuy)p(wy) > 0
on the subset {|u,| > k} (because they have the same sign on this subset), then by (4.16), we deduce
that

/a(:r7 Tt (un), VT (n)) @' (wn) Vi, da

Q
+ / g(z, u, Vuy)o(wy) doe + /¢n(TM(un))<p’(wn)an dr = /(p(wn) dptn.  (4.17)
{un| <k} Q Q
In the sequel, we denote by ;(n), i = 1,2,..., various functions of real numbers which converge to 0

as n tends to infinity.
We will deal with each term of (4.17). We rewrite the first term as follows:

/a(m,TM(un),VTM(un))go'(wn)an dz
Q
_ / a (2, o (tn), Va1 () @' (6) VTt (1 — T (1)) e
{lun|<k}
+ / a(@, T (un), VI (un)) @' (wy) Ve, dz. (4.18)

{|un‘>k}

Since a(x,s,0) =0 Vs € R and |u, — T (u)| < 2k on {|u,| < k}, the first term of the right-hand side
of the last equality can be written as follows:

a(x, Tag (un), VI (un)) @ (win ) Vg (un — Th(w)) da

{lun|<k}
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_ / a (2, Tag (tn), V01 (1)) @ (w0) [V Tk () — VT ()] dr. (4.19)
Q

Concerning the second term of the right-hand side of (4.18), we use (3.2) to get

a(a:, T (un), VTM(un))go’(wn)an dz
{lun|>k}
—¢'(2k) / |a(@, Tag (un), Vs (un))| VT3 (u)| do. (4.20)

{lun|>k}

Hence from (4.19) and (4.20), we deduce that

/a(x, T (un), VTM(un))go'(wn)an dz
Q

> /a(x,TM(un), VTM(un))ga’(wn) [VTk(un) - VTk(u)] dzx
Q

— ¢'(2k) / la (@, Tar (un), VIas (un)) | VT3 ()| d.

{‘un‘>k}

Since the sequence (a(z,Tar(un), VTar(uy))) is bounded in (LP'()(Q))N, and the sequence
VT (U)X, 54y cORVerges to 0 in (LPC)(Q))V, we find that the second term on the right-hand side
of the above inequality tends to 0 as n tends to infinity, therefore, we can write

/a(x,un,Vun)go’(wn)an dz
Q

> /a(m,Tk(un), Vi (tn)) @' (wn) [VTk(un) — VI (u)] do +e1(n). (4.21)
Q

On the other hand, the first term on the right-hand side of (4.21) can be written as

/a(x,Tk(un), VT (un)) @' (wn) [V (un) — VTi(u)] d
Q

/ 2, T (un), VI (un)) — a(@, Ti(un), VI (w))] [VTk(tn) — VT (u)] ¢ (wn) da
Q

+/a @, Ty (un), VI (w)) VT (un) @ (Ti (un) — Ti(w)) da
Q

—/a(ac,Tk(un),VTk(u))VTk(u)cp'(wn)dm. (4.22)
O

Using the continuity of the Nemytskii operator (see [20,33]), we have
a(x,Tk(un),VTk(u))cp’(Tk(un) —Ti(u)) — a(m,Tk(u), VTk(u))go’(O)
strongly in (LP'()(Q))N, while VT}(up) — VT (1) weakly in (LP()(€2))V, thus we obtain

/a(m, T (un), VT (0)) VT (un) @' (Tr (un) — Tr(u)) da
)
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:/a(x,Tk(u),VTk(u))VTk(u)go'(O) dx +ea(n). (4.23)
Q

Similarly, we have

—/a (2, T (un ), V1 (u) Vg (w) @' (wy,) dw = —/a(aj, T (w), VT (u)) VT (u)@' (0) do+es(n).  (4.24)
Q O
Therefore, using (4.21)—(4.24), we obtain

/a(x,un,Vun)go’(wn)an dx
Q
> / [a(x,Tk(un),VTk(un))fa(x,Tk(un),VTk(u))} [V Tk (ttn) = VT ()] (wn) date4(n).  (4.25)
Q
By virtue of (3.2) and (3.4), we can treat the second term on the left-hand side of (4.17) as follows:

/ Gn (T, tn, Vg )p(wn) dar| < / b(k) (c(2) + [V T (un) ") [p(wn)| do

{lun|<k} {lun|<k}
< b(k) / c(x)|o(wn)| do + @/a(x,Tk(un),VTk(un))VTk(un)kp(wn)\ dx. (4.26)
{lun|<k} Q

Using the fact that ¢ € L'(2), one shows that

b(k) / c(x)|e(wn)| dx = e5(n). (4.27)
{lun|<k}

We also have

/a(x,Tk(un),VTk(un))VTk(un)\go(wnﬂda:
Q
= / [a(z,Tk(un), VTi(un)) — a(x,Tk(un),VTk(u))} (VT (uy) — VT (w)] [o(wn)| dz
Q

+ /a(w7 Ti(un), VI (un)) Vi (u)|o(wn)| do
Q

+ / a(@, T (un), VT (w) [V (un) — VT ()] [o(wn)| dz.  (4.28)
Q
Combining (4.26)—(4.28), we deduce that

Gn (T, Up, Vuy ) p(wy) do| de < ==

{lun|<k}

x/{a(az,Tk(un),VTk(un))—a(x,Tk(un),VTk(u))] (VT (un) —VTi(uw)] [o(wn)| dz+eg(n). (4.29)
Q
Consequently, from inequalities (4.17), (4.25) and (4.29), it follows that

b(k)

b(k)

/(a(x, T (), V Ty (un)) —a(z, Tk(un),VTk(u))) (VT (un) — VT (1)) (cp'(wn)f = |g0(wn)|> da

Q

<- Q/ (T (1))@ (wn) Vi it + Q/ o dji. (4.30)
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We deal with the second term of the left hand-side of (4.30) as follows:

/ﬂ%ﬂMZ/fWWW@m:Wmﬂﬂ%m

Q Q
— [ BB o+ [ Fre VE(p(n) ds
Uq Ua
— [ T B do+ [ () V() do
Uq Ua
:/Tn(f)go(wn) dm—i—/F-VE(XQgp(wn))dx. (4.31)
Q Uq
Note that
[ Tpetnas| < [ 11,00 Aletanllda+ [ 1A1loten)ldo
Q Q Q

< o(2k) / To(f) — ] e+ / o) da.
Q

Q

We have T,,(f) — f in L' () and px(wn) — ox(Tor(u — Th(u))) weakly-+ in L>°(Q), then

/Tn(f)cp(wn) dz = /fgo(Tgk(u — Th(w))) dz 4+ eg(n). (4.32)

Q Q

The sequence (E(x,¢(wn)))nen is bounded in Wol’p(')(UQ). Indeed, (x,¢(wn))nen is bounded in
Wwir()(Q), and we have the inequality

HE(U)”W(}’P(')(UQ) < Clollwrrcrg) Yo € wrC)(Q).

We also have
E(xo@(wn)) = Xo@(wn) ae. in Uy

and
Xo@(Wn) = o0 (Tor(u — Th(w))) a.e. in Ug as n — oo.

This implies that

E(xo@(wn)) = E(Xqe(Tor(u—Th(u)))) a.e. in Ug as n — oo.
Consequently, we have

VE(Xo$(wn)) = VE (xo@(Tor(u = Ty () in (L) (Ug))".

Finally, using the fact that F e (L*'(")(Uq))N, we deduce that

n—-+oo
Uq Ua

lim F-VE(x,p(wy))de = /F - VE (X o(Ton(u — Tp(u)))) da. (4.33)

For n large enough (for example n > M), we can write

/ G (Ta (1) (w00) Vo da = / G (Tar (1) (w00) Veon dz,
Q

{lun|<M}
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which yields

On(Tar (un)) @' (wn) Ve, dx
{lunlgM}

- / Gn(Tar (1)) (Tt — T (1)) VT — Ty (w) e + 20(n).  (4.34)
Q
Combining (4.30)—(4.34), we are able to pass to the limit as n — co to obtain

hmsup/ [G(T/,Tk(un), VT (un)) — a(ﬂf,Tk(Un%VTk(U))] [VTk(un) = VTi(u)] dx

n—o00
Q

<2 / fo(Tor(u = Th(u))) de — 2 / Gn(Tar (un ) (Tar (1 = T (w))) VTok (u — Th(u)) dx
Q Q

+2 / F-VE(xq@(Tor(u — Ty(u)))) da. (4.35)
Ua

Now, we prove that the three terms on the right-hand side of (4.35) converges to 0 when h — co.
Indeed, for the first term, it suffices to apply Lebesgue’s theorem.

For the last term, we take p(Tor(un, — Th(un))) as a test function in (4.2) to obtain

/a(x, Un, Vi )Vo(Tog (un, — Th(uy))) dx
Q

4 / (2 0, V)9 (T (11, — T () it + / (1) Vo Tk (11, — T (1)) dit
Q Q

< / T ()0 (T (1t — T (1)) i + / F - VE (xo (T (ttn — Th(un)))) d.
Q Uq

Using assumptions (3.2), (3.5) and (3.6), we get

|V [P (Top (wn, — Th(un))) da
(h<|un|<2k+h}
< / Mo|Vun|¢' (Tor(un — Th(un))) do
(h<lunl<2h+h}

+ /Tn(f)cp(Tgk(un — Th(uy)))dx + /F . VE(XQ@(TQk(un — Th(un)))) dx. (4.36)
Q Ua

From Young’s inequality, we obtain

Mo |Vu|@' (Tog (un — Th(uy))) dz
{h<|u, | <2k+h}
< Vo PO (T = Tawn ) da+C [ M da (a3)

{h<|un|<2k+h} {h<|unl}

o
4
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and
/F . VE(XQ<p(T2k(un - Th(un)))) dr < / F |Vl (Tog (un — Th(uy))) dx
<C / |F|P'®) da + % / |Vt [P@ @ (Top (1t — Th(u))) da.  (4.38)
{h<|unl} {h<|un|<2k+h}

Combining (4.36)—(4.38), we deduce

o Q

|V [P (Tog (i, — T (un))) dv
{h<|un|<2k+h}

§/Tn(f)<p(Tgk(un7Th(un)))d:c+C’meas ({|un|>h}) (Mo +1)%+ 4 C / |FIP"®) da. (4.39)
Q {h<|unl}
Since the modular p,(.) is weakly lower semi-continuous (see [19, Theorem 3.29]) and ¢’ > 1, from
(4.39) we have
|VulP®) ! (Top(u — Ty (w))) do = / |V Tk (1 — Ty () [" ! (Tor (u — Ty (w))) dac

{h<|u|<2k+h} Q

§C/|VT2k(u—Th(u))|p )alac<C’hmmf/‘VTQIC n— Th(un)) |p(w

n—oo

< Climinf / |V Tog (= T () [" ' (T (s — T () da

n—oo
{h<|un|<2k+h}

< C'lim inf / [V [P (Tok (wn — Th(un))) dz

n—oo

Q

<C’hm1nf—/ n(f)e(Tog(un — Th(un))) de

2 / 2 /
+ = Climinfmeas ({|u,| > h})(M + 1))+ 4 Z Climinf / |F|P'@ dg
(6% n—r00 Q n—oo
{h<lun|}

ie.,

VP (Top,(u = Tp(u))) d
{h<|u|<2k+h}
2 2 ;2 o)
< C= | fo(Tor(u— Ty(uw))) dz + = Cmeas ({|u| = h})(M +1)P+ + =C |FIP %) da.
a o) o
{r<|ul}
Using inequality (4.13) and the fact that u,, converges almost everywhere to u, we obtain meas {|u| >

h} = 0as h— oco. As |[F| e L' ()(Q), we get

\F\p/(w) dr — 0 as h — oo.

{h<ul}

Moreover, from the Lebesgue dominated convergence theorem, we have

/f(p(Tzk(u —Th(w)))dz — 0 as h — co.
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From the above convergence result, we deduce that

|VulP@ o' (Tor (u — Ty (u))) dz — 0 as h — oo for any fixed number k> 0.  (4.40)

{h<|ul<2k+h}

Hence from (4.38), we obtain

/F . VE(XQQD(TQk(un - Th(un)))) dx — 0 as h — oo for any fixed number k > 0.
Uq

Concerning the second term on the right-hand side of (4.35), we first observe that
0 < ¢ (Tor(u — Th(w)) < max {¢'(—2k), ¢’ (2k)}.

Then, using (3.6) and Young’s inequality, we have

/(b (Tar (w) ' (Tog (v — Th(w)))VTog(u — Th(u)) de < My / &' (Tog(u — Th(w)))|Vu| de
{h<|u|<2k+h}
< Mo / @' (Tor(u — Th(u))) dz + Mo / & (T (u — T, (w)))|VulP®) da
{h<|u|<2k+h} {h<|u|<2k+h}
< Mo max {¢'(—2k), ¢'(2k) } meas {|u| > h} + Mo / o (To (w — T ()| VulP® da.
{h<|u|<2k+h}

Therefore, by (4.40) and the fact that meas ({|u| > h}) — 0 as h tends to infinity, we get

/¢ Tor(w) ' (Tog (v — Ty (w)))VTog(u — Th(u)) de — 0 as h — oo.

Hence by (4.35) and letting h tends to infinity, we deduce that

nh_)rr;o [a(:mTk(un), VTi(un)) — a(z, Ti(un), VTk(u))} [VTi(un) — VT (u)] dz = 0.
Q

Then, according to Lemma 3.2, we conclude that

Te(un) = Ti(u) in WHPCH(Q) VE> 0.

Step 4. Compactness of the nonlinearities gy,.
In this part, we use Vitali’s theorem to prove that
Gn (T, U, V) — g(@,u, Vu) strongly in L*(Q).

Since gp(z,un, Vu,) — g(x,u,Vu) a.e. in Q, from (3.4) it suffices to prove that the sequence
(lgn (2, tn, Vg )| )nen is uniformly equi-integrable.
Let us observe that for any measurable subset ' C Q and m > 0, we have

/|gn(m,un,Vun)|dac= / |gn(a:,un,Vun)‘dx—|— / |gn(x,un,Vun)|da:

Q' N{|un|<m} Q' N{|un|>m}

< b(m) / [e(x) + |Vun|p(””)} dx + / |gn (2, U, Vuy,)| do
Q' N{|un|<m} Q' N{|up|>m}

< b(m) / [e(x) + |VTm(un)|p(m)] dx + / |gn (2, tn, Vuy,) | da

Q' N{|un|<m} Q' N{|up|>m}
= Ky + K.
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For any fixed m, we get
K, < b(m)/ [c(w) + |VTm(un)|p(w)} dx.
Q/

Since T, (u,,) converges strongly to T}, (u) in WP()(Q), we conclude that K is small uniformly in
n, for m fixed as meas (E) is small. For the case of Ks, we consider the function ,, defined by

Ym(s) =0 if |s]<m-—1,
Ym(s) =sign(s) if |s| > m,
P (s) =1 if m—1<]s| <m.

For m > 1, we take 9., (u,) as a test function in (4.2) to obtain

/ a2, s Vi)Vttt (1) der + / 92, Uy Vo)t () A+ / (1) Vit ¥y (1) dt

Q Q Q

- / T Yo (1) i+ / F - VE(xo(un)) de.

Q Uq

Then from (3.5) we get

a(x, Uy, Vg, )Vu, de + / lg(x, up, Vuy,)| dx

{m—1<|un|<m} {lun|>m—1}

< / ()| |Vun| dz + / T ()| dae + / FVuy, dz.

{m—1<u,|<m} {Jun|>m—1} {m—1<u,|<m}

Hence, using assumptions (3.2) and (3.6) and Young’s inequality, we obtain

a / |V, |P®) da 4 / lg(z, wp, Vuy,)| dx
{m—1<|un|<m} {lun|>m~—1}
M, o =
< [ (Gr@) TV [ mples [
(§p(a))7 A
Q {lun|>m—1} {m—1<|un|<m}
p’ () a vT, p(z) ,
S/ My — dac—i—/ ip)] (k)(un” dz + / |F|P"®) dg
o »/ () T
o P(z)(Fp(x)) 7@ O P {Jun|>m—1}
w5 [ ver@ae [ iflde
{lun|>m—1} {lun|>m—1}
My + 1) :
< B0 eas(@)+ 5 [ WP ars [ e [ i
1
Q {|tn|>m—1} {lun|>m—1}
where )
= inf p/(2) (5 <>)’;’<(’3)
pr= inf p'(a)( 7 p(e

This implies that

My + 1) :
lg(x, tn, Vuy,)|de < (()p—|-)+ meas (Q) + / |F|P @) da + / |f| dx.
1

{lun|>m—1} {lun|>m—1} {|un|>m—1}
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Therefore,

lim sup / lg(x, up, Vuy,)|dx =0,

m—r 00 neN
{lun|>m—1}

which is equivalent to K5 being small, uniformly in n and in €’ when m is sufficiently large.
Therefore, the sequence (|g(z, tn, Vi )|)nen is uniformly equi-integrable in Q. We conclude that

9(x, U, Vuy,) — g(x,u, Vu) strongly in L'(€).

Step 5. (up)nen converges a.e. on 9I) to some function v.

We know that the trace operator is compact from W11(Q) into L' (9€2), then there exists a constant
C such that

1Tk (un) = Ti(u)llr00) < ClITh(un) = Ti(uw)lwra()-

Then
Ti(un) — Ti(u) in L' (99) and a.e. on 99.

Therefore, there exists A C 92 such that Ty (u,) converges to Tj(u) on 90\ A with o(A) = 0, where
o is the area measure on 0f.
For every k > 0, let Ay = {x € 00 : |Ti(u(z))| < k} and B =00\ | Ax.

k>0
We have

1 1
o(B) = 1 [ i@ do < L 1T oo
B

C C
< 2 1 Te(@llwrie) < = I1Te@llwrro@) < (||Tk( w)|[p() + ||VTk(U)||p(~))~ (4.41)

By (4.8) and Proposition 2.1, for all k¥ > 1, there exists a positive constant M which doesn’t depend
on n such that

1 BN
VT (un)llp(.y) < M(EP= + k7).
Then, by Proposition 2.5, it follows that

1

Ti(un) — @ )/Tk(un) de + ——— mcas ( /Tk (un) dgc

(1T (un)llp( .y = —
P ()

2

< || Tk (un) — meas ( / Tx(uy) dz

Q

o/
Tk (uy,) dx
p() Hme& s(Q) ) p()
1

< IV Tutun) o + 1t | oy / Ty(un) do

4 1
< M(kP= + k77 ) + | ”p( ) /|Tk u,)| de. (4.42)

meas

Using the fact that T} (u,) converges strongly to Ty (u) in W2()(Q) and the inequality

1Tk () llp( -y < N Tk(un) = Tr(u)llpc.y 4 1Tk (wn) llpc ),

we obtain from (??) with the help of the Lebesgue dominated convergence theorem that

meas

| bty Il
Tl € Hm [Tl < MO 75 + oo / (Ti ()| der
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According to (4.41), we deduce that

1 1 ||1||p(-) ﬂk(uﬂ
o(B) < =+ + dx. 4.4
( ) - C(kl_pi kl_pi ) meas (Q) / k t ( 3)

Therefore, using the Lebesgue dominated convergence theorem and the fact that p_ > 1, by letting
k — oo in (??) we get that o(B) = 0.
Let us now define on 92 the function v by
v(x) = T (u(x)) if z€ Ay.
We take z € 9Q \ (AU B), then there exists k > 0 such that z € Ay and we have
un(z) = v(z) = (un(2) = Ti(un(2))) + (Th(un(z)) — Ti(u(2))).

Since x € Ay, we have |Tj(u,(z))| < k from which we deduce that |u,(z)| < k.
Therefore,
Un () —v(x) = (Th(un(x)) — Tr(u(z))) = 0 as n — +oo.

This means that wu, converges to v a.e. on 0.

Step 6. u is an entropy solution of problem (1.1).

Since the sequence (T (un))nen converges in WHP(C)(Q) to Ty(u), it follows that VT (u,) —
VT (u), and using the fact that p_ > 1, we get

VTi(un) = VTi(u) in (L*(Q)Y VE > 0. (4.44)

Consequently, from Steps 2, 5 and (4.42) it follows that u € 7,270 (Q).
Let o € WHPC)(Q)N L2 (), we take Ty (u, —¢) as a test function in (4.2) and put M = k4 ||¢]|0e
to get

/a(m,un, Vu,)VTi(u, — ) dx + /gn(x,un, Vun)Ti(u, — @) dx
Q Q

+ /hn(x7un)Tk(un —@)dr + /(b(un)VTk(un —p)dr = /Tk(un — @) duy. (4.45)
Q Q Q

First of all, if |u,| > M, then |u, — ¢| > |un| — ||¢]lco, then {|u, — | <k} C {Jun| < M}, so we can
rewrite the first term in (4.43) as follows:

/a(x,un, V) VT (uy, — @) de = /a(m,TM(un), VTM(un))(VTk(un) - V(p)x{‘un_wgk} dx
Q Q

= / (a(l‘,TM(UTL)a VTM(“n)) —a(x, Tpr (un), V‘P)) (VTar(un) = VOIX{ 10— o<ny 42
Q

+ [ ale, T (), V) (T Tar(n) = T, 20y
Q
Using Fatou’s lemma, we get

lim inf/a(x,un, V) VT (u, — @) dx

n——+o0o
Q

> / (a(m,TM(u), VTM(U)) —a(x, T (u), ch))(VTM(u) — V‘P)X{\ufmgk} dx
Q

+ lim /a(x,TM(un), Vo) (VI (un) = VO)X 10 —pi<iy T (4.46)

n—-+oo
Q
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The second limit in (4.44) is equal to

/ oz, Tar (), Vo) (VT () — V)Xo, da
Q

and from (4.44) we obtain

lig{iirnf/a(x,un, V) VT (u, — @) dz > /a(Jc,TM(u)7 VTM(u))(VTk(u) = VOIX(juoi<iy 4T
Q Q

= /a(x,u, Vu)(Vu = Vo)X 1, yi<iy dT = /a(x, u, Vu)VTg(u — @) dx.
Q Q

We have Ty, (u, — @) — Ti(u— ) weakly-* in L>(Q) and g, (2, uy, Vu,) — g(x,u, Vu) in L1(Q), then
it follows that

/gn(a:,un, Vun)Ti(un, — p) de — /g(x,u, Vu)Ty(u — @) dx.
Q Q

We know that T (u, — @) = Ti(u — @) in WPC)(Q) and ¢, (un) = ¢(Tar(un)) in {|Ju — ¢| < k} for
{n > M}, then

/ G (1) VTt — ) d — / H(u)VT(u — ) de.
Q Q

For the third term of (4.43), we have
1 (2)—2
ﬁ ‘un|p UnTk(un - 90) dx
Q

1 B N 1 N
= = [ a2, = P2 Tl — )+ - [ 1ol — )
Q Q

The quantity (|u,[P®)~2u,, — [p|P®~20) T (u, — ) is nonnegative, and we get
1 (2)—2 1 (2)—2
— [ lo|? T (up, — @) de < — [ |up|? Un T (un, — ) d. (4.47)
n n
Q Q

ince Tk (u, — ¢) converges weakly-* to Ty (u, — ) in and |p|"V/ T € , it follows that
Since 7] kl T L*(Q) and |p|P()~2p € L1(Q), it follows th

/le”‘x)‘%Tk(un —p)dz — / PO 20T (u — ) da. (4.48)
Q Q
Therefore, using(4.45) and (4.46), we have

n—oo n

1
lim — / |un|p(x)_2unTk(un —@)dz > 0. (4.49)
Q

It remains to prove that

/Tk(un — ) dptn, — /Tk(u — ) dp.
Q Q
We have

/mun o) = /E(Tkwn ) dpin = /n(f)(Tk(ue ) d + / F -V E(xo Ti(un — ¢)) da.

Q Q Q Uq
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Due to the Lebesgue dominated convergence theorem, we have
[T Tt = )z — [ T ) e (450)
Q Q

The sequence (E(x,Tk(tn — ¢)))nen is bounded in Wol’p( ' )(UQ). Moreover, we have
E(x,Ti(un —¢)) = xo Tk (un — ) a.e. in Ug

and
XoTk(tn — @) = xoTe(u — @) a.e. in Uy as n — oo,

which implies that

E(xoTk(un — ) = E(xoTk(u — ¢)) a.e. in Ug as n — oo.
Therefore, we have

VE(xoTi(un = ¢)) = VE(xoTi(u — ) in (P (Ug))™.

Then, using the fact that F e (L?' () (Ug))N, we deduce that

n—-+oo

lim F-VE(x,Ti(un — ¢)) de — /F -VE(XoTr(u—¢)). (4.51)
Uq Ua

Consequently, from (4.48) and (4.49), we get

lim [ Ti(un — @) dyin = / F(Ti(u— @) de + / F - VE(xoTi(u — ) da

’rz~>+c>oQ 2 o
_ / FE(xo (Tl — 9))) de: + / F-VE(x,Ti(u — ) dz = (, B(Tu(u — ¢))) = / Ty(u— ) dp.
Uq Uq Q

Gathering the results, we obtain

/a(gc, u, Vu)VTi(u — @) dx —|—/g(x, u, Vu)Ti(u — ) dz +/¢(u)VTk(u — ) dz S/Tk(u — ) du.
Q

Q Q Q
We conclude that u is an entropy solution of problem (1.1). O
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