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THE Lp NEUMANN PROBLEM
FOR HIGHER ORDER ELLIPTIC EQUATIONS



Abstract. We solve the Neumann problem in the half-space Rn+1
+ for higher order elliptic differential

equations with variable self-adjoint t-independent coefficients and with boundary data in Lp, where
max(1, 2n

n+2 − ε) < p < 2.
We also establish nontangential and area integral estimates on layer potentials with inputs in Lp

or Ẇ±1,p for a similar range of p, based on the known bounds for p ≥ 2; in this case, we may relax
the requirement of self-adjointness.

2020 Mathematics Subject Classification. Primary 35J30, Secondary 35C15.

Key words and phrases. Elliptic equation, higher-order differential equation, Neumann problem,
layer potentials



The Lp Neumann problem for higher order elliptic equations 3

1 Introduction
In this paper, we study the Neumann boundary value problem and layer potentials for higher order
elliptic differential operators of the form

Lu = (−1)m
∑

|α|=|β|=m

∂α(Aαβ∂
βu), (1.1)

where m is a positive integer, and with coefficients A that are t-independent in the sense that

A(x, t) = A(x, s) = A(x) for all x ∈ Rn and all s, t ∈ R. (1.2)

Our coefficients may be merely bounded measurable in the n horizontal variables. Second order
operators with t-independent coefficients have been studied extensively; see, for example, [2, 5–8, 10–
12, 19, 25, 43–45, 47, 48, 51, 52, 56, 57, 64]. Higher order operators with t-independent coefficients have
been studied by Hofmann and Mayboroda together with the author of the present paper in [15,20–24].

Specifically, in [21, 24], we established the following result. Suppose that L is an operator of the
form (1.1) associated to the coefficients A that are t-independent, bounded, self-adjoint in the sense
that Aαβ = Aβα whenever |α| = |β| = m, and satisfy the boundary Gårding inequality

Re
∑

|α|=|β|=m

ˆ

Rn

∂αφ(x, t)Aαβ(x) ∂
βφ(x, t) dx ≥ λ‖∇mφ( · , t)‖2L2(Rn) (1.3)

for all t ∈ R, all smooth test functions φ that are compactly supported in Rn+1, and some λ > 0
independent of t and φ. Then for every ġ ∈ L2(Rn) there is a solution w, unique up to the adding
polynomials of degree m− 1, to the L2 Neumann problem

Lw = 0 in Rn+1
+ ,

Ṁ+
A w 3 ġ,

‖A+
2 (t∇m∂tw)‖L2(Rn) + ‖Ñ+(∇mw)‖L2(Rn) ≤ C‖ġ‖L2(Rn).

(1.4)

Here, Ñ+ is the modified nontangential maximal operator introduced in [51] and given (in Rn+1
+ ) by

Ñ+H(x) = sup

{(  

B((y,s),s/2)

|H(z, t)|2 dz dt
)1/2

: s > 0, |x− y| < s

}
. (1.5)

A+
2 is the Lusin area integral given by

A+
2 H(x) =

( ∞̂

0

ˆ

|x−y|<t

|H(y, t)|2 dy dt
tn+1

)1/2

. (1.6)

We adopt the convention that if t appears inside the argument of a tent space operator such as A+
2 ,

then it denotes the (n+ 1)th coordinate function.
Ṁ+

A w denotes the Neumann boundary values of w, and is the equivalence class of functions
given by

ġ ∈ Ṁ+
A w if

∑
|γ|=m−1

ˆ

Rn

∂γφ(x, 0) gγ(x) dx =
∑

|α|=|β|=m

ˆ

Rn+1
+

∂αφAαβ ∂
βw (1.7)

for all smooth test functions φ that are compactly supported in Rn+1. An integration by parts
argument shows that the right-hand side depends only on the behavior of φ near the boundary, and
so Ṁ+

A w is well defined as an operator on the space {∇m−1φ|∂Rn+1
+

: φ ∈ C∞
0 (Rn+1)}.

In the second order case 2m = 2, M
+
A w consists of a single distribution; however, if m ≥ 2,

then, by equality of mixed partials, Ṁ+
A w contains many arrays of distributions, and so is indeed an
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equivalence class. This is the formulation of the Neumann boundary data used in [14,15,20,21,23,24],
and is closely related to the Neumann boundary values for the bilaplacian in [29, 60, 67, 71] and for
general constant coefficient systems in [61,72,73]. We refer the reader to [18,20] for further discussion
of higher order Neumann boundary data.

In the present paper we extend from results for L2 boundary data to Lp boundary data for p < 2.
The first of the two main results of the present paper is the following theorem. (The second main
result is Theorem 1.2 below.)

Theorem 1.1. Suppose that L is an elliptic operator of the form (1.1) of order 2m associated with
coefficients A that are bounded, t-independent in the sense of formula (1.2), satisfy the ellipticity
condition (1.3), and are self-adjoint in the sense that Aαβ(x) = Aβα(x) for all |α| = |β| = m and all
x ∈ Rn.

Then there is a positive number ε > 0, depending only on the dimension n+ 1, the order 2m of
the operator L, the constant λ in the bound (1.3), and ‖A‖L∞(Rn), with the following significance.
Suppose that p satisfies

max
(
1,

2n

n+ 2
− ε

)
< p < 2. (1.8)

Then for every ġ ∈ Lp(Rn), there is a solution w, unique up to adding polynomials of degree at most
m− 1, to the Lp Neumann problem

Lv = 0 in Rn+1
+ ,

Ṁ+
A v 3 ġ,

‖A+
2 (t∇m∂tw)‖Lp(Rn) + ‖Ñ+(∇mw)‖Lp(Rn) ≤ Cp‖ġ‖Lp(Rn)

(1.9)

where Cp depends only on p, n, m, λ, and ‖A‖L∞(Rn).

1.1 The history of the Neumann problem
We now discuss the history of the Neumann problem with boundary data in a Lebesgue space. The
Neumann problem for the Laplacian with Lp boundary data is traditionally the problem of finding a
function u such that

−∆u = 0 in Ω, ν · ∇u = g on ∂Ω, ‖NΩ(∇u)‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω).

Here, NΩH(X) = sup{|H(Y )| : |X − Y | < 2 dist(Y, ∂Ω)} is the standard nontangential maximal
operator in Ω and ν is the unit outward normal to ∂Ω. We observe that if ∆u = 0 in Ω and u and
∂Ω are sufficiently smooth, then

ˆ

∂Ω

φν · ∇u dσ =

ˆ

Ω

∇φ · ∇u

and so the formulation of higher order Neumann boundary values (1.7) is in the spirit of the original
harmonic Neumann problem. The harmonic Neumann problem with L2 boundary data was shown to
be well posed in [50] for all bounded Lipschitz domains Ω, and the Neumann problem with Lp data
for p with 1 < p < 2 + ε was shown to be well posed in [31], where ε > 0 depends on Ω.

In [51], the Lp Neumann problem for more general second order equations

− div(A∇u) = 0 in Ω, ν ·A∇u = g on ∂Ω, ‖ÑΩ(∇u)‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω)

was shown to be well posed for 1 < p < 2 + ε in starlike Lipschitz domains with coefficients that are
bounded, elliptic, real, symmetric, and independent of the radial coordinate. (This situation is very
similar to the case of t-independent coefficients in the domain above a Lipschitz graph.) Here, ÑΩ is
a suitable modification of NΩ; we remark that if Ω = Rn+1

+ , then ÑΩ = Ñ+ is given by formula (1.5).
The case of real nonsymmetric t-independent coefficients was addressed in [52, 64], in which the

Lp Neumann problem was solved in two dimensions for all p with 1 < p < 1 + ε. (As shown in the
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appendix to [52], there exist bounded real nonsymmetric t-independent coefficients for which the L2

Neumann problem is ill posed.) The well posedness of the L2 Neumann problem in the domain above
a Lipschitz graph was shown to be stable under t-independent perturbation in [5] (and, under certain
additional assumptions, in [2]), and some additional extrapolation type results were established in [7].

The Lp Neumann problem for a second order system of equations can be written as
(Lu⃗)j =

n+1∑
α=1

n+1∑
β=1

N∑
k=1

∂xα
(Ajk

αβ∂xβ
uk) = 0 in Ω for 1 ≤ j ≤ N,

M⃗Ω
A u⃗ = g⃗, ‖NΩ(∇u⃗)‖Lp(∂Ω) ≤ Cp‖g⃗‖Lp(∂Ω),

(1.10)

where M⃗Ω
A u⃗ is given by

M⃗Ω
A u⃗ = g⃗ if

N∑
j=1

ˆ

∂Ω

φj gj dσ =

n+1∑
α=1

n+1∑
β=1

N∑
j=1

N∑
k=1

ˆ

Ω

∂xαφj A
jk
αβ ∂xβ

uk

for all φ⃗ ∈ C∞
0 (Rn+1). As observed in [67], the traction boundary value problem for the Lamé system

of elastostatics can be written in this form. The traction problem and the Neumann problem for the
Stokes system, with boundary data in Lp(∂Ω), 2−ε < p < 2+ε, were shown to be well posed in [34,38];
in [67], Shen observed that their arguments apply to general second order systems with real symmetric
constant coefficients that satisfy an appropriate ellipticity condition. The traction boundary problem
was shown to be well posed for Lp boundary data, 1 < p < 2, in [32]; their arguments relied on
the fact that the Lamé system is defined in three dimensions, and applies to many more general
three-dimensional (but not higher-dimensional) systems. In [67], Shen showed that if Ω ⊂ Rn+1 is
a Lipschitz domain with n+ 1 ≥ 4, then for any second order elliptic system with real symmetric
constant coefficients, the Lp Neumann problem (1.10) is well posed whenever 2n

n+2 − ε < p < 2.
Turning to higher order equations, the Lp Neumann problem for the biharmonic equation is

given by
(−∆)2u = 0 in Ω, M⃗Ω

ρ u 3 g⃗, ‖NΩ(∇2u)‖Lp(∂Ω) ≤ Cp‖g⃗‖Lp(∂Ω),

where

M⃗Ω
ρ u 3 g⃗ if

ˆ

Ω

ρ∆u∆φ+ (1− ρ)

n+1∑
j,k=1

∂xjxk
u ∂xjxk

φ =

ˆ

∂Ω

g⃗ · ∇φdσ

for all sufficiently smooth test functions φ. The constant ρ is called the Poisson ratio; we remark that
an appropriate choice of coefficients Aρ for the biharmonic equation yields

Ṁ+
Aρ

u = M⃗
Rn+1

+
ρ u,

where Ṁ+
A u is given by formula (1.7). The biharmonic Neumann problem was shown to be well posed

in bounded Lipschitz domains for p sufficiently close to 2 in [71] in dimension n+ 1 ≥ 2, and for p
with 2n

n+2 − ε < p < 2 in [67] in dimension n+ 1 ≥ 4. (The case of C1 domains in R2 was considered
earlier in [29].)

Finally, the L2 Neumann problem (1.4) was shown to be well posed in [21,24].
We observe that Shen’s paper [67] yields the well posedness of the Lp Neumann problem for both

the biharmonic equation and for constant coefficient second order systems, for the same range of p as
in our Theorem 1.1. The present paper builds heavily on our preceding paper [15], and the techniques
of [15] owe much to the techniques of Shen. However, we remark that the arguments of [15] are more
closely related to those of Shen’s earlier paper [65] concerning the Dirichlet problem than to those of
the later paper [67] concerning the Neumann problem.

Our proof of Theorem 1.1 involves the well posedness of the subregular Neumann problem as
established in [15]. The subregular Neumann problem is the Neumann problem with boundary data
in Ẇ−1,p(Rn). Here, Ẇ−1,p(Rn) is the dual space to Ẇ 1,p′

(Rn), the homogeneous Sobolev space
in Rn with ‖φ‖Ẇ 1,p′ (Rn) = ‖∇∥φ‖Lp′ (Rn), where 1/p + 1/p′ = 1 and ∇∥ denotes the gradient in Rn
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(rather than Rn+1). We will discuss the main result of [15] in more detail in Section 7. Here, we
only mention that subregular Neumann problems have received relatively little study; see [71] (the
harmonic and biharmonic problems), [7, 10] (second order equations with t-independent coefficents),
and [15,21,24] (higher order equations with t-independent coefficients).

The sharp range of p for which a higher order Lp Neumann problem is well posed is not known, even
for special cases such as the biharmonic Neumann problem. However, the results for related problems
are somewhat suggestive. Specifically, the range of p for which the biharmonic Ẇ 1,p Dirichlet problem

(−∆)2u = 0 in Ω, ∇u = f⃗ on ∂Ω, ‖NΩ(∇2u)‖Lp(∂Ω) ≤ C‖f⃗‖Ẇ 1,p(∂Ω)

is well posed in all Lipschitz domains Ω ⊂ Rn+1 is known to be [6/5, 2] in dimension n+ 1 = 4,
to be [4/3, 2] in dimension n+ 1 = 5, 6, or 7, and is known to be a subset of [4/3, 2] in dimension
n+ 1 ≥ 8. See [65,66,70] for the well posedness results, [33, Section 5] and [62, Theorem 10.7] for the
ill posedness results for the Lp′ Dirichlet problem, and [53] for the duality between the Lp′ and Ẇ 1,p

Dirichlet problems for the bilaplacian.
This suggests that the Lp Neumann problem (1.9) is probably not well posed for the full range

1 < p ≤ 2 in dimension 4 and higher.

1.2 Layer potentials
We will prove Theorem 1.1 by using the method of layer potentials. In the second order case 2m = 2,
the double and single layer potentials are explicitly defined integral operators given by

DA
Ω f(X) =

ˆ

∂Ω

ν(Y ) ·A∗(Y )∇EL∗(Y,X) f(Y ) dσ(Y ),

SL
Ωg(X) =

ˆ

∂Ω

EL(X,Y ) g(Y ) dσ(Y ),

where ν is the unit outward normal vector to the domain Ω ⊂ Rn+1 and EL is the fundamental
solution for the operator L in Rn+1. For reasonably well behaved domains Ω and inputs f and g, the
outputs DA

Ω f and SL
Ωg are locally Sobolev functions satisfying L(DA

Ω ) = L(SL
Ωg) = 0 away from ∂Ω.

Certain other properties of layer potentials (in particular, the Green formula and jump relations) are
well known. It is possible to generalize layer potentials to the case of higher order operators. This
may be done by using integral kernels composed of various derivatives of higher order fundamental
solutions (see [1,28,29,60,61,67,71]) or by using the Lax-Milgram lemma to construct operators with
appropriate properties (see [14,20] or Subsection 2.4 below).

If the operator ḟ → ṀΩ
A DA

Ω ḟ is invertible D → N, for some function spaces D and N, where
ṀΩ

A is an appropriate Neumann boundary operator, then the function u = DA
Ω ((ṀΩ

A DA
Ω )−1ġ) is a

solution to the Neumann problem

Lu = 0 in Ω, ṀΩ
A u = ġ

with boundary data ġ. Furthermore, we may establish the bounds on u (such as the nontangential
bound ‖ÑΩ(∇mu)‖Lp(∂Ω) ≤ Cp‖ġ‖N) by establishing the corresponding bound

‖ÑΩ(∇mDA
Ω ḟ)‖Lp(∂Ω) ≤ Cp‖ḟ‖D

on the double layer potential.
Similarly, if ġ → TrΩ ∇m−1SL

Ω ġ is invertible N → D, then solutions to the Dirichlet problem

Lu = 0 in Ω, TrΩ ∇m−1u = ḟ

exist for all ḟ ∈ D.
This is the classic method of layer potentials. This method of constructing solutions to the Dirichlet

or Neumann problem was used in [31,37,39,58,69,74] in the case of harmonic functions (that is, in the
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case L = −∆), in [34,36,38,41,67] for second order constant coefficient systems, in [2,12,19,43,47] for
second order operators with variable t-independent coefficients, in [1,28,29,60,61,67,71] for higher order
operators with constant coefficients, and in [21] for higher order operators with variable t-independent
coefficients.

We will construct solutions to problem (1.9) by showing that Ṁ+
A DA is invertible Ṁ+

A DA :

ẆA1,p
m−1(Rn) → (ẆA0,p′

m−1(Rn))∗, where ẆAj,p
m−1(Rn) is the space of all arrays of functions in Ẇ j,p(Rn)

(or Lp(Rn) if j = 0) that can arise as the gradient ∇m−1 of order m − 1 of a common function. If
m ≥ 2, then by the equality of mixed partials, ẆAj,p

m−1(Rn) is a proper subspace of Ẇ j,p(Rn). Then
(ẆA0,p′

m−1(Rn))∗ is a quotient space of Lp(Rn) whose elements are equivalence classes of Lp functions;
in light of definition (1.7) of Neumann boundary values, Ṁ+

A DA is naturally such an equivalence
class.

Invertibility of the operator Ṁ+
A DA : ẆA1,p

m−1(Rn) → (ẆA0,p′

m−1(Rn))∗ yields existence of solutions
to problem (1.9) if, in addition, we have the estimates∥∥A+

2 (t∇m∂tDAḟ)
∥∥
Lp(Rn)

+ ‖Ñ+(∇mDAḟ)‖Lp(Rn) ≤ Cp‖ḟ‖ẆA1,p
m−1(Rn).

Thus, we have to establish these estimates for p and A as in Theorem 1.1. In fact, we will establish
these estimates for A satisfying weaker conditions. (In particular, we do not need A to be self-adjoint
to bound the layer potentials.) Furthermore, we will establish estimates on the single layer potential
and additional estimates on the double layer potential.

To discuss known the results for higher order layer potentials and to state the bounds on layer
potentials to be established in this paper, we introduce some terminology. We will consider the
coefficients A that satisfy the ellipticity condition

Re

ˆ

Rn+1

∑
|α|=|β|=m

∂αφ(x, t)Aαβ(x) ∂
βφ(x, t) dx dt ≥ λ‖∇mφ‖2L2(Rn+1) (1.11)

for all φ ∈ C∞
0 (Rn+1) and some λ > 0 independent of φ. Observe that condition (1.11) is weaker than

condition (1.3) of Theorem 1.1.
Meyers’s reverse Hölder inequality for gradients of solutions is well known. In [9, 27], it was

generalized to operators of higher order. That is, if L is an operator of order 2m, m ≥ 1, of the form
(1.1) and associated to bounded coefficients A that satisfy the ellipticity condition (1.11), then there
is a constant ε > 0 such that if 2 < p < 2 + ε, then( ˆ

B(X0,r)

|∇mu|p
)1/p

≤ c(0, L, p, 2)

r(n+1)(1/2−1/p)

( ˆ

B(X0,2r)

|∇mu|2
)1/2

(1.12)

whenever u ∈ Ẇm,2(B(X0, 2r)) and Lu = 0 in B(X0, 2r).
In [40, Section 9, Lemma 2], it was shown that if L = −∆, then the L2 norm on the right-hand

side can be replaced by an Lq norm for any q < 2. The argument generalizes to arbitrary elliptic
operators; see [13, Theorem 24]. Furthermore, the Gagliardo–Nirenberg–Sobolev and Caccioppoli
inequalities allow us to establish bounds on the lower order derivatives; see [13, Section 4].

Thus, we define p+j,L as the extended real number such that, whenever p and q satisfy 0 < q < p <

p+j,L, there is a constant c(j, L, p, q) <∞ such that

( ˆ

B(X0,r)

|∇m−ju|p
)1/p

≤ c(j, L, p, q)

r(n+1)(1/q−1/p)

( ˆ

B(X0,2r)

|∇m−ju|q
)1/q

(1.13)

whenever u ∈ Ẇm,2(B(X0, 2r)) and Lu = 0 in B(X0, 2r). We define p−j,L by

1

p−j,L
+

1

p+j,L
= 1. (1.14)
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By the results mentioned above, p+j,L exists whenever 0 ≤ j ≤ m. By [9, Theorem 49], [13, Section 4],
and [15, Propositions 3.3 and 3.6], if A is bounded, t-independent in the sense of formula (1.2), and
elliptic in the sense of formula (1.11), then there are numbers ε > 0 and ε̃ > 0, depending only on the
order 2m of the operator L, the ambient dimension n+ 1, the number λ in the ellipticity condition
(1.11), and the norm ‖A‖L∞(Rn) of the coefficients, such that the numbers p+j,L satisfy

p+0,L = ∞, p+1,L = ∞ if n+ 1 = 2,

p+0,L ≥ 2 + ε, p+1,L = ∞ if n+ 1 = 3,

p+0,L ≥ 2 + ε, p+1,L ≥ 2n

n− 2
+ ε if n+ 1 ≥ 4.

Therefore, there is an ε̃ > 0 depending only on n and ε such that
p−0,L = 1, p−1,L = 1 if n+ 1 = 2,

p−0,L ≤ 2− ε̃, p−1,L = 1 if n+ 1 = 3,

p−0,L ≤ 2− ε̃, p−1,L ≤ 2n

n+ 2
− ε̃ if n+ 1 ≥ 4.

(1.15)

Remark 1.1. If p < 2+ ε, or if p <∞ and n+ 1 = 2, then again by [13, Section 4] and [15, Section 3],
the numbers c(0, L, p, q) in the bound (1.13) may be bounded by constants depending only on p, q
and the standard parameters m, n, λ, and ‖A‖L∞ . The same is true of the numbers c(1, L, p, q) if
n+ 1 ≤ 3 and p <∞ or n+ 1 ≥ 4 and p < 2n

n−2 + ε.
We can now discuss old and new bounds on layer potentials. In [15,20,22,24], Hofmann, Mayboroda

and the author of the present paper showed that if L is an operator of the form (1.1) associated to
the bounded elliptic t-independent coefficients, then there is ε > 0 such that

‖Ñ∗(∇mSLġ)‖Lp(Rn) ≤ C(0, L, p)‖ġ‖Lp(Rn), 2− ε < p < p+0,L, (1.16)

‖Ñ∗(∇mDAφ̇)‖Lp(Rn) ≤ C(0, L, p)‖φ̇‖ẆA1,p
m−1(Rn), 2− ε < p < p+0,L, (1.17)

‖A∗
2(t∇m∂tSLġ)‖Lp(Rn) ≤ C(1, L, p)‖ġ‖Lp(Rn), 2− ε < p < p+1,L, (1.18)

‖A∗
2(t∇m∂tDAφ̇)‖Lp(Rn) ≤ C(1, L, p)‖φ̇‖ẆA1,p

m−1(Rn), 2 ≤ p < p+1,L, (1.19)

‖A∗
2(t∇mSL

∇ḣ)‖Lp(Rn) ≤ C(1, L, p)‖ḣ‖Lp(Rn), 2− ε < p < p+1,L, (1.20)

‖A∗
2(t∇mDAḟ)‖Lp(Rn) ≤ C(1, L, p)‖ḟ‖ẆA0,p

m−1(Rn), 2 ≤ p < p+1,L, (1.21)

‖Ñ∗(∇m−1SL
∇ḣ)‖Lp(Rn) ≤ C(1, L, p)‖ḣ‖Lp(Rn), 2− ε < p < p+1,L, (1.22)

‖Ñ∗(∇m−1DAḟ)‖Lp(Rn) ≤ C(1, L, p)‖ḟ‖ẆA0,p
m−1(Rn), 2− ε < p < p+1,L (1.23)

where p+j,L is as in the bound (1.13), and C(j, L, p) is a constant depending only on m, n, λ, ‖A‖L∞ ,
p, and the number c(j, L, p, 2) in the bound (1.13). These bounds played a crucial role in solving the
L2 Neumann problem (1.4) (and the subregular problem of [15]).

Here,

Ñ∗H(x) = sup

{(  

B((y,s),|s|/2)

|H(z, t)|2 dz dt
)1/2

: s ∈ R, |x− y| < |s|
}
, (1.24)

A∗
2H(x) =

( ∞̂

−∞

ˆ

|x−y|<|t|

|H(y, t)|2 dy dt

|t|n+1

)1/2

(1.25)

are two-sided analogues of the nontangential and area integral operators of formulas (1.5) and (1.6).
The second of the two main results of the present paper is the following theorem, in which we

expand the range of the parameter p in the bounds (1.16)–(1.23) to include more values below 2.
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Theorem 1.2. Suppose that L is an operator of the form (1.1) of order 2m associated with bounded
coefficients A that are t-independent in the sense of formula (1.2) and satisfy the ellipticity condition
(1.11) for some λ > 0.

Then the double and single layer potentials DA, SL and SL
∇, originally defined as in Subsection 2.4

below, extend by density to operators that satisfy the following bounds for all p in the given ranges and
all inputs ḟ , ġ, ḣ, and φ̇ in the indicated spaces:

‖Ñ∗(∇mSLġ)‖Lp(Rn) ≤ C(1, L∗, p′)‖ġ‖Lp(Rn), p−1,L∗ < p < 2, (1.26)

‖Ñ∗(∇mDAφ̇)‖Lp(Rn) ≤ C(1, L∗, p′)‖φ̇‖ẆA1,p
m−1(Rn), p−1,L∗ < p < 2, (1.27)

‖A∗
2(t∇m∂tSLġ)‖Lp(Rn) ≤ C(1, L∗, p′)‖ġ‖Lp(Rn), p−1,L∗ < p < 2, (1.28)

‖A∗
2(t∇m∂tDAφ̇)‖Lp(Rn) ≤ C(1, L∗, p′)‖φ̇‖ẆA1,p

m−1(Rn), p−1,L∗ < p < 2, (1.29)

‖A∗
2(t∇mSL

∇ḣ)‖Lp(Rn) ≤ C(0, L∗, p′)‖ḣ‖Lp(Rn), p−0,L∗ < p < 2, (1.30)

‖A∗
2(t∇mDAḟ)‖Lp(Rn) ≤ C(0, L∗, p′)‖ḟ‖ẆA0,p

m−1(Rn), p−0,L∗ < p < 2, (1.31)

‖Ñ∗(∇m−1SL
∇ḣ)‖Lp(Rn) ≤ C(0, L∗, p′)‖ḣ‖Lp(Rn), p−0,L∗ < p < 2, (1.32)

‖Ñ∗(∇m−1DAḟ)‖Lp(Rn) ≤ C(0, L∗, p′)‖ḟ‖ẆA0,p
m−1(Rn), p−0,L∗ < p < 2. (1.33)

Here, the numbers p−j,L are as in formulas (1.13), (1.14) and, in particular, satisfy the bounds (1.15).
The constants C(j, L∗, p′) depend only on the standard parameters m, n, λ, ‖A‖L∞(Rn), the number
p, and the constants c(j, L∗, p′, 2) in the bound (1.13), where 1/p+ 1/p′ = 1.

The use of the numbers p+j,L allows us to efficiently summarize several known special cases from
the case 2m = 2.

In particular, if A is constant then p+0,L = p+1,L = ∞. If n+ 1 = 2 and A is t-independent, then we
still have that p+0,L = p+1,L = ∞; see [11, Théorème II.2] in the case 2m = 2 and [15, Proposition 3.3]
(reproduced in the bound (1.15) above) in the general case. Thus, in either of these two special cases,
Theorem 1.2, and the bounds (1.16)–(1.23), imply that all eight bounds (1.26)–(1.33) (or (1.16)–
(1.23)) are valid for all p with 1 < p <∞. If 2m = 2 and if A is constant or n+ 1 = 2, then all eight
bounds are known (see [10, Theorem 12.7]) for 1 < p <∞.

Furthermore, if the well known De Giorgi–Nash-Moser regularity conditions are valid (which is
true if A is real and 2m = 2, and which by [2, Appendix B] is true for complex t-independent
coefficients in dimension n+ 1 = 3), then p+1,L = ∞, and so the bounds (1.28) and (1.29) are valid for
1 < p < ∞, the bounds (1.26) and (1.27) are valid for 1 < p < 2 + ε, and the bounds (1.30)–(1.33)
are valid for 2 − ε < p < ∞. The 2 + ε < p < ∞ case of the bound (1.29) was established in [15];
the remaining bounds on layer potentials were established earlier for the second order t-independent
operators satisfying the De Giorgi–Nash-Moser conditions in [7, 43,44,46,47].

Finally, in the general case (with n+ 1 ≥ 4), [15, Proposition 3.6] (reproduced in the bound (1.15)
above) implies that the bounds (1.28) and (1.29) are valid for 2n

n+2 − ε < p < 2n
n−2 + ε, the bounds

(1.26) and (1.27) are valid for 2n
n+2 − ε < p < 2 + ε, and the bounds (1.30)–(1.33) are valid for

2 − ε < p < 2n
n−2 + ε. Again, the 2 + ε < p < 2n

n−2 + ε cases of the bounds (1.28) and (1.29) are
due to [15]; the remaining bounds on the layer potentials for general second order operators with
t-independent coefficients are due to [10, Theorem 12.7].

Remark 1.2. In [4], Auscher identifies two numbers, which he calls p+(L) and q+(L), that govern the
Lp behavior of a number of operators related to the operator L, such as the Riesz transform L1/2

and various Littlewood–Paley–Stein type functionals. We now remark on the connections between
these numbers and the numbers p±k,L mentioned above and governing (or at least guaranteeing) the
Lp behavior of layer potentials.

In [4, Corollary 5.24], Auscher identifies the number q+(L) as the supremum of the exponents p
for which L extends to an isomorphism from Ẇm,p(Rn+1) to Ẇ−m,p(Rn+1).

It is known that invertibility of L : Ẇm,p(Rn+1) → Ẇ−m,p(Rn+1) is equivalent to the following
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statement: there is c̃(0, L, p, 2) > 0 such that if Lu = divm Ḣ in B(X0, 2r), then

( ˆ

B(X0,r)

|∇mu|p
)1/p

≤ c̃(0, L, p, 2)

( ˆ

B(X0,2r)

|Ḣ|p
)1/p

+
c̃(0, L, p, q)

r(n+1)(1/2−1/p)

( ˆ

B(X0,2r)

|∇mu|2
)1/2

. (1.34)

Observe that this is a generalization of the bound (1.12). Validity of the bound 1.34 for at least some
p > 2 was proven in [59] in the second order case, and in [13,27] in the higher order case.

The argument that invertibility of L yields the bound (1.34) is clearly stated in the second order
case in the proof of [25, Proposition 3.9], and is given explicitly in the higher order case in [16,
Theorems 64 and 66]. The converse (that the bound (1.34) yields invertibility of L) may be easily
established by using the invertibility of L : Ẇm,2(Rn+1) → Ẇ−m,2(Rn+1) (which follows from the Lax-
Milgram lemma), letting r → ∞ and applying density (which yields the boundedness of L−1 divm :
Lp → Ẇm,p), and using the Hahn–Banach and Riesz representation theorems to show that divm is a
surjection from Lp(Rn+1) to Ẇm,p(Rn+1) with a bounded right inverse.

Thus, the exponent q+(L) is the supremum of the exponents p for which the bound (1.34) is valid.
But the bound (1.34) clearly implies the bound (1.12), and thus is valid for the same or smaller range
of p; so,

q+(L) ≤ p+0,L

and the two numbers are closely connected.
The number p+(L) of [4] is noted in [4, Section 8.2] to satisfy

1

p+(L)
≤ max

(
0,

1

q+(L)
− m

n+ 1

)
.

The Gagliardo–Nirenberg–Sobolev inequality and the Caccioppoli inequality readily show that the
number p+m,L also satisfies

1

p+m,L

≤ max
(
0,

1

p+0,L
− m

n+ 1

)
and so the number p+m,L of the present paper and the number p+(L) of [4] do satisfy similar inequalities
and it is natural to conjecture that they are also related.

1.3 Outline
The outline of this paper is as follows. In Section 2, we will define our terminology. In Section 3, we
will state some known results of the theory that we will use several times throughout the paper, and
(in Subsection 3.3) will establish a number of results concerning the tent space operators, that is, the
operators Ñ+, A+

2 , Ñ∗, A∗
2 given by formulas (1.5), (1.6), (1.24), and (1.25), as well as the related

Carleson operators C̃±
1 , C̃∗

1 given by formulas (2.2) and (2.3).
We will prove Theorem 1.2 in Section 5. We will prove it by duality with the Newton potential,

and so in Section 4 we will study the Newton potential. Specifically, we will establish duality formulas
relating the Newton potential to the double and single layer potentials, then bound the Newton poten-
tial using the known bounds (1.16)–(1.23) on the double and single layer potential, a decomposition
argument in the spirit of [46, Lemma 4.1], and the good-λ results of [15] modeled on those of [65].

In Section 7, we will conclude the paper by proving Theorem 1.1 using the method of layer
potentials. A crucial ingredient in the proof of uniqueness of solutions is the Green formula; this
formula is the subject of Section 6.
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2 Definitions
In this section, we will provide precise definitions of the notation and concepts used throughout this
paper.

We will always work with an operator L of order 2m in the divergence form (1.1) (interpreted in
the weak sense of formula (2.7) below) acting on functions defined in open sets in Rn+1, n+ 1 ≥ 2.

As usual, we let B(X, r) denote the ball in Rn+1 of radius r and center X. We let Rn+1
+ and

Rn+1
− denote the upper and lower half-spaces Rn × (0,∞) and Rn × (−∞, 0); we will identify Rn with

∂Rn+1
± . If Q is a cube, we will let ℓ(Q) be its side length, and let cQ be the concentric cube of side

length cℓ(Q). If E is a set of finite measure, let
 

E

f(x) dx =
1

|E|

ˆ

E

f(x) dx.

If E is a measurable set in the Euclidean space and H is a globally defined function, we will let
1EH = χEH, where χE is the characteristic function of E. If H is defined in all of E, but is not
globally defined, we will let 1EH be the extension of H by zero, that is,

1EH(X) =

{
H(X), X ∈ E,

0, otherwise.

We will use 1± as a shorthand for 1Rn+1
±

.

2.1 Multiindices and arrays of functions
We will routinely work with multiindices in (N0)

n+1. (We will occasionally work with multiindices in
(N0)

n.) Here, N0 denotes the nonnegative integers. If ζ = (ζ1, ζ2, . . . , ζn+1) is a multiindex, then we
define |ζ| and ∂ζ as |ζ| = ζ1 + ζ2 + · · ·+ ζn+1 and ∂ζ = ∂ζ1x1

∂ζ2x2
· · · ∂ζn+1

xn+1 .
Recall that a vector H⃗ is a list of numbers (or functions) indexed by integers j with 1 ≤ j ≤ N for

some N ≥ 1. We similarly let an array Ḣ be a list of numbers or functions indexed by multiindices ζ
with |ζ| = k for some k ≥ 1. In particular, if φ is a function with weak derivatives of order up to k,
then we view ∇kφ as such an array.

The inner product of two such arrays of functions Ḟ and Ġ defined in a measurable set Ω in the
Euclidean space is given by 〈

Ḟ , Ġ
〉
Ω
=

∑
|ζ|=k

ˆ

Ω

Fζ(X)Gζ(X) dX.

2.2 Function spaces and Dirichlet boundary values
Let Ω be a measurable set in the Euclidean space. Let C∞

0 (Ω) be the space of all smooth functions
supported in a compact subset of Ω. Let Lp(Ω) denote the usual Lebesgue space with respect to the
Lebesgue measure with the standard norm given by

‖f‖Lp(Ω) =

(ˆ

Ω

|f(x)|p dx
)1/p

.

If Ω is a connected open set, then we let the homogeneous Sobolev space Ẇ k,p(Ω) be the space of
equivalence classes of functions u that are locally integrable in Ω and have weak derivatives in Ω of
order up to k in the distributional sense, and whose kth gradient ∇ku lies in Lp(Ω). Two functions
are equivalent if their difference is a polynomial of order at most k − 1. We impose the norm

‖u‖Ẇk,p(Ω) = ‖∇ku‖Lp(Ω).

Then u is equal to a polynomial of order at most k− 1 (and thus equivalent to zero) if and only if its
Ẇ k,p(Ω)-norm is zero.
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If 1 < p <∞, then Ẇ−1,p′
(Rn) denotes the dual space to Ẇ 1,p(Rn), where 1/p+ 1/p′ = 1; this is

a space of distributions on Rn.
The use of a dot to denote homogeneous Sobolev spaces (as opposed to the inhomogeneous spaces

W k,p(Ω) with ‖u‖p
Wk,p(Ω)

=
k∑

j=0

‖∇ju‖pLp(Ω)) is by now standard. The use of a dot to denote arrays

of functions, as in Subsection 2.1, is also standard (see, for example, [1, 28, 29, 60, 61, 63, 66]). We
apologize for any confusion arising from this overloading of notation, but the conventions of these
fields seem to require it.

We say that u ∈ Lp
loc(Ω) or u ∈ Ẇ k,p

loc (Ω) if u ∈ Lp(U) or u ∈ Ẇ k,p(U) for any bounded open set
U with U ⊂ Ω.

We will need a number of more specialized norms on functions. In the introduction, we defined
the nontangential maximal function Ñ+, Ñ∗ and the Lusin area integral A+

2 , A∗
2. See formulas (1.5),

(1.24) and (1.6), (1.25). We will also need the corresponding operators in the lower half-space; thus,
we define

Ñ±H(x) = sup

{(  

B((y,±s),s/2)

|H(z, t)|2 dz dt
)1/2

: s > 0, |x− y| < s

}
, (2.1)

A±
2 H(x) =

( ∞̂

0

ˆ

|x−y|<t

|H(y,±t)|2 dy dt
tn+1

)1/2

for all x ∈ Rn.
We will need one other tent space operator. Following [30, 46], the averaged Carleson operator is

given by

C̃±
1 H(x) = sup

Q∋x

1

|Q|

ˆ

Q

ℓ(Q)ˆ

0

(  

B((y,±s),s/2)

|H(z, t)|2 dz dt
)1/2

ds dy

s
, (2.2)

where the supremum is taken over the cubes Q in Rn containing x. We will let the two-sided averaged
Carleson operator be given by

C̃∗
1H(x) = max(C̃+

1 H(x), C̃−
1 H(x)). (2.3)

We adopt the convention that if t appears inside the argument of one of the above operators, then
it denotes the (n+ 1)th coordinate function.

Following [23], we define the boundary values Tr± u of a function u defined in Rn+1
± by

Tr± u = f if lim
t→0±

‖u( · , t)− f‖L1(K) = 0 (2.4)

for all compact sets K ⊂ Rn. We define

Ṫr±j u = Tr± ∇ju. (2.5)

We remark that if ∇u is locally integrable up to the boundary, then Tr± u exists and, furthermore,
Tr± u coincides with the traditional trace in the sense of Sobolev spaces. Furthermore, if ∇u is locally
integrable in a neighborhood of the boundary, then Tr+ u = Tr− u; in this case, we will refer to the
boundary values (from either side) as Tru.

We are interested in the functions with boundary data in the Lebesgue or Sobolev spaces. However,
observe that if j ≥ 1, then the components of Ṫr±j u are the derivatives of a common function and
so must satisfy certain compatibility conditions. We thus define the following Whitney–Lebesgue,
Whitney–Sobolev and Whitney-Besov spaces of arrays that satisfy these conditions.

Definition 2.1. Let

D =
{
Ṫrm−1 φ : φ is smooth and compactly supported in Rn+1

}
.
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If 1 ≤ p <∞, then we let ẆA0,p
m−1(Rn) be the closure of the set D in Lp(Rn). We let ẆA1,p

m−1(Rn)

be the closure of D in Ẇ 1,p(Rn). Finally, we let ẆA1/2,2
m−1 (Rn) be the closure of D in the Besov space

Ḃ
1/2,2
2 (Rn); the norm in this space can be written as

‖f‖
Ḃ

1/2,2
2 (Rn)

=

(ˆ

Rn

|f̂(ξ)|2|ξ| dξ
)1/2

, (2.6)

where f̂ denotes the Fourier transform of f in Rn.

Remark 2.1. It is widely known that ḟ ∈ ẆA
1/2,2
m−1 (Rn) if and only if ḟ = Ṫr+m−1 F for some F with

∇mF ∈ L2(Rn+1
+ ). This was essentially proven in [49,55]; see [22, Lemma 2.6] for further discussion.

Remark 2.2. There is an extensive theory of Besov spaces (see, for example, [68]). We will make use
only of the Besov space Ḃ1/2,2

2 (Rn) given by formula (2.6) and the space Ḃ−1/2,2
2 (Rn). This space has

the norm

‖g‖
Ḃ

−1/2,2
2 (Rn)

=

(ˆ

Rn

|ĝ(ξ)|2 1

|ξ|
dξ

)1/2

.

The two important properties of this space we will use are, first, that Ḃ−1/2,2
2 (Rn) is the dual space to

Ḃ
1/2,2
2 (Rn), and, second, that f ∈ Ḃ

1/2,2
2 (Rn) if and only if the gradient ∇f exists in the distributional

sense and satisfies ‖∇f‖
Ḃ

−1/2,2
2 (Rn)

≈ ‖f‖
Ḃ

1/2,2
2 (Rn)

.

2.3 Elliptic differential operators and Neumann boundary values
Let A =

(
Aαβ

)
be a matrix of measurable coefficients defined on Rn+1, indexed by multtiindices α,

β with |α| = |β| = m. If Ḟ is an array indexed by multiindices of length m, then AḞ is the array
given by

(AḞ )α =
∑

|β|=m

AαβFβ .

Let L be the 2mth-order divergence form operator associated with A. The weak formulation of
such an operator is given by

Lu = 0 in Ω in the weak sense if 〈∇mφ,A∇mu〉Ω = 0 for all φ ∈ C∞
0 (Ω). (2.7)

Throughout we require our coefficients to be pointwise bounded and to satisfy the Gårding inequality
(1.11), which by density we may restate as

Re 〈∇mφ,A∇mφ〉Rn+1 ≥ λ‖∇mφ‖2L2(Rn+1) for all φ ∈ Ẇm,2(Rn+1)

for some λ > 0. The stronger Gårding inequality (1.3) will play a minimal role in this paper; it is
needed only because the proof of the primary results of [21] required this stronger inequality, the
paper [15] used the results of [21], and our proof of Theorem 1.1 uses the results of [15].

We let L∗ be the elliptic operator associated with the adjoint matrix A∗, where (A∗)αβ = Aβα.
Recall from the introduction that the Neumann boundary values of a solution w to Lw = 0 in

Rn+1
+ that satisfies estimates as in the problem (1.4) or (1.9) are given by formula (1.7).

We will also be concerned with the solutions u or v to Lu = 0 that satisfy u ∈ Ẇm,2(Rn+1
+ ) or

A+
2 (t∇mu) ∈ Lp′

(Rn) for p′ with 1 < p′ <∞.
If u ∈ Ẇm,2(Rn+1

+ ), then we can still use formula (1.7) to define Ṁ+
A u. Furthermore, by density,

if u ∈ Ẇm,2(Rn+1
+ ) and Ṁ+

A u is given by formula (1.7), then〈
Ṁ+

A u, Ṫr
+
m−1 φ

〉
Rn = 〈A∇mu,∇mφ〉Rn+1

+
for all φ ∈ Ẇm,2(Rn+1

+ ). (2.8)

Thus, if u ∈ Ẇm,2(Rn+1
+ ), then Ṁ+

A u is a bounded linear operator on ẆA
1/2,2
m−1 (Rn).
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If v satisfies A+
2 (t∇mu) ∈ Lp′

(Rn), then ∇mv may not be locally integrable up to the boundary
and thus the integral on the right-hand side of formula (1.7) may not converge. Thus, the definition of
Ṁ+

A v in this case is more delicate. We refer the reader to [23, Section 2.3.2] for the precise formulation
of the Neumann boundary values Ṁ+

A v of a solution v to Lv = 0 with A+
2 (t∇mv) ∈ Lp′

(Rn).
The numbers C and ε denote the constants whose value may change from line to line, but which

are always positive and depend only on the dimension n+ 1, the order 2m of any relevant operators,
the bound ‖A‖L∞(Rn) on the coefficients, and the number λ in the bound (1.11). We say that
A ≈ B if there are some positive constants ε and C depending only on the above quantities such that
εB ≤ A ≤ CB.

The numbers p+j,L are always as in the bound (1.13). The notation C(j, L, p) denotes a constant
that depends only on the standard parameters n, m, λ, ‖A‖L∞(Rn), the number p, and the constant
c(j, L, p, 2) in the bound (1.13). (If p is small enough, then c(j, L, p, 2) may be taken as depending only
on p and the standard parameters, and so in this case we may simply write Cp rather than C(j, L, p).
See Remark 1.1.)

2.4 Potential operators
In this section, we will define the double and single layer potentials of Theorem 1.2.

We will also define the Newton potential and use the Newton potential to define the double layer
potential. Furthermore, we will prove Theorem 1.2 by establishing various bounds on the Newton
potential and using duality to pass to estimates on the double and single layer potentials.

For any Ḣ∈L2(Rn+1), by the Lax-Milgram lemma, there is a unique function ΠLḢ in Ẇm,2(Rn+1)
that satisfies 〈

∇mφ,A∇mΠLḢ
〉
Rn+1 = 〈∇mφ, Ḣ〉Rn+1 for all φ ∈ Ẇm,2(Rn+1). (2.9)

We will use the operator ΠL operator frequently, and refer it as the Newton potential. This rep-
resents a break from tradition, as the traditional Newton potential NL is usually taken to satisfy
〈∇mφ,A∇mNLH〉Rn+1 = 〈φ,H〉Rn+1 .

We record here that, by [13, Lemma 43], there is some ε > 0 such that if 2− ε < r < 2 + ε, then

‖∇mΠLḢ‖Lr(Rn+1) ≤ Cr‖Ḣ‖Lr(Rn+1) (2.10)

for all Ḣ ∈ Lr(Rn+1) ∩ L2(Rn+1).
We are interested in the gradient ∇m−1ΠLḢ of order m−1. However, ΠLḢ, as defined by formula

(2.9), is an element of Ẇm,2(Rn+1), and as such, it is the gradient ∇mΠLḢ of order m that is well
defined; ∇m−1ΠLḢ is defined only up to adding constants.

We may fix an additive normalization as follows. If n+ 1 ≥ 3, then by the Gagliardo–Nirenberg–
Sobolev inequality (see, for example, [35, Section 5.6]), there is a unique additive normalization of
∇m−1ΠLḢ such that

‖∇m−1ΠLḢ‖Lq(Rn+1) ≤ C‖∇mΠLḢ‖L2(Rn+1), (2.11)

where (n+ 1)/q = (n+ 1)/2− 1 (and, in particular, where q <∞).
If n+ 1 = 2, let r < 2 be as in the bound (2.10). If Ḣ ∈ L2(Rn+1) is compactly supported or, more

generally, if Ḣ ∈ L2(Rn+1) ∩ Lr(Rn+1), then, again by the Gagliardo–Nirenberg–Sobolev inequality,
there is a unique additive normalization of ∇m−1ΠLḢ such that

‖∇m−1ΠLḢ‖Lq(R2) ≤ Cr‖∇mΠLḢ‖Lr(R2), (2.12)

where 2/q = 2/r − 1 (and so again q <∞).
We will use this additive normalization throughout.
We now define the double layer potential. Suppose that ḟ ∈ ẆA

1/2,2
m−1 (Rn). As mentioned in

Remark 2.1, ḟ = Ṫr−m−1 F for some F ∈ Ẇm,2(Rn+1
+ ). We define

DAḟ = −ΠL(1−A∇mF ) + 1−F. (2.13)
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This operator is well defined, that is, does not depend on the choice of F . See [20, Section 2.4]
or [14, Section 4]. Using the bounds (1.17) and (1.23), we may extend DA by density to an operator
on all of ẆAk,p

m−1(Rn), for k ∈ {0, 1} and for an appropriate range of p.
We now define the single layer potential. Let ġ be a bounded linear operator on ẆA

1/2,2
m−1 (Rn).

Then by Remark 2.1, F → 〈Ṫrm−1 F, ġ〉Rn is a bounded linear operator on Ẇm,2(Rn+1). By the
Lax–Milgram lemma, there is a unique function SLġ ∈ Ẇm,2(Rn+1) that satisfies〈

∇mφ,A∇mSLġ
〉
Rn+1 = 〈Ṫrm−1 φ, ġ〉Rn for all φ ∈ Ẇm,2(Rn+1). (2.14)

See [14]. We mote that formula (2.14) is also meaningful and SLġ is defined for ġ ∈ Ḃ
−1/2,2
2 (Rn).

This definition coincides with that of SLġ involving the Newton potential given in [20,22]. Using the
bound (1.16), we may extend SL by density to an operator on all of Lp(Rn) for all 2− ε < p < p+0,L.
Remark 2.3. If L is an operator of the form (2.7), then L may generally be associated to many choices
of coefficients A; for example, if Aαβ = Ãαβ +Mαβ , where M is a constant and Mαβ = −Mβα, then
the operators associated to A and Ã are equal. The single layer potential SL depends only on the
operator L, while the double layer potential DA depends on the particular choice of coefficients A.

In [24], the operator SL
∇ was defined in terms of integrals involving the fundamental solution. In

the present paper, we simply define SL
∇ as the operator satisfying [24, formulas (4.5–4.6)]. These

formulas are as follows. If ζ is a multiindex, then ėζ is the unit array associated to the multiindex ζ;
that is,

(ėζ)ζ = 1, (ėζ)θ = 0 whenever |θ| = |ζ| and θ 6= ζ. (2.15)

Let h ∈ Ḃ
1/2,2
2 (Rn)∩Ḃ−1/2,2

2 (Rn). Suppose that α and γ are multiindices with |α| = m and |γ| = m−1;
in particular, we require that all entries of γ be nonnegative. Then

∇mSL
∇(hėα)(x, t) = −∇mSL((∂xj

h)ėγ)(x, t) if 1 ≤ j ≤ n and α = γ + e⃗j (2.16)

and
∇m−1SL

∇(hėα)(x, t) = −∇m−1∂tSL(hėγ)(x, t) if α = γ + e⃗n+1. (2.17)

We define SL
∇ḣ for general ḣ by linearity. As shown in [24, Lemma 4.4], SL

∇ is well defined in the sense
that if 1 ≤ αn+1 ≤ m− 1, then we may use either formula (2.16) or (2.17) to define ∇mSL

∇(hėα), and
furthermore, if αℓ ≥ 1 and αk ≥ 1, then the value of the right-hand side of formula (2.16) is the same
whether we choose j = k or j = ℓ.

Furthermore, by [24, Lemma 4.8], if ḣ ∈ L2(Rn) ⊂ Ḃ
1/2,2
2 (Rn) ∩ Ḃ

−1/2,2
2 (Rn), then there is a

(necessarily unique) additive normalization of ∇m−1SLḣ that satisfies

lim
t→±∞

∥∥∇m−1SL
∇ḣ( · , t)

∥∥
L2(Rn)

= 0.

Using the bound (1.22), we may extend SL
∇ by density to an operator on all of Lp(Rn) for 2− ε < p <

p+1,L.

3 Preliminaries
In this section, we will discuss a few known results and establish some general results that will be of
use throughout the paper.

Specifically, in Subsection 3.1, we will discuss the change of variables (x, t) → (x,−t), and how
it allows us to easily generalize from the upper half-space to the lower half-space. In Subsection 3.2,
we will list some known results from the theory of solutions to elliptic equations Lu = 0. Finally, in
Subsection 3.3, we will establish some general results involving tent spaces, that is, spaces of functions
H for which the tent space norms Ñ+H, A+

2 H or C̃+
1 H lie in Lp(Rn).
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3.1 The lower half-space
It is often notationally convenient to establish the bounds only in the upper half-space and to use a
change of variables arguments to generalize to the lower half-space.

The change of variables (x, t) → (x,−t), for x ∈ Rn and t ∈ R, interchanges the upper and
lower half-spaces. In [24, Section 3.3], it was shown that if Lu = 0 in Ω, then L−u− = 0 in Ω−,
where u−(x, t) = u(x,−t), Ω− = {(x, t) : (x,−t) ∈ Ω}, and L− is the operator of the form (2.7)
associated to the coefficients A− given by A−

αβ = (−1)αn+1+βn+1Aαβ . Notice that if A is bounded,
t-independent and satisfies the condition (1.11) (or (1.3)), then A− satisfies the same conditions with
‖A‖L∞(Rn) = ‖A−‖L∞(Rn) and with the same value of λ.

We observe that by the same change of variables argument, if j is an integer with 0 ≤ j ≤ m, and
if p+j,L and c(j, L, p, q) are as in the bound (1.13), then

p+j,L = p+j,L− and c(j, L, p, q) = c(j, L−, p, q) for all 0 < q < p < p+j,L.

Furthermore, by [24, Section 3.3],

DAḟ(x,−t) = −DA−
ḟ
−
(x, t), SLġ(x,−t) = SL−

ġ−(x, t),

ΠLḢ(x,−t) = ΠL−
Ḣ

−
(x, t), SL

∇ḣ(x,−t) = SL−

∇ ḣ−(x, t),

where

f−γ (x) = (−1)γn+1fγ(x), g−γ (x) = (−1)γn+1gγ(x),

H−
α (x, t) = (−1)αn+1Hα(x,−t), h−β (x) = (−1)βn+1hβ(x).

It is straightforward to calculate that if ḟ = Ṫr+m−1 φ in the sense of formula (2.5), then ḟ
−

=

Ṫr−m−1 φ
−. Thus, ḟ

− is in the distinguished subspace D of Definition 2.1 if and only if ḟ is, and
so the mapping ḟ → ḟ

− is an automorphism of ẆAs,p
m−1(Rn) for all spaces ẆAs,p

m−1(Rn) defined by
Definition 2.1.

We observe further that if Ṁ+
A w 3 ġ, then by the definition (1.7) of the Neumann boundary

values, if φ ∈ C∞
0 (Rn+1), then

〈Ṫrm−1 φ, ġ
−〉Rn =

〈
Ṫrm−1(φ

−), ġ
〉
Rn =

〈
∇m(φ−),A∇mw

〉
Rn+1

+

=
〈
∇mφ,A−∇mw−〉

Rn+1
−

,

and so,
if Ṁ+

A w 3 ġ then Ṁ−
A− w

− 3 ġ−. (3.1)
An examination of the definition of Neumann boundary values in [23, Section 2.3.2] reveals that
formula (3.1) is valid if that definition of Neumann boundary values is used instead.

Thus, we may easily pass from the bounds in the upper half-space to bounds in the lower half-space.

3.2 Solutions to elliptic equations
It is well known that solutions to the elliptic equation Lu = 0 display many useful properties. In this
section, we will state two regularity results that will be used throughout the paper.

We begin with the higher order analogue of the Caccioppoli inequality. This lemma was proven in
full generality in [13] and some important preliminary versions were established in [9, 27].

Lemma 3.1 (The Caccioppoli inequality). Let L be an operator of the form (2.7) of order 2m
associated to bounded coefficients A that satisfy the ellipticity condition (1.11).

Let u ∈ Ẇm,2(B(X, 2r)) with Lu = 0 in B(X, 2r). Then we have the bound
 

B(X,r)

|∇ju(x, s)|2 dx ds ≤ C

r2

 

B(X,2r)

|∇j−1u(x, s)|2 dx ds

for any j with 1 ≤ j ≤ m.
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If A is t-independent, then solutions to Lu = 0 have additional regularity. In particular, the
following lemma was proven in the case m = 1 in [2, Proposition 2.1] and generalized to the case
m ≥ 2 in [22, Lemma 3.20].

Lemma 3.2. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Q ⊂ Rn be a cube of side length ℓ(Q) and let I ⊂ R be an interval with |I| = ℓ(Q). If
u ∈ Ẇm,2

loc (2Q× 2I) and Lu = 0 in 2Q× 2I, then
ˆ

Q

|∇m−j∂kt u(x, t)|p dx ≤ C(j, L, p)

ℓ(Q)

ˆ

2Q

ˆ

2I

|∇m−j∂ksu(x, s)|p ds dx

for any t ∈ I, any integer j with 0 ≤ j ≤ m, any p with 0 < p < p+j,L, and any integer k ≥ 0.

3.3 Tent spaces
Recall that Theorem 1.2 concerns nontangential maximal and area integral norms of layer potentials.
Thus, in order to prove Theorem 1.2, we will need a number of results concerning the area integral,
the nontangential maximal operator, and the Carleson operator of formula (2.2).

We begin with the following lemma concerning the Lebesgue norm and the area integral.

Lemma 3.3. Let σ > 0, κ ∈ R, and 0 < θ ≤ r ≤ 2. Let Ḟ ∈ L2
loc(R

n+1
+ ) be such that A+

2 (t
κḞ ) ∈

Lθ(Rn).
If θ(n+ 1) < r(n+ θκ), then

‖Ḟ ‖Lr(Rn×(σ,∞)) ≤
Cn,θ,κ,r

σκ+n/θ−1/r−n/r
‖A+

2 (t
κḞ )‖Lθ(Rn).

If θ(n+ 1) > r(n+ θκ), then

‖Ḟ ‖Lr(Rn×(0,σ)) ≤
Cn,θ,κ,r

σκ+n/θ−1/r−n/r
‖A+

2 (t
κḞ )‖Lθ(Rn).

Proof. Our argument is largely taken from [23, Remark 5.3], where the case r = 2, κ = 1 was
considered. Let j be an integer. Then

ˆ

Rn

2j+1√nˆ

2j
√
n

|Ḟ (x, t)|r dt dx =
∑
Q∈Gj

ˆ

Q

2
√
nℓ(Q)ˆ

√
nℓ(Q)

|Ḟ (x, t)|r dt dx,

where Gj is a grid of pairwise-disjoint open cubes in Rn of side length 2j whose union is almost all of
Rn. If r ≤ 2, then by Hölder’s inequality,

ˆ

Q

2ℓ(Q)
√
nˆ

ℓ(Q)
√
n

|Ḟ (x, t)|r dt dx ≤
(
|Q|ℓ(Q)

√
n
)1−r/2

(ˆ

Q

2ℓ(Q)
√
nˆ

ℓ(Q)
√
n

|Ḟ (x, t)|2 dt dx
)r/2

.

For every x, y ∈ Q and every t > ℓ(Q)
√
n, we have

|x− y| < diamQ = ℓ(Q)
√
n < t,

and so, for any y ∈ Q, we have

ˆ

Q

2ℓ(Q)
√
nˆ

ℓ(Q)
√
n

|Ḟ (x, t)|2 dt dx ≤ Cn,κ

∞̂

0

ˆ

|x−y|<t

|Ḟ (x, t)|2 ℓ(Q)n+1−2κ

tn+1−2κ
dx dt.
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Thus,
ˆ

Rn

2j+1√nˆ

2j
√
n

|Ḟ (x, t)|r dt dx ≤ Cn,κ

∑
Q∈Gj

ℓ(Q)n+1−rκ

( 

Q

A+
2 (t

κḞ )(y)θ dy

)r/θ

.

If θ ≤ r, then ∑
Q∈Gj

(ˆ

Q

A+
2 (tḞ )(y)θ dy

)r/θ

≤
(ˆ

Rn

A+
2 (tḞ )(y)θ dy

)r/θ

and so
ˆ

Rn

2j+1√nˆ

2j
√
n

|Ḟ (x, t)|r dt dx ≤ Cn,κ · 2j(n+1−rκ−nr/θ)

(ˆ

Rn

A+
2 (t

κḞ )(y)θ dy

)r/θ

.

By summing over j with 2j+1
√
n > σ or with 2j

√
n < σ, we complete the proof.

We now establish the following localization lemma involving the Carleson operator (2.2).

Lemma 3.4. Let 1 < r ≤ ∞, let Q ⊂ Rn be a cube, and let Ḣ ∈ L2
loc(R

n+1
+ ) be such that C̃+

1 (tḢ) ∈
Lr(16Q). Then

‖C̃+
1 (110Q×(0,ℓ(Q))tḢ)‖Lr(Rn) ≤ Cn,r‖C̃+

1 (tḢ)‖Lr(16Q). (3.2)

In particular, if Ḣ ∈ L2(Rn+1
+ ) is supported in a compact subset of Rn+1

+ , then C̃+
1 (tḢ) ∈ Lr(Rn) for

all 1 < r ≤ ∞.

Proof. We begin with the bound (3.2). If x ∈ 16Q, then C̃+
1 (110Q×(0,ℓ(Q))tḢ)(x) ≤ C̃+

1 (tḢ)(x). Thus,
we need only consider x 6∈ 16Q.

Let Φ̇(x, t) = tḢ(x, t). By formula (2.2),

C̃+
1 (110Q×(0,ℓ(Q))tḢ)(x) = sup

R∋x

1

|R|

ˆ

R

ℓ(R)ˆ

0

(  

B((y,s),s/2)

110Q×(0,ℓ(Q))|Φ̇|2
)1/2

ds dy

s
,

where the supremum is taken over the cubes R ⊂ Rn with x ∈ R. Observe that if

B
(
(y, s),

s

2

)
∩
(
10Q× (0, ℓ(Q))

)
6= ∅,

then s < 2ℓ(Q) and dist(y, 10Q) < s/2 < ℓ(Q), so y ∈ 12Q. Thus,

ˆ

Rn

∞̂

0

(  

B((y,s),s/2)

110Q×(0,ℓ(Q))|Φ̇|2
)1/2

ds dy

s

≤
ˆ

12Q

2ℓ(Q)ˆ

0

(  

B((y,s),s/2)

|Φ̇|2
)1/2

ds dy

s
≤ |12Q|C̃+

1 (tḢ)(z)

for all z ∈ 12Q. Furthermore, if

ˆ

R

ℓ(R)ˆ

0

(  

B((y,s),s/2)

110Q×(0,ℓ(Q))|Φ̇|2
)1/2

ds dy

s
6= 0,

then R ∩ 12Q 6= ∅. But observe that if x 6∈ 16Q and R 3 x with R ∩ 12Q 6= ∅, then
√
nℓ(R) =

diam(R) > dist(x, 12Q). Thus, if x 6∈ 16Q, then

C̃+
1 (110Q×(0,ℓ(Q))tḢ)(x) ≤ |12Q|

nn/2 dist(x, 12Q)n

(  

12Q

C̃+
1 (tḢ)(z)r dz

)1/r

.
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A straightforward computation yields the bound (3.2) for all r > 1.
We now turn to the case of compactly supported Ḣ. If Ḣ is supported in a compact subset of

Rn+1
+ , then there is some ε > 0 and some N <∞ such that Ḣ(x, t) = 0 whenever t < ε or t > N . We

compute that (  

B((y,s),s/2)

|tḢ(z, t)|2 dz dt
)1/2

≤ Cns
1/2−n/2‖Ḣ‖L2(Rn+1

+ )

and is zero if s < 2ε/3 or s > 2N . Thus, by formula (2.2),

C̃+
1 (tḢ)(x) = sup

R∋x

 

R

ℓ(R)ˆ

0

(  

B((y,s),s/2)

|Ḣ(x, t)|2 t2 dx dt
)1/2

ds dy

s

≤
2Nˆ

2ε/3

Cns
−1/2−n/2‖Ḣ‖L2(Rn+1

+ ) ds.

The right-hand side is finite and independent of x. Thus, if Ḣ is supported in a compact subset of
Rn+1

+ , then C̃+
1 (tḢ) is bounded and so the right-hand side of formula (3.2) is finite for any fixed cube

Q. But if Ḣ is compactly supported, then it is supported in 10Q × (0, ℓ(Q)) for some cube Q; thus,
110Q×(0,ℓ(Q))Ḣ = Ḣ, and so, by the bound (3.2), we have that C̃+

1 (tḢ) ∈ Lr(Rn), as desired.

We now come to a method for bounding nontangential maximal functions by duality. This is the
reason that the Carleson operator C̃+

1 is of interest in the present paper. It is well known (see [3,
Theorem 5.1]) that if 1 < p < ∞ and 1/p + 1/p′ = 1, then the dual to the space of nontangentially
bounded functions{

U : N+U ∈ Lp(Rn)
}
, where N+U(x) = sup

{
|U(y, t)| : |x− y| < t

}
,

is the space of Borel measures

{
µ : C+

1 (t|µ|) ∈ Lp′
(Rn)

}
, where C+

1 (µ)(x) = sup
Q∋x

1

|Q|

ˆ

Q

ℓ(Q)ˆ

0

1

t
d|µ|(y, t).

We claim that a similar result is true for the spaces defined by the averaged norms Ñ+ and C̃+
1 given

by formulas (2.1) and (2.2). More precisely, we will use the following two lemmas.

Lemma 3.5. Let p satisfy 1 < p < ∞ and let p′ satisfy 1/p + 1/p′ = 1. Suppose that u̇ and Ḣ are
such that Ñ+u̇ ∈ Lp(Rn) and C̃+

1 (tḢ) ∈ Lp′
(Rn). Then

|〈u̇, Ḣ〉Rn+1
+

| ≤ C‖Ñ+u̇‖Lp(Rn)‖C̃+
1 (tḢ)‖Lp′ (Rn).

Lemma 3.6. Suppose that u̇ ∈ L2
loc(R

n+1
+ ). Let 1 < p <∞ and let 1/p+ 1/p′ = 1.Then

‖Ñ+u̇‖Lp(Rn) ≤ Cp sup
Ḣ∈L2

c(R
n+1
+ )\{0̇}

|〈u̇, Ḣ〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

provided the right-hand side is finite. Here,

L2
c(R

n+1
+ ) =

{
Ḣ ∈ L2(Rn+1

+ ) : supp Ḣ ⊂ K for some compact set K ⊂ Rn+1
+

}
.

Proof of Lemma 3.5. Let F be an integrable function. Thenˆ

Rn+1
+

F (x, t) dx dt =

ˆ

Rn+1
+

F (y + sz, s+ sr) (1 + r) dy ds
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for any z ∈ Rn and any r > −1. Averaging over (z, r) ∈ B(0, 1/2), we have
ˆ

Rn+1
+

F (x, t) dx dt =

ˆ

Rn+1
+

 

B(0,1/2)

F (y + sz, s+ sr)
s+ sr

s
dz dr dy ds,

and a change of variables yields
ˆ

Rn+1
+

F (x, t) dx dt =

ˆ

Rn+1
+

 

B((y,s),s/2)

F (x, t)
t

s
dx dt dy ds.

LetK be a compact set in Rn+1
+ . Observe that u̇ and Ḣ are both in L2

loc(R
n+1
+ ); thus F = 1K |u̇||Ḣ|

is integrable. Therefore,
ˆ

K

|u̇||Ḣ| =
ˆ

Rn+1
+

 

B((y,s),s/2)

|1Ku̇(x, t)| |tḢ(x, t)| dx dt dy ds
s

.

We define

H(y, s) =
1

s

(  

B((y,s),s/2)

|tḢ(x, t)|2 dx dt
)1/2

, U(y, s) =

(  

B((y,s),s/2)

|u̇|2
)1/2

so that by the definitions (2.1) and (2.2) of Ñ+ and C+
1 ,

N+U = Ñ+u̇, C+
1 (tH) = C̃+

1 (tḢ).

By Hölder’s inequality, ˆ

K

|u̇||Ḣ| ≤
ˆ

Rn+1
+

UH.

By the duality results discussed above (see [30, formula (2.6)]), we have that
ˆ

Rn+1
+

UH ≤ C‖N+U‖Lp(Rn)‖C+
1 (tH)‖Lp′ (Rn).

Thus, ˆ

K

|u̇||Ḣ| ≤ C‖Ñ+u̇‖Lp(Rn)‖C̃+
1 (tḢ)‖Lp′ (Rn)

provided the right-hand side is finite. Because K was arbitrary, this inequality is still true if we
integrate over Rn+1

+ instead of K. Thus, 〈u̇, Ḣ〉Rn+1
+

represents an absolutely convergent integral that
satisfies

|〈u̇, Ḣ〉Rn+1
+

| ≤ C‖Ñ+u̇‖Lp(Rn)‖C̃+
1 (tḢ)‖Lp′ (Rn),

as desired.

The following lemma will be used in the proof of Lemma 3.6.

Lemma 3.7. Let µ be a nonnegative measure on Rn. For each (x, r) ∈ Rn+1
+ , let Ḣ(x,r) be defined

in Rn+1
+ , supported in B((x, r), r/2), and satisfy(  

B((x,r),r/2)

|Ḣ(x,r)|2
)1/2

≤ 1.
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Define
Ḣ(z, t) =

ˆ

Rn+1
+

1

rn+1
Ḣ(x,r)(z, t) dµ(x, r).

Then
C̃+
1 (tḢ)(x̃) ≤ CC+

1 (tµ)(x̃)

for all x̃ ∈ Rn such that the right-hand side is finite.

Proof. Let W (y, s) = B((y, s), s/2) and let V (y, s) = {(x, r) : W (y, s) ∩W (x, r) 6= ∅}. Then
 

W (y,s)

|Ḣ(z, t)|2 dz dt =
 

W (y,s)

∣∣∣∣ ˆ

V (y,s)

1

rn+1
Ḣ(x,r)(z, t) dµ(x, r)

∣∣∣∣2 dz dt.
By Hölder’s inequality,

 

W (y,s)

|Ḣ(z, t)|2 dz dt ≤
 

W (y,s)

ˆ

V (y,s)

µ(V (y, s))

r2n+2
|Ḣ(x,r)(z, t)|2 dµ(x, r) dz dt.

Changing the order of integration, we see that
 

W (y,s)

|Ḣ(z, t)|2 dz dt ≤
ˆ

V (y,s)

µ(V (y, s))

r2n+2

 

W (y,s)

|Ḣ(x,r)(z, t)|2 dz dt dµ(x, r).

A straightforward computation yields that V (y, s) is the ellipsoid

V (y, s) =
{
(x, r) :

4

3
|x− y|2 +

(
r − 5

3
s
)2

<
(4
3
s
)2}

. (3.3)

In particular, if (x, r) ∈ V (y, s), then 1
3r < s < 3r. Thus, |W (x, r)| ≈ |W (y, s)| and so

 

W (y,s)

|Ḣ(z, t)|2 dz dt ≤ C
µ(V (y, s))

s2n+2

ˆ

V (y,s)

 

W (x,r)

|Ḣ(x,r)(z, t)|2 dz dt dµ(x, r).

Recalling the L2 norm of Ḣ(x,r), we see that(  

W (y,s)

|Ḣ(z, t)|2 dz dt
)1/2

≤ C

sn+1
µ(V (y, s)) =

C

sn+1

ˆ

V (y,s)

dµ(x, r).

Then

C̃+
1 (tḢ)(x̃) = sup

Q∋x̃

1

|Q|

ˆ

Q

ℓ(Q)ˆ

0

(  

W (y,s)

|tḢ(z, t)|2 dz dt
)1/2

ds dy

s

≤ sup
Q∋x̃

1

|Q|

ˆ

Q

ℓ(Q)ˆ

0

C

sn

ˆ

V (y,s)

dµ(x, r)
ds dy

s
.

By formula (3.3), if (y, s) ∈ Q × (0, ℓ(Q)), then V (y, s) ⊂ 4Q × (0, 3ℓ(Q)). Recall that V (y, s) =
{(x, r) :W (x, r) ∩W (y, s) 6= ∅} and so (x, r) ∈ V (y, s) if and only if (y, s) ∈ V (x, r). Thus,

C̃+
1 (tḢ)(x̃) ≤ C sup

Q∋x̃

1

|Q|

ˆ

4Q

4ℓ(Q)ˆ

0

ˆ

V (x,r)

ds dy

sn+1
dµ(x, r).
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But
´

V (x,r)

ds dy
sn+1 is a constant. Renaming the variables (x, r) to (x, t), we see that

C̃+
1 (tḢ)(x̃) ≤ C sup

Q∋x̃

1

|Q|

ˆ

4Q

4ℓ(Q)ˆ

0

t

t
dµ(x, t) = 4nCC+

1 (tµ)(x̃),

as desired.

Proof of Lemma 3.6. Let u̇ ∈ L2
loc(R

n+1
+ ) be such that

sup
Ḣ∈L2

c(R
n+1
+ )\{0}

|〈u̇, Ḣ〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

<∞.

LetKε = {(x, t) : ε ≤ t ≤ 1/ε, |x| ≤ 1/ε}. Define u̇ε = 1Kε
u̇. By the monotone convergence theorem,

‖Ñ+u̇‖Lp(Rn) = lim
ε→0+

‖Ñ+u̇ε‖Lp(Rn) = sup
ε>0

‖Ñ+u̇ε‖Lp(Rn).

Thus we need only bound the quantity ‖Ñ+u̇ε‖Lp(Rn), uniformly in ε > 0. We observe that if ε > 0,
then u̇ε ∈ L2(Rn+1

+ ), and Ñ+u̇ε is bounded and compactly supported.
We now construct a Ḣε that will allow us to bound Ñ+u̇ε. Let W (x, r) = B((x, r), r/2), and let

Uε(x, r)
2 =

ffl
W (x,r)

|u̇ε|2, so that Ñ+u̇ε = N+Uε. By [3, Theorem 5.1 and formula (2.12)], there is a

(nonnegative) measure µ with ‖C+
1 (tµ)‖Lp′ (Rn) ≤ Cp and with

‖N+Uε‖Lp(Rn) =

ˆ

Rn+1
+

Uε(y, s) dµ(y, s).

Let

Ḣε
(x,r) =


1

Uε(x, r)
1W (x,r)u̇ε, Uε(x, r) > 0,

0̇, Uε(x, r) = 0,

so that (  

W (x,r)

|Ḣε
(x,r)|

2

)1/2

≤ 1, Uε(x, r) =
1

|W (x, r)|
〈u̇, Ḣε

(x,r)〉Rn+1
+

.

Observe that there is a constant cn such that |W (x, r)| = rn+1/cn for all x ∈ Rn and all r > 0. Then

‖Ñ+u̇ε‖Lp(Rn) =

ˆ

Rn+1
+

Uε(x, r) dµ(x, r) =

ˆ

Rn+1
+

cn
rn+1

〈u̇, Ḣε
(x,r)〉Rn+1

+
dµ(x, r).

Changing the order of integration, we see that

‖Ñ+u̇ε‖Lp(Rn) = 〈u̇, Ḣε〉Rn+1
+

, where Ḣε(z, t) =

ˆ

Rn+1
+

cn
rn+1

Ḣε
(x,r)(z, t) dµ(x, r).

We observe that Ḣε is compactly supported. By Lemma 3.7 and the assumption on µ,
‖C̃+

1 (tḢ)‖Lp′ (Rn) ≤ C‖C+
1 (tµ)‖Lp′ (Rn) ≤ CCp

and so

‖Ñ+u̇ε‖Lp(Rn) = 〈u̇, Ḣε〉Rn+1
+

≤ Cp

‖C̃+
1 (tḢε)‖Lp′ (Rn)

〈u̇, Ḣε〉Rn+1
+

≤ Cp sup
Ḣ∈L2

c(R
n+1
+ )\{0}

|〈u̇, Ḣ〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

,

as desired.
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We will use Lemma 3.6 to prove the nontangential bounds (1.26) and (1.27). In proving the bounds
(1.32) and (1.33), it will be convenient to introduce an additional derivative in the inner product on
the right-hand side. Thus, we now prove the following lemma.

Lemma 3.8. Let u ∈ Ẇm,2
loc (Rn+1

+ ) satisfy Ñ+(∇m−1u) ∈ L2(Rn). Let p satisfy 1 < p < 2 and let
1/p+ 1/p′ = 1. Then

‖Ñ+(∇m−1u)‖Lp(Rn) ≤ Cp sup
Ψ̇

|〈Ψ̇,∇mu〉Rn+1
+

|

‖C̃+
1 (t ∂tΨ̇)‖Lp′ (Rn)

,

where the supremum is taken over all compactly supported Ψ̇ ∈ L2(Rn+1
+ ) that are not identically zero

and have a weak vertical derivative also in L2(Rn+1
+ ).

Proof. By Lemma 3.6,

‖Ñ+(∇m−1u)‖Lp(Rn) ≤ Cp sup
Ḣ∈L2

c(R
n+1
+ )\{0̇}

|〈Ḣ,∇m−1u〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

.

Choose some such Ḣ. Let θ̇(x) =
∞́

0

Ḣ(x, t) dt; since Ḣ is compactly supported, we have θ̇(x) ∈

L2(Rn). Let ĠT (x, t) = θ̇(x) 2
T χ(3T/4,5T/4)(t), where T > 0 is a real number and χ(3T/4,5T/4) denotes

the characteristic function of the interval (3T/4, 5T/4). Let ḢT be such that Ḣ = ĠT + ḢT .
Then

∞́

0

ḢT (x, t) dt = 0 for almost every x ∈ Rn. Let

(ΨT )α(x, t) =

tˆ

0

(HT )γ(x, s) ds, where α = γ + e⃗n+1,

with e⃗n+1 as the unit vector in the (n + 1)th direction, and let (ΨT )α = 0 if αn+1 = 0. Then
Ψ̇T ∈ L2(Rn+1

+ ) is compactly supported. Furthermore, ∂t(Ψ̇T )α(x, t) = (HT )γ(x, t), and so

〈ḢT ,∇m−1u〉Rn+1
+

= −〈Ψ̇T ,∇mu〉Rn+1
+

.

Thus,
|〈Ḣ,∇m−1u〉Rn+1

+
|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

=
|〈Ψ̇T ,∇mu〉Rn+1

+
− 〈ĠT ,∇m−1u〉Rn+1

+
|

‖C̃+
1 (t ∂tΨ̇T + tĠT )‖Lp′ (Rn)

for any T > 0.
By definition (2.2) of C̃+

1 , if x ∈ Rn, then

C̃+
1 (tĠT )(x) ≤ CT−n/2‖θ̇‖L2(Rn).

Suppose that T is large enough that there is a cube Q with ℓ(Q) = 5T/4 and with supp θ̇ ⊂ 10Q. By
Lemma 3.4 with r = p′,

‖C̃+
1 (tĠT )‖Lp′ (Rn) ≤ Cp′‖C̃+

1 (tĠT )‖Lp′ (16Q) ≤ Cp′Tn/p′−n/2‖θ̇‖L2(Rn).

If p < 2 and 1/p + 1/p′ = 1, then p′ > 2 and so ‖C̃+
1 (tĠT )‖Lp′ (Rn) → 0 as T → ∞. Since

(GT )γ + ∂n+1(ΨT )α = Hγ , this implies that ‖C̃+
1 (t ∂tΨ̇T )‖Lp′ (Rn) → ‖C̃+

1 (tḢ)‖Lp′ (Rn) as T → ∞;
by assumption, ‖C̃+

1 (tḢ)‖Lp′ (Rn) > 0, hence

|〈Ḣ,∇m−1u〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

= lim
T→∞

|〈Ψ̇T ,∇m−1u〉Rn+1
+

− 〈ĠT ,∇m−1u〉Rn+1
+

|

‖C̃+
1 (t ∂tΨ̇T )‖Lp′ (Rn)

.
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We claim that 〈ĠT ,∇m−1u〉Rn+1
+

→ 0 as T → ∞, as well. We compute that

|〈ĠT ,∇m−1u〉Rn+1
+

| ≤
5T 

3T/4

ˆ

Rn

|θ̇(x)||∇m−1u(x, t)| dx dt ≤ ‖θ̇‖L2(Rn)

5T 

3T/4

‖∇m−1u( · , t)‖L2(Rn) dt.

By Hölder’s inequality,
5T 

3T/4

‖∇m−1u( · , t)‖L2(Rn) dt ≤
( 5T 

3T/4

ˆ

Rn

|∇m−1u(x, t)|2 dx dt
)1/2

.

Introducing a term
ffl

|x−y|<T/4

dy and changing the order of integration, we see that

5T 

3T/4

ˆ

Rn

|∇m−1u(x, t)|2 dx dt ≤
ˆ

Rn

5T 

3T/4

 

|x−y|<T/4

|∇m−1u(x, t)|2 dx dt dy.

Observe that {(x, t) : |x− y| < T/4, |t− T | < T/4} ⊂ B((z, T ), T/2), and that the two regions have
comparable volume. Recalling definition (1.5) of Ñ+, we see that

5T 

3T/4

ˆ

Rn

|∇m−1u(x, t)|2 dx dt ≤ Cn

ˆ

Rn

(  

|y−z|<T

Ñ+(∇m−1u)(z) dz

)2

dy.

Let
FT (y) =

 

|y−z|<T

Ñ+(∇m−1u)(z) dz,

so that ∣∣〈ĠT ,∇m−1u〉Rn+1
+

∣∣ ≤ Cn‖θ̇‖L2(Rn)‖FT ‖L2(Rn).

By Hölder’s inequality,
FT (y) ≤ CnT

−n/2‖Ñ+(∇m−1u)‖L2(Rn),

and so FT (y) → 0 as T → ∞ pointwise for each y ∈ Rn. We also have

FT (y) ≤ M(Ñ+(∇m−1u))(y),

where M is the Hardy–Littlewood maximal function. By the boundedness of M on L2(Rn),

M(Ñ+(∇m−1u)) ∈ L2(Rn),

and so, by the dominated convergence theorem, FT → 0 in L2(Rn) as T → ∞. Thus,

lim
T→∞

∣∣〈ĠT ,∇m−1u〉Rn+1
+

∣∣ = 0.

Therefore,

|〈Ḣ,∇m−1u〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

= lim
T→∞

|〈Ψ̇T ,∇m−1u〉Rn+1
+

− 〈ĠT ,∇m−1u〉Rn+1
+

|

‖C̃+
1 (t ∂tΨ̇T )‖Lp′ (Rn)

= lim
T→∞

|〈Ψ̇T ,∇m−1u〉Rn+1
+

|

‖C̃+
1 (t ∂tΨ̇T )‖Lp′ (Rn)

≤ sup
Ψ̇

|〈Ψ̇,∇m−1u〉Rn+1
+

|

‖C̃+
1 (t ∂tΨ̇)‖Lp′ (Rn)

.

Recalling that Lemma 3.6 implies

‖Ñ+u̇‖Lp(Rn) ≤ Cp sup
Ḣ

|〈Ḣ,∇m−1u〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

completes the proof.
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4 The Newton potential
We will establish the bounds on the layer potentials of Theorem 1.2 by duality with the Newton
potential, as in [46] and [22, Section 9]. Thus, the present section is devoted to the duality results for
the Newton potential and its bounds.

Specifically, we will establish duality between the Newton potential and the double and single layer
potentials in Subsection 4.1. We will bound the Newton potential in Subsections 4.2–4.5. For ease
of reference, the main bounds on the Newton potential established in the present paper are all listed
in Corollary 4.1. In Section 5, we will apply the duality results of Subsection 4.1 and the bounds
of Subsections 4.3–4.5 to establish bounds on the double and single layer potentials; the bounds of
Subsection 4.2 will be used in Subsections 4.3–4.5.

4.1 Duality
In this section, we will prove the following lemma, that is, we will establish appropriate duality
relations between the Newton potential and the double and single layer potentials. In Subsection 4.2,
we will use these relations to establish the bounds on the Newton potential. In Section 5, we will
reverse the argument and use these duality relations to establish the bounds on the double and single
layer potentials.

Lemma 4.1. Let L be an operator of the form (2.7) of order 2m associated to bounded coefficients A
that satisfy the ellipticity condition (1.11).

If Ψ̇ ∈ L2(Rn+1) and ġ ∈ (ẆA
1/2,2
m−1 (Rn))∗, then we have the duality relation〈

Ṫrm−1 Π
L∗

Ψ̇, ġ
〉
Rn = 〈Ψ̇,∇mSLġ〉Rn+1 . (4.1)

If Ψ̇ ∈ L2(Rn+1
+ ) and ḟ ∈ ẆA

1/2,2
m−1 (Rn), then we have the duality relation〈

Ṁ−
A∗ ΠL∗

(1+Ψ̇), ḟ
〉
Rn = −〈Ψ̇,∇mDAḟ〉Rn+1

+
. (4.2)

If A is t-independent in the sense of formula (1.2), Ψ̇ ∈ L2(Rn+1) is zero in Rn × (−ε, ε) for some
ε > 0, and if ḟ ∈ ẆA

1/2,2
m−1 (Rn), ġ ∈ (ẆA

1/2,2
m−1 (Rn))∗, and ḣ ∈ L2(Rn), then

〈Ṫrm ΠL∗
Ψ̇, ḣ〉Rn = 〈Ψ̇,∇mSL

∇ḣ〉Rn+1 , (4.3)〈
Ṫrm−1 ∂n+1Π

L∗
Ψ̇, ġ

〉
Rn = −

〈
Ψ̇,∇m∂n+1SLġ

〉
Rn+1 , (4.4)〈

Ṁ−
A∗ ∂n+1Π

L∗
(1+Ψ̇), ḟ

〉
Rn =

〈
Ψ̇,∇m∂n+1DAḟ

〉
Rn+1

+

. (4.5)

Proof. By definition (2.9) of the Newton potential, if Ψ̇ ∈ L2(Rn+1), then ΠL∗
Ψ̇ ∈ Ẇm,2(Rn+1). By

definition (2.14) of the single layer potential,〈
Ṫrm−1 Π

L∗
Ψ̇, ġ

〉
∂Rn+1

+

=
〈
∇mΠL∗

Ψ̇,A∇mSLġ
〉
Rn+1 ,

and by definition (2.9) of the Newton potential, we have that the relation (4.1) is valid.
If Ψ̇ ∈ L2(Rn+1

+ ) and ḟ = Ṫr−m−1 F for some F ∈ Ẇm,2(Rn+1
− ), then by definition of Neumann

boundary values,〈
Ṁ−

A∗ ΠL∗
(1+Ψ̇), ḟ

〉
Rn =

〈
A∗∇mΠL∗

(1+Ψ̇),∇mF
〉
Rn+1

−
=

〈
∇mΠL∗

(1+Ψ̇),1−A∇mF
〉
Rn+1 .

By [13, Lemma 42], we have

〈∇mΠL∗
Ġ, Ḣ〉Rn+1 = 〈Ġ,∇mΠLḢ〉Rn+1 (4.6)

for all Ġ, Ḣ ∈ L2(Rn+1). Thus,〈
Ṁ−

A∗ ΠL∗
(1+Ψ̇), ḟ

〉
Rn =

〈
Ψ̇,∇mΠL(1−A∇mF )

〉
Rn+1

+

.
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By formula (2.13), the relation (4.2) is valid.
To prove the relations (4.4) and (4.5), we review some Sobolev space theory. If F ∈ L2(Rn+1) and

h 6= 0, let Fh(x, t) =
1
h (F (x, t+h)−F (x, t)). Suppose that lim

h→0
Fh exists in the sense of L2 functions,

that is,
lim
h→0

‖Fh −G‖L2(Rn+1) = 0

for some function G ∈ L2(Rn+1). Then, by the weak definition of a derivative, ∂n+1F exists and
equals G. Conversely, if F ∈ L2(Rn+1) ∩ Ẇ 1,2(Rn+1), then an argument similar to the proof of the
Lebesgue differentiation theorem shows that lim

h→0
‖Fh − ∂n+1F‖L2(Rn+1) = 0.

By linearity and t-independence of A, ΠL∗
(Ψ̇h) = (ΠL∗

Ψ̇)h. If Ψ̇ ∈ L2(Rn+1)∩Ẇ 1,2(Rn+1), then
taking limits as h→ 0 in L2(Rn+1) shows that

∇mΠL(∂n+1Ψ̇) = ∂n+1(∇mΠLΨ̇). (4.7)

If, in addition, Ψ̇ is zero in Rn × (−ε, ε) for some ε > 0, then formulas (4.4) and (4.5) follow from
formulas (4.1) and (4.2) by integrating by parts.

To establish formulas (4.4) and (4.5) for arbitrary Ψ̇ ∈ L2(Rn×(ε,∞)), fix ε > 0, ḟ ∈ ẆA
1/2,2
m−1 (Rn),

and ġ ∈ (ẆA
1/2,2
m−1 (Rn))∗. By formulas (2.13) and (2.14), we have that DAḟ ∈ Ẇm,2(Rn+1

+ ) and
SLġ ∈ Ẇm,2(Rn+1), and so, by the Caccioppoli inequality, ∇m∂n+1DAḟ ∈ L2(Rn × (ε,∞)) and
∇m∂n+1SLġ ∈ L2(Rn × (ε,∞)). Thus, the right-hand sides of formulas (4.4) and (4.5) (regarded as
functions of Ψ̇) represent bounded linear operators on L2(Rn × (ε,∞)). Similarly, by the Caccioppoli
inequality, ∂n+1Π

L∗ is a bounded linear operator from L2(Rn × (ε,∞)) to Ẇm,2(Rn+1
− ), and so,

if ġ ∈ (ẆA
1/2,2
m−1 (Rn))∗ and ḟ ∈ ẆA

1/2,2
m−1 (Rn), then the left-hand sides of formulas (4.4) and (4.5)

represent bounded linear operators on L2(Rn× (ε,∞)). Thus, by density, formulas (4.4) and (4.5) are
valid for all Ψ̇ ∈ L2(Rn × (ε,∞)). A similar argument (or the relations of Subsection 3.1) establishes
formula (4.4) for Ψ̇ ∈ L2(Rn × (−∞, ε)).

Formula (4.3) was established in [22, Section 9] under the additional assumption that Ψ̇ is sup-
ported in Rn+1

+ . In the general case, by assumption on supp Ψ̇, Lemma 3.2, and the bound (1.20)
(with p = 2), we have that the norms of both sides of formula (4.3) is at most

C√
ε
‖Ψ̇‖L2(Rn+1)‖ḣ‖L2(Rn)

and, in particular, both sides are meaningful if this quantity is finite. Thus, we need only establish
formula (4.3) for ḣ in a dense subset of L2(Rn). In particular, we only need to consider ḣ such
that formulas (2.17), (2.16), (4.1), and (4.4) (with appropriate ġ) are valid, and formula (4.3) is a
straightforward consequence of the given formulas.

4.2 The boundary values of the Newton potential
In this section, we begin to establish the bounds on the Newton potential by using Lemma 4.1 and the
known bounds (1.16)–(1.23). The argument is precisely dual to that of Section 5. Observe that it is the
boundary values Ṫrm−1 Π

L∗
Ψ̇, Ṫr−m ΠL∗

Ψ̇ and Ṁ−
A ΠL∗

(1+Ψ̇) that appear in the bounds (4.1)–(4.4);
thus, it is the boundary values of the Newton potential that will be bounded in the present section.
We remark that we will not establish all of the bounds on the Newton potential that follow from
formulas (4.1)–(4.4) and the bounds (1.16)–(1.23), but only those that we will need in Subsections
4.3–4.5.
Lemma 4.2. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Then there is some ε with the following significance. Suppose that Ψ̇ ∈ L2(Rn+1) is supported in
a compact subset of Rn+1

+ ∪ Rn+1
− . If 1/p+ 1/p′ = 1 and p lies in the indicated ranges, then

‖Ṫrm ΠL∗
Ψ̇‖Lp′ ≤ C(1, L, p)‖A∗

2Ψ̇‖Lp′ , 2− ε < p < p+1,L, (4.8)∥∥ Ṁ−
A∗ ΠL∗

(1+Ψ̇)
∥∥
(ẆA0,p

m−1)
∗ ≤ C(1, L, p)‖A+

2 Ψ̇‖Lp′ , 2 ≤ p < p+1,L. (4.9)
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Suppose Ḣ ∈ L2(Rn+1) is supported in a compact subset of Rn+1
+ ∪Rn+1

− . If we normalize ∇m−1ΠL∗
Ḣ

as in formulas (2.11) and (2.12), then

‖Ṫrm−1 Π
L∗

Ḣ‖Lp′ ≤ C(0, L, p)‖C̃∗
1(tḢ)‖Lp′ , 2− ε < p < p+0,L. (4.10)

Proof. We use Lemmas 3.5 and 3.6 to establish the bound (4.10). We need a similar formula involving
the area integral to establish the bounds (4.8) and (4.9). Let T p

2 = {ψ : A+
2 ψ ∈ Lp(Rn)} with the

natural norm. By [30, p. 316], if 1 < p <∞, then under the inner product

〈f, g〉 =
ˆ

Rn+1
+

f(x, t) g(x, t)
dx dt

t
,

the dual space to T p
2 is T p′

2 . Thus,

1

Cp
‖A+

2 (tu̇)‖Lp(Rn) ≤ sup
Ψ̇

|〈Ψ̇, u̇〉Rn+1
+

|

‖A+
2 Ψ̇‖Lp′ (Rn)

≤ C‖A+
2 (tu̇)‖Lp(Rn), (4.11)

where the supremum is taken over all Ψ̇ ∈ L2
loc(R

n+1
+ ) such that A+

2 Ψ̇ ∈ Lp′
(Rn) and such that the

denominator is positive. A similar formula is valid for A−
2 and A∗

2.
Remark 4.1. We may take the supremum only over all Ψ̇ ∈ L2

c(R
n+1
+ ) \ {0̇}, where L2

c is as in
Lemma 3.6.

If 1 < p <∞, then by formula (4.3) and by density of Lp ∩ L2 in Lp,

‖Ṫrm ΠL∗
Ψ̇‖Lp′ (Rn) = sup

ḣ∈Lp∩L2\{0̇}

|〈Ψ̇,∇mSL
∇ḣ〉Rn+1 |

‖ḣ‖Lp(Rn)

.

By the bound (4.11), if 1 < p <∞, then

‖Ṫrm ΠL∗
Ψ̇‖Lp′ (Rn) ≤ C sup

ḣ∈Lp∩L2\{0}

‖A∗
2Ψ̇‖Lp′ (Rn)‖A∗

2(t∇mSL
∇ḣ)‖Lp(Rn)

‖ḣ‖Lp(Rn)

,

and by the bound (1.20), if 2− ε < p < p+1,L, then the bound (4.8) is valid.
Similarly, by formula (4.2) and the bounds (4.11) and (1.21), if 2 ≤ p < p+1,L and ḟ ∈ ẆA0,p

m−1(Rn)∩
ẆA

1/2,2
m−1 (Rn), then∣∣〈Ṁ−

A∗ ΠL∗
(1+Ψ̇), ḟ〉Rn

∣∣ ≤ C(1, L, p)‖A+
2 Ψ̇‖Lp′ (Rn)‖ḟ‖ẆA0,p

m−1(Rn).

By density of ẆA0,p
m−1(Rn) ∩ ẆA1/2,2

m−1 (Rn) in ẆA
1/2,2
m−1 (Rn), the bound (4.9) is valid.

We now turn to the bound (4.10). Let γ̇ ∈ Ḃ
−1/2,2
2 (Rn)∩Lp(Rn) for some p with 2−ε < p < p+0,L.

Then by formula (4.1), Lemma 3.5, and the bound (1.16), we have∣∣〈Ṫrm−1 Π
L∗

Ḣ, γ̇〉Rn

∣∣ ≤ C(0, L, p)‖γ̇‖Lp(Rn)‖C̃∗
1(tḢ)‖Lp′ (Rn).

By density of Ḃ−1/2,2
2 (Rn) ∩ Lp(Rn) in Lp(Rn), there is an ḟ ∈ Lp′

(Rn) with

‖ḟ‖Lp′ (Rn) ≤ C(0, L, p)‖C̃∗
1(tḢ)‖Lp′ (Rn)

such that 〈ḟ , γ̇〉Rn = 〈Ṫrm−1 Π
L∗

Ḣ, γ̇〉Rn for all γ̇ ∈ Ḃ
−1/2,2
2 (Rn) ∩ Lp(Rn). We need only establish

that ḟ = Ṫrm−1 Π
L∗

Ḣ.
We normalize ΠL∗

Ḣ as in formulas (2.11) and (2.12). Then there is some q < ∞ such that
∇m−1ΠL∗

Ḣ ∈ Lq(Rn+1). By Lemma 3.2 and because Ḣ is supported away from ∂Rn+1
± , we have

that Ṫrm−1 Π
L∗

Ḣ ∈ Lq(Rn) (and is, in particular, locally integrable).
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If φ̇ ∈ C∞
0 (Rn) and

´
Rn

φ̇ = 0, then φ̇ ∈ Ḃ
−1/2,2
2 (Rn) ∩ Lp(Rn), and so

〈
φ̇, Ṫrm−1 Π

L∗
Ḣ − ḟ

〉
Rn = 0.

Thus, Ṫrm−1 Π
L∗

Ḣ − ḟ is a constant.
We have seen that ḟ ∈ Lp′

(Rn), Ṫrm−1 Π
L∗

Ḣ ∈ Lq(Rn), for p′, q < ∞, and ḟ − Ṫrm−1 Π
L∗

Ḣ is
constant; therefore, ḟ = Ṫrm−1 Π

L∗
Ḣ, as desired.

4.3 Inputs satisfying area integral estimates
In this section, we will continue to establish the bounds on the Newton potential. The two main
results of this section are Lemma 4.3, in which we establish the L2 bound∥∥Ñ∗(∇mΠL∗

Ψ̇)
∥∥
L2(Rn)

≤ C‖A∗
2Ψ̇‖L2(Rn),

and Lemma 4.5, in which we establish the Lp′ bound∥∥Ñ∗(∇m−j∂jtΠ
L∗

Ψ̇)
∥∥
Lp′ (Rn)

≤ C(j, L∗, p′)‖A∗
2Ψ̇‖Lp′ (Rn), p−j,L∗ < p ≤ 2.

The proof of Lemma 4.3 involves the bound (4.8) and some techniques from the proof of [46, Lem-
ma 4.1], while the proof of Lemma 4.5 involves Lemma 4.3 and some techniques from [15].

Lemma 4.3. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Ψ̇ ∈ L2(Rn+1) be supported in a compact subset of Rn+1
+ ∪ Rn+1

− . Then∥∥Ñ∗(∇mΠL∗
Ψ̇)

∥∥
L2(Rn)

≤ C‖A∗
2Ψ̇‖L2(Rn).

Proof. Let z ∈ Rn and let (x0, t0) satisfy |z − x0| < |t0|. Let B = B((x0, t0), |t0|/2). We wish to
bound  

B

|∇mΠL∗
Ψ̇|2

by a quantity depending only on z and Ψ̇, and not on x0 or t0.
Let ∆(x, r) = {y ∈ Rn : |x− y| < r} denote a disk in Rn (not Rn+1). Let Ek = ∆(x0, 2

k+2|t0|)×
(−2k+2|t0|, 2k+2|t0|) be a cylinder in Rn+1. We define

Ψ̇0 = 1E0
Ψ̇, Ψ̇k = 1Ek\Ek−1

1+Ψ̇, k ≥ 1,

and let
wk = ΠL∗

Ψ̇k, k ≥ 0.

Then ΠL∗
Ψ̇ = w0 +

∞∑
k=1

wk.

We begin with bounding ∇mw0. By the L2 boundedness of ∇mΠL∗ , 

B

|∇mw0|2 ≤ C

|t0|n+1
‖Ψ̇0‖2L2(Rn+1).

By Lemma 3.3 with r = 2 and κ = 0, if 2n
n+1 < θ ≤ 2, then

‖Ψ̇0‖L2(Rn+1) = ‖Ψ̇0‖L2(Rn×(−4|t0|,4|t0|)) ≤
Cθ

|t0|n/θ−1/2−n/2
‖A∗

2Ψ̇0‖Lθ(Rn).

But A∗
2Ψ̇0 = 0 outside of ∆(x0, 8|t0|) ⊂ ∆(z, 9|t0|), and A∗

2Ψ̇0(x) ≤ A∗
2Ψ̇(x) for all x ∈ ∆(z, 9|t0|).

Thus,  

B

|∇mw0|2 ≤ Cθ

|t0|2n/θ

( ˆ

∆(z,9|t0|)

(A∗
2Ψ̇)θ

)2/θ

.
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Let M denote the Hardy-Littlewood maximal operator (in Rn) given by

Mf(z) = sup
r>0

 

|y−z|<r

|f(y)| dy.

We then have  

B

|∇mw0|2 ≤ CθM((A∗
2Ψ̇)θ)(z)2/θ (4.12)

whenever 2n
n+1 < θ ≤ 2.

We now turn to Ψ̇k, k ≥ 1. Let w̃ =
∞∑
k=1

wk. Observe that L∗w̃ = 0 in E0.

The following lemma may be proven by using the same argument as [24, Lemma 3.19], in which
the case of cubes (rather than cylinders) was considered.

Lemma 4.4. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let x0 ∈ Rn and let r > 0, c > 0, and σ > 1. Let E = ∆(x0, r) × (−cr, cr) and Ẽ = ∆(x0, σr) ×
(−cσr, cσr). Suppose that u ∈ Ẇm,2(Ẽ) and Lu = 0 in Ẽ. Let 0 ≤ j ≤ m. Then there is a constant
Cc,σ depending only on c, σ and the standard parameters (in particular, independent of x0 and r)
such that

 

E

|∇ju(x, t)|2 dt dx ≤ Cc,σ

(
r

 

Ẽ

|∂j+1
t u(x, t)| dt dx

)2

+ Cc,σ

(  

∆(x0,σr)

|Ṫrj u(x)| dx
)2

.

Observe that B = B((x0, t0), |t0|/2) ⊂ ∆(x0, |t0|/2)× (−3|t0|/2, 3|t0|/2). Thus, by Lemma 4.4,

( 

B

|∇mw̃|2
)1/2

≤ C

 

∆(x0,|t0|)

2|t0|ˆ

−2|t0|

|∂m+1
n+1 w̃|+ C

 

∆(x0,|t0|)

|Ṫrm w̃|. (4.13)

Recall that θ is a number with 2n
n+1 < θ ≤ 2. If n ≥ 1, then θ > 1. Thus, by Hölder’s inequality,

 

∆(x0,|t0|)

|Ṫrm w̃| ≤ CM(Ṫrm w)(z) +

(  

∆(x0,|t0|)

|Ṫrm w0|θ
)1/θ

.

By the bound (1.15), p−1,L ≤ max(1, 2n
n+2 ) ≤

2n
n+1 , and so, if 2n

n+1 < θ ≤ 2, then the bound (4.8) is valid
for p′ = θ. Furthermore, the constant c(1, L, θ′, 2) of the bound (1.13) may be bounded by a constant
depending only on θ and the standard parameters. Thus, 

∆(x0,|t0|)

|Ṫrm w0|θ ≤ 1

|∆(x0, |t0|)|

ˆ

Rn

|Ṫrm w0|θ ≤ Cθ
1

|∆(x0, |t0|)|

ˆ

Rn

(A∗
2Ψ̇0)

θ.

As before, A∗
2Ψ̇0 ≤ A∗

2Ψ̇ and A∗
2Ψ̇0 = 0 outside of ∆(z, 9|t0|), and so 

∆(x0,|t0|)

|Ṫrm w̃| ≤ CM(Ṫrm w)(z) + CθM((A∗
2Ψ̇)θ)(z)1/θ. (4.14)

We are left with the term involving ∂m+1
n+1 w̃.

Choose some k ≥ 1. Let (x, t) ∈ ∆(x0, 2|t0|) × (−2|t0|, 2|t0|) = E−1 ⊆ Ek−2. Observe that
since A (and thus A∗) is t-independent, we have that L∗(∂m+1

n+1 wk) = 0 in Ek−1 for each k ≥ 1.
By [13, formula (29)], if 2m > n+ 1, then

|∂m+1
t wk(x, t)| ≤ C

(  

Ek−3/2

|∂m+1
s wk(y, s)|2 dy ds

)1/2

.
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Recall that wk = ΠL∗
Ψ̇k. By the Caccioppoli inequality and the boundedness of the Newton potential

L2(Rn+1) → Ẇm,2(Rn+1),

|∂m+1
t wk(x, t)| ≤

C

(2k|t0|)1+(n+1)/2
‖Ψ̇k‖L2(Rn+1).

Observe that A∗
2Ψ̇k ≤ A∗

2Ψ̇ and that A∗
2Ψ̇k = 0 outside of ∆(x0, 2

k+3|t0|) ⊂ ∆(z, 2k+4|t0|). As before,
by Lemma 3.3 with r = 2 and κ = 0,

‖Ψ̇k‖L2(Rn+1) ≤
Cθ

(2k|t0|)n/θ−1/2−n/2
‖A∗

2Ψ̇k‖Lθ(Rn) ≤ Cθ(2
k|t0|)(n+1)/2M((A∗

2Ψ̇)θ)(z)1/θ.

Thus,
 

∆(x0,|t0|)

2|t0|ˆ

−2|t0|

|∂m+1
n+1 w̃| ≤

∞∑
k=1

Cθ

2k
M((A∗

2Ψ̇)θ)(z)1/θ.

Summing and applying the bounds (4.12)–(4.14), we see that if 2m > n+ 1 and 2n
n+1 < θ ≤ 2, then( 

B

|∇mΠL∗
Ψ̇|2

)1/2

≤
( 

B

|∇mw0|2
)1/2

+

( 

B

|∇mw̃|2
)1/2

≤ CθM((A∗
2Ψ̇)θ)(z)1/θ + CM(Ṫrm ΠL∗

Ψ̇)(z).

The right-hand side depends only on z, not on x0 or t0, and so

Ñ∗(∇mΠL∗
Ψ̇)(z) ≤ CθM((A∗

2Ψ̇)θ)(z)1/θ + CM(Ṫrm ΠL∗
Ψ̇)(z).

By the bound (4.8), we have that ‖Ṫrm ΠL∗
Ψ̇‖L2(Rn) ≤ C‖A∗

2Ψ̇‖L2(Rn). Choose θ = (2n+1)/(n+

1) < 2. By boundedness of M on L2(Rn) and on L2/θ(Rn), we have

‖Ñ∗(∇mΠL∗
Ψ)‖L2(Rn) ≤ C‖A∗

2Ψ̇‖L2(Rn).

This completes the proof in the case 2m > n+ 1.
Suppose now that 2m ≤ n+ 1. Let L̃ = ∆ML∆M for some large integer M . As shown in the

proof of [13, Theorem 62], there are the constants aξ such that

ΠLΨ̇ = ∆MΠL̃ ˙̃
Ψ, where ˙̃

Ψ =
∑

|ξ|=2M

∑
|β|=m

aξ Ψβ ėβ+ξ,

where ėβ+ξ is given by formula (2.15). Thus,

Ñ∗(∇mΠL∗
Ψ̇)(z) = Ñ+(∇m∆MΠL̃∗ ˙̃

Ψ)(z)

and if we choose M such that 2m+ 4M > n+ 1, then∥∥Ñ∗(∇m+2MΠL̃∗ ˙̃
Ψ)

∥∥
L2(Rn)

≤ C‖A∗
2
˙̃
Ψ‖L2(Rn) ≤ C2‖A∗

2Ψ̇‖L2(Rn),

as desired.

We now extend to the bounds for A∗
2Ψ̇ ∈ Lp′

(Rn), p < 2.

Lemma 4.5. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let j be an integer with 0 ≤ j ≤ m. Let p satisfy p−j,L∗ < p < 2 and 1/p + 1/p′ = 1. Let
Ψ̇ ∈ L2(Rn+1) be supported in a compact subset of Rn+1

+ ∪ Rn+1
− . Then∥∥Ñ∗(∇m−j∂jtΠ

L∗
Ψ̇)

∥∥
Lp′ (Rn)

≤ C(j, L∗, p′)‖A∗
2Ψ̇‖Lp′ (Rn), p−j,L∗ < p ≤ 2.
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Proof. The p = 2 case is Lemma 4.3. Let

u = ∂jtΠ
L∗

Ψ̇, uQ = ∂jtΠ
L∗(

110Q×(−ℓ(Q),ℓ(Q))Ψ̇
)
, Φ1 = A∗

2Ψ̇,

where Q is any cube in Rn. Hereafter, the proof closely parallels that of [15, Theorem 4.12] and, in
fact, will use many results of [15]. Choose some p with p−j,L∗ < p < 2. By standard self-improvement
properties of reverse Hölder estimates (see, for example, [42, Chapter V, Theorem 1.2]), there is a
p2 > p′ such that the bound (1.13) is valid for solutions u to L∗u = 0 and for p = p2. That is, there
is p2 > p′ such that p2 < p+j,L∗ with p2 and c(j, L∗, p2, 2) depending only on p and c(j, L∗, p′, 2).

We have that u− uQ ∈ Ẇm,2
loc (10Q× (−ℓ(Q), ℓ(Q))) and L∗(u− uQ) = 0 in 10Q× (−ℓ(Q), ℓ(Q)).

By [15, Lemma 4.11] with v = u− uQ, we obtain(  

8Q

Ñ ℓ
n(∇m−j(u− uQ))

p2

)1/p2

≤ C(j, L∗, p2)

(  

10Q

Ñ3ℓ
n (∇m−j(u− uQ))

2

)1/2

,

where ℓ = ℓ(Q)/4 and Ñ ℓ
n is as given in [15, Section 4]. In particular, Ñ3ℓ

n (∇m−ju) ≤ Ñ∗(∇m−ju).
By Lemma 4.3, we have

‖Ñ∗(∇m−ju)‖L2(Rn) ≤ C‖Φ1‖L2(Rn) <∞.

Observe that A∗
2(110Q×(−ℓ(Q),ℓ(Q))Ψ̇)(x) ≤ A∗

2Ψ̇(x) = Φ1(x) and is zero if x 6∈ 12Q; thus, again by
Lemma 4.3, we have that

‖Ñ∗(∇m−juQ)‖L2(Rn) ≤ C‖Φ1‖L2(16Q).

These bounds imply that∥∥Ñ ℓ
n(∇m−j(u− uQ))

∥∥
Lp2 (8Q)

≤ C(j, L∗, p2)

|Q|1/2−1/p2

(
‖Φ1‖L2(16Q) + ‖Ñ∗(∇m−ju)‖L2(10Q)

)
.

The conditions of [15, Lemma 4.3] with u̇ = ∇m−ju and u̇Q = ∇m−juQ are thus satisfied, and so,

‖Ñ+(∇m−ju)‖Lp′ (Rn) ≤ C(j, L∗, p′)‖Φ1‖Lp′ (Rn),

as desired.

4.4 Inputs satisfying Carleson estimates
In this section, we will continue to establish the bounds on the Newton potential. In Lemma 4.6, we
will establish the area integral bound

‖A∗
2(t∇mΠL∗

Ḣ)‖Lp′ (Rn) ≤ C(0, L, p)‖C̃∗
1(tḢ)‖Lp′ (Rn), 2 ≤ p < p+0,L,

and in Lemmas 4.7 and 4.8, we will establish the nontangential bound

‖Ñ∗(∇m−1ΠL∗
Ḣ)‖Lp′ (Rn) ≤ C̃p‖C̃∗

1(tḢ)‖Lp′ (Rn), p−1,L∗ < p < p+0,L

for an appropriate constant C̃p.
Lemma 4.6 will be proven by a simple duality argument. The proof of Lemma 4.7 will use some

techniques similar to those of Lemma 4.3. Most of the proof of Lemma 4.8 will be omitted, since
once some notation has been established it can be proved in the same fashion as [15, Theorem 4.12]
or Lemma 4.5.

Lemma 4.6. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Ḣ ∈ L2(Rn+1) be supported in a compact subset of Rn+1
+ ∪ Rn+1

− . Let p+0,L be as in the bound
(1.13). If 2 ≤ p < p+0,L and 1/p+ 1/p′ = 1, then∥∥A∗

2(t∇mΠL∗
Ḣ)

∥∥
Lp′ (Rn)

≤ C(0, L, p)‖C̃∗
1(tḢ)‖Lp′ (Rn), 2 ≤ p < p+0,L.
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Proof. By the bound (4.11),

∥∥A∗
2(t∇mΠL∗

Ḣ)
∥∥
Lp′ (Rn)

≈ sup
Ψ̇

|〈Ψ̇,∇mΠL∗
Ḣ〉Rn+1 |

‖A∗
2Ψ̇‖Lp(Rn)

.

We may take the supremum over Ψ̇ supported in a compact subset of Rn+1
+ ∪ Rn+1

− such that the
denominator is positive and finite. Thus, we may assume that Ψ̇ ∈ L2(Rn+1). By [13, Lemma 42]
(reproduced as formula (4.6) above),

∥∥A∗
2(t∇mΠL∗

Ḣ)
∥∥
Lp′ (Rn)

≈ sup
Ψ̇

|〈∇mΠLΨ̇, Ḣ〉Rn+1 |
‖A∗

2Ψ̇‖Lp(Rn)

,

and by Lemma 3.5,

∥∥A∗
2(t∇mΠL∗

Ḣ)
∥∥
Lp′ (Rn)

≤ Cp sup
Ψ̇

‖Ñ∗(∇mΠLΨ̇)‖Lp(Rn)‖C̃∗
1(tḢ)‖Lp′ (Rn)

‖A∗
2Ψ̇‖Lp(Rn)

.

Using Lemma 4.5 with j = 0 and permuting p, p′ and L, L∗ we complete the proof.

We now establish nontangential estimates.

Lemma 4.7. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Ḣ ∈ L2(Rn+1) be supported in a compact subset of Rn+1
+ ∪ Rn+1

− . Let p+0,L be as in the bound
(1.13). If 2 ≤ p < p+0,L and 1/p+ 1/p′ = 1, then∥∥Ñ∗(∇m−1ΠL∗

Ḣ)
∥∥
Lp′ (Rn)

≤ C(0, L, p)‖C̃∗
1(tḢ)‖Lp′ (Rn), 2 ≤ p < p+0,L.

Proof. As in the proof of Lemma 4.3, let ∆(x, r) = {y ∈ Rn : |x− y| < r}, let z ∈ Rn, and let
B = B((x0, t0), |t0|/2) be a Whitney ball with |x0 − z| < |t0|. Let

Ḣ = Ḣn + Ḣf , where Ḣn = 1∆(x0,4|t0|)×(−4|t0|,4|t0|)Ḣ.

Our goal is thus to show that( 

B

|∇m−1ΠL∗
Ḣn|2

)1/2

+

(  

B

|∇m−1ΠL∗
Ḣf |2

)1/2

may be bounded by a quantity depending only on z and Ḣ, not on x0 and t0.
Fix some p with 2 ≤ p < p+0,L. As in the proof of Lemma 4.5, by standard self-improvement

properties of the reverse Hölder estimates (see, for example, [42, Chapter V, Theorem 1.2]), there is
a θ > p such that the bound (1.13) is valid for solutions u to Lu = 0 and for p = θ. That is, there is
θ such that p < θ < p+0,L with θ and c(0, L, θ, 2) depending only on p and c(0, L, p, 2).

If n+ 1 ≥ 3, let r = 2; if n+ 1 = 2, let r satisfy θ′ < r < 2 and be close enough to 2 that the
bound (2.10) is valid. Let q be as in the bound (2.11) or (2.12). Observe that r > 1 and so q > 2.

We begin with ΠL∗
Ḣn. By Hölder’s inequality,( 

B

|∇m−1ΠL∗
Ḣn|2

)1/2

≤ C|t0|−(n+1)/q‖∇m−1ΠL∗
Ḣn‖Lq(Rn×I(t0)),

where I(t0) = (t0/2,∞) if t0 > 0, and where I(t0) = (−∞, t0/2) = (−∞,−|t0|/2) if t0 < 0.
Recall that Ḣ ∈ L2(Rn+1) and r ≤ 2, and so Ḣn ∈ Lr(Rn+1). By the bound (2.10), we have

∇mΠL∗
Ḣn ∈ Lr(Rn×I(t0)). By the Gagliardo–Nirenberg–Sobolev inequality and standard extension

theorems of Sobolev spaces on a half-space, we find that there is a constant ċ such that

‖∇m−1ΠL∗
Ḣn − ċ‖Lq(Rn×I(t0)) ≤ Cr‖∇mΠL∗

Ḣn‖Lr(Rn×I(t0)).
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By the bound (2.11) or (2.12), ‖∇m−1ΠL∗
Ḣn‖Lq(Rn+1) is finite, and so ċ = 0.

Recall that 1 < θ′ < r ≤ 2 and so θ′(n+ 1)/(n+ θ′) < r. By Lemma 3.3 with κ = 1,

‖∇mΠL∗
Ḣn‖Lr(Rn×I(t0)) ≤

Cθ,r

|t0|1+n/θ′−1/r−n/r

∥∥A∗
2(t∇mΠL∗

Ḣn)
∥∥
Lθ′ (Rn)

.

By Lemma 4.6, if 2 < θ < p+0,L, then∥∥A∗
2(t∇mΠL∗

Ḣn)
∥∥
Lθ′ (Rn)

≤ C(0, L, θ)‖C̃∗
1(tḢn)‖Lθ′ (Rn).

Thus, ( 

B

∣∣∇m−1ΠL∗
(Ḣn)

∣∣2)1/2

≤ C(0, L, θ)

|t0|n/θ′ ‖C̃∗
1(tḢn)‖Lθ′ (Rn).

By Lemma 3.4 with r = θ′, we have

‖C̃∗
1(tḢn)‖Lθ′ (Rn) ≤ Cθ|t0|n/θ

′
M((C̃∗

1(tḢ))θ
′
)(z)1/θ

′
,

where M is the Hardy–Littlewood maximal function. Thus,( 

B

∣∣∇m−1ΠL∗
(Ḣn)

∣∣2)1/2

≤ C(0, L, θ)M((C̃∗
1(tḢ))θ

′
)(z)1/θ

′
. (4.15)

We now turn to ΠL∗
Ḣf . Recall that Ḣf = 0 in ∆(x0, 4|t0|)× (−4|t0|, 4|t0|). By Lemma 4.4,

( 

B

∣∣∇m−1ΠL∗
Ḣf

∣∣2)1/2

≤ C

 

∆(x0,|t0|)

|Ṫrm−1 Π
L∗

Ḣf |+ C

2|t0|ˆ

−2|t0|

 

∆(x0,|t0|)

|∂mn+1Π
L∗

Ḣf |.

We begin by bounding the trace. We have 

∆(x0,|t0|)

∣∣ Ṫrm−1 Π
L∗

Ḣf

∣∣ ≤ CM(Ṫrm−1 Π
L∗

Ḣ)(z) +

 

∆(x0,|t0|)

|Ṫrm−1 Π
L∗

Ḣn|.

By the bound (4.10), we have that Ṫrm−1 Π
L∗

Ḣ ∈ Lθ′
(Rn), and∥∥ Ṫrm−1 Π

L∗
Ḣn

∥∥
Lθ′ (Rn)

≤ C(0, L, θ)‖C̃∗
1(tḢn)‖Lθ′ (Rn).

Thus, by Hölder’s inequality and Lemma 3.4, 

∆(x0,|t0|)

∣∣ Ṫrm−1 Π
L∗

Ḣn

∣∣ ≤ C(0, L, θ)t
−n/θ′

0 ‖C̃∗
1(tḢn)‖Lθ′ (Rn) ≤ C(0, L, θ)M((C̃∗

1(tḢ))θ
′
)(z)1/θ

′
.

Therefore,( 

B

|∇m−1ΠL∗
Ḣf |2

)1/2

≤ CM(Ṫrm−1 Π
L∗

Ḣ)(z)

+ C(0, L, θ)M((C̃∗
1(tḢ))θ

′
)(z)1/θ

′
+ C

2|t0|ˆ

−2|t0|

 

∆(x0,|t0|)

|∂mn+1Π
L∗

Ḣf |.

We are left with the term involving ∂mn+1Π
L∗

Ḣf . Let w = ∂mn+1Π
L∗

Ḣf . By the bound (1.13), if
0 < µ <∞, then

2|t0| 

−2|t0|

 

∆(x0,|t0|)

|w| ≤ Cµ

( 3|t0| 

−3|t0|

 

∆(x0,2|t0|)

|w|µ
)1/µ

.
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Choose µ = 1/2. By Lemma 3.3 with θ = r = 1/2 and κ = 1, it follows that

( 3|t0| 

−3|t0|

 

∆(x0,2|t0|)

|w|1/2
)2

≤ Ct−2n−1
0 ‖A∗

2(t1Ew)‖L1/2(Rn),

where E is the region of integration on the left-hand side. Observe that A∗
2(t1Ew) = 0 outside of

∆(x0, 5|t0|) ⊂ ∆(z, 6|t0|). By Hölder’s inequality, if θ′ > 1/2, then
2|t0|ˆ

−2|t0|

 

∆(x0,|t0|)

|w| ≤ C

(  

∆(z,6|t0|)

A∗
2(tw)(y)

θ′
dy

)1/θ′

.

Recalling the definitions of w and Ḣf , we see that if θ′ ≥ 1, then(  

∆(z,6|t0|)

A∗
2(tw)

θ′
)1/θ′

≤
(  

∆(z,6|t0|)

A∗
2(t∇mΠL∗

Ḣn)
θ′
)1/θ′

+

(  

∆(z,6|t0|)

A∗
2(t∇mΠL∗

Ḣ)θ
′
)1/θ′

.

By Lemma 4.6, if 2 ≤ θ < p+0,L, then(  

∆(z,6|t0|)

A∗
2(tw)

θ′
)1/θ′

≤ C(0, L, θ)

t
n/θ′

0

‖C̃∗
1(tḢn)‖Lθ′ (Rn) +M(A∗

2(t∇mΠL∗
Ḣ)θ

′
)(z)1/θ

′
,

and by Lemma 3.4 with r = θ′,
1

t
n/θ′

0

‖C̃∗
1(tḢn)‖Lθ′ (Rn) ≤ CM((C̃∗

1(tḢ))θ
′
)(z)1/θ

′
.

Thus,( 

B

|∇m−1ΠL∗
Ḣf |2

)1/2

≤ CM(Ṫrm−1 Π
L∗

Ḣ)(z)

+ CM(A∗
2(t∇mΠL∗

Ḣ)θ
′
)(z)1/θ

′
+ C(0, L, θ)M((C̃∗

1(tḢ))θ
′
)(z)1/θ

′
.

Combining this estimate with the bound (4.15) yields

Ñ∗(∇m−1ΠL∗
(1+Ḣ))(z)

≤ CM(Ṫrm−1 Π
L∗

Ḣ)(z) + CM(A∗
2(t∇mΠL∗

Ḣ)θ
′
)(z)1/θ

′
+ C(0, L, θ)M((C̃∗

1(tḢ))θ
′
)(z)1/θ

′
.

Recall that p < θ < p+0,L, so that p′/θ′ > 1, and that c(0, L, θ, 2) depends only on p and c(0, L, p, 2).
By the bound (4.10), Lemma 4.6, and the Lp′ and Lp′/θ′ -boundedness of M, we find that the lemma
follows from the above bound.

The techniques of [15] allow us to extend the range of p in our nontangential bound.
Lemma 4.8. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Ḣ ∈ L2(Rn+1) be supported in a compact subset of Rn+1
+ ∪ Rn+1

− . Let p+j,L be as in the bound
(1.13). If p−1,L∗ < p < 2 and 1/p+ 1/p′ = 1, then

‖Ñ∗(∇m−1ΠL∗
Ḣ)‖Lp′ (Rn) ≤ C(1, L∗, p′)‖C̃∗

1(tḢ)‖Lp′ (Rn), p−1,L∗ < p < 2.

Proof. Let

u = ΠL∗
(1+Ḣ), uQ = ΠL∗

(110Q×(−ℓ(Q),ℓ(Q))Ḣ), Φ1 = C̃∗
1(tḢ), j = 1.

The proof is similar to that of [15, Theorem 4.12] or Lemma 4.5 and will be omitted.
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4.5 Area integral estimates on the Newton potential
In this section, we will establish area integral estimates on the Newton potential beyond Lemma 4.6.
We recall that the Fatou-type estimates on the Neumann boundary values established in [23] involve
area integral estimates but not nontangential estimates; thus, in light of formulas (4.2) and (4.5), area
integral estimates are necessary to bound the double layer potential. We will also expand the range
of p in the nontangential bound of Lemma 4.5. For ease of reference, all our nontangential and area
integral bounds on the Newton potential are listed in Corollary 4.1.

Lemma 4.9. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Ψ̇ ∈ L2(Rn+1
+ ) be compactly supported. Then∥∥A−

2 (t∇m∂tΠ
L∗

(1+Ψ̇))
∥∥
L2(Rn)

≤ C‖A+
2 Ψ̇‖L2(Rn).

Proof. By the boundedness of the Newton potential (see Subsection 2.4), ΠL∗
(1+Ψ̇) ∈ Ẇm,2(Rn+1).

By definition (2.9) of ΠL∗ , L∗(ΠL∗
(1+Ψ̇)) = 0 in Rn+1

− . By [14, Lemma 5.2] or [20, formula (2.26)],
we have the Green formula

1−∇mΠL∗
(1+Ψ̇) = ∇mDA∗

(Ṫr−m−1 Π
L∗

(1+Ψ̇)) +∇mSL∗
(Ṁ−

A∗ ΠL∗
(1+Ψ̇))

away from ∂Rn+1
± . This formula can also be derived from formula (2.13) for the double layer potential

(with F = ΠL∗
(1+Ψ̇)), and from the definitions (2.8), (2.9) and (2.14) of Ṁ−

A∗ , ΠL∗ , and SL∗ .
Thus,∥∥A−

2 (t∇m∂tΠ
L∗

(1+Ψ̇))
∥∥
L2(Rn)

≤
∥∥A−

2 (t∇m∂tDA∗
(Ṫr−m−1 Π

L∗
(1+Ψ̇)))

∥∥
L2(Rn)

+
∥∥A−

2 (t∇m∂tSL∗
(Ṁ−

A∗ ΠL∗
(1+Ψ̇)))

∥∥
L2(Rn)

.

By the bound (1.19) with p = 2,∥∥A−
2

(
t∇m∂tDA∗

(Ṫr−m−1 Π
L∗

(1+Ψ̇))
)∥∥

L2(Rn)
≤ C‖Ṫr−m−1 Π

L∗
(1+Ψ̇)‖ẆA1,2

m−1(Rn),

and by definition of ẆA1,2
m−1(Rn) and the bound (4.8),∥∥ Ṫr−m−1 Π

L∗
(1+Ψ̇)

∥∥
ẆA1,2

m−1(Rn)
≤ ‖Ṫr−m ΠL∗

(1+Ψ̇)‖L2(Rn) ≤ C‖A+
2 Ψ̇‖L2(Rn),

as desired.
We apply a similar argument to the second term. By the bound (4.9) with p = 2,∣∣〈Ṁ−

A∗ ΠL∗
(1+Ψ̇), ḟ〉Rn

∣∣ ≤ C‖A+
2 Ψ̇‖L2(Rn)‖ḟ‖ẆA0,2

m−1(Rn).

By the boundedness of the Newton potential L2(Rn+1) 7→ Ẇm,2(Rn+1), and by definition (2.8) of the
Neumann boundary data, we also have that∣∣〈Ṁ−

A∗ ΠL∗
(1+Ψ̇), ḟ〉Rn

∣∣ ≤ C‖Ψ̇‖L2(Rn+1
+ )‖ḟ‖ẆA

1/2,2
m−1 (Rn)

.

Thus, Ṁ−
A∗ ΠL∗

(1+Ψ̇) extends to a bounded linear operator on ẆA0,2
m−1(Rn) + ẆA

1/2,2
m−1 (Rn), and by

the Hahn–Banach theorem, extends to a bounded linear operator on L2(Rn)+Ḃ
1/2,2
2 (Rn). By standard

duality arguments, there is a ġ ∈ L2(Rn) ∩ Ḃ−1/2,2
2 (Rn) such that 〈ġ, φ̇〉Rn = 〈Ṁ−

A∗ ΠL∗
(1+Ψ̇), φ̇〉Rn

for all φ̇ ∈ ẆA
1/2,2
m−1 (Rn). We may ensure that ‖ġ‖L2(Rn) ≤ C‖A+

2 Ψ̇‖L2(Rn) by carefully choosing the
norm in L2(Rn) + Ḃ

1/2,2
2 (Rn).

By definition (2.14) of the single layer potential, we have that SL∗
ġ = SL∗

(Ṁ−
A∗ ΠL(1+Ψ̇)). Thus,∥∥A−

2 (t∇m∂tΠ
L∗

(1+Ψ̇))
∥∥
L2(Rn)

≤ C‖A+
2 Ψ̇‖L2(Rn) + ‖A−

2 (t∇m∂tSL∗
ġ)‖L2(Rn),

and the given bound on ‖ġ‖L2(Rn) and the bound (1.18) complete the proof.
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We now establish area integral estimates for a wider range of p.
Lemma 4.10. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Ḣ and Ψ̇ be elements of L2(Rn+1) that are supported in compact subsets of Rn+1
+ ∪Rn+1

− and
Rn+1

+ , respectively. Let p−j,L be as in formula (1.14). If 1/p + 1/p′ = 1 and p−1,L∗ < p < 2, then we
have the bounds

‖A∗
2(t∇mΠL∗

Ḣ)‖Lp′ (Rn) ≤ C(1, L∗, p′)‖C̃∗
1(tḢ)‖Lp′ (Rn), p−1,L∗ < p < 2,∥∥A−

2 (t∇m∂tΠ
L∗

(1+Ψ̇))
∥∥
Lp′ (Rn)

≤ C(1, L∗, p′)‖A+
2 Ψ̇‖Lp′ (Rn), p−1,L∗ < p < 2.

Proof. We will use [15, Lemma 6.2].
For ease of notation, we consider only A−

2 in both cases; a similar argument or Subsection 3.1
establishes the bound on A+

2 (t∇mΠL∗
Ḣ). We make one of the following two choices of notation:

u = ΠL∗
Ḣ, uQ = ΠL∗

ḢQ, Φ1 = C̃∗
1(tḢ),

or
u = ∂tΠ

L∗
(1+Ψ̇), uQ = ∂tΠ

L∗
Ψ̇Q, Φ1 = A+

2 Ψ̇,

where
ḢQ = 110Q×(−ℓ(Q),ℓ(Q))Ḣ, Ψ̇Q = (111Q×(0,2ℓ(Q))Ψ̇).

Observe that A+
2 Ψ̇Q(x) ≤ A+

2 Ψ̇(x) and A+
2 Ψ̇Q(x) = 0 whenever x 6∈ 15Q, while by Lemma 3.4, we

have that ‖C̃∗
1(tḢQ)‖Lr(Rn) ≤ C‖C̃∗

1(tḢ)‖Lr(16Q) for any 1 < r <∞.
By definition of ΠL∗ and the Caccioppoli inequality, we have

u− uQ ∈ Ẇm,2(10Q× (−ℓ(Q), ℓ(Q))),

L∗(u− uQ) = 0 in 10Q× (−ℓ(Q), ℓ(Q)).

By Lemmas 4.6 and 4.9, we get

A−
2 (t∇mu) ∈ L2(Rn),

‖A−
2 (t∇muQ)‖L2(Rn) ≤ C‖Φ1‖L2(16Q).

By Lemmas 4.5 and 4.8, if p−1,L∗ < p ≤ 2, then

‖Ñ∗(∇m−1u)‖Lp′ (Rn) ≤ C(1, L∗, p′)‖Φ1‖Lp′ (Rn),

‖Ñ∗(∇m−1uQ)‖L2(10Q) ≤ C‖Φ1‖L2(16Q).

By [15, Lemma 6.2], the conclusion is valid.

For the sake of completeness, we establish a few final bounds on the Newton potential; for ease
of reference, we list all our nontangential and area integral bounds on the Newton potential in the
following corollary.
Corollary 4.1. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let Ψ̇ ∈ L2(Rn+1) and Ḣ ∈ L2(Rn+1) be supported in compact subsets of Rn+1
+ ∪ Rn+1

− . Let j be
an integer with 0 ≤ j ≤ m. Let 1/p+ 1/p′ = 1. If p lies in the given ranges, then

‖Ñ∗(∇m−1ΠL∗
Ḣ)‖Lp′ (Rn) ≤ C̃p‖C̃∗

1(tḢ)‖Lp′ (Rn), p−1,L∗ < p < p+0,L, (4.16)

‖A∗
2(t∇mΠL∗

Ḣ)‖Lp′ (Rn) ≤ C̃p‖C̃∗
1(tḢ)‖Lp′ (Rn), p−1,L∗ < p < p+0,L, (4.17)

‖Ñ∗(∇m−j∂jtΠ
L∗

Ψ̇)‖Lp′ (Rn) ≤ C̃p‖A∗
2Ψ̇‖Lp′ (Rn), p−j,L∗ < p < p+1,L, (4.18)

‖A−
2 (t∇m∂tΠ

L∗
(1+Ψ̇))‖Lp′ (Rn) ≤ C̃p‖A+

2 Ψ̇‖Lp′ (Rn), p−1,L∗ < p < p1,L, (4.19)

where C̃p depends only on the standard parameters, p, and the constants c(k, L, p, 2) (if p > 2) or
c(k, L∗, p′, 2) (if p < 2) in the bound (1.13), for appropriate values of k.
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Proof. The bounds (4.16) and (4.17) were established in Lemmas 4.7 and 4.8 and in Lemmas 4.6 and
4.10, respectively.

The p ≤ 2 case of the bound (4.18) was established in Lemma 4.5. To establish the p > 2 case, we
may take j = 0. The bound then follows from Lemma 3.6, formula (4.6), and the bounds (4.11) and
(4.17), as in the proof of Lemma 4.6.

The p ≤ 2 case of the bound (4.19) was established in Lemmas 4.9, 4.10. As in the proof of the
bound (4.18), we will establish the p > 2 case by duality. By formulas (4.6) and (4.7), if Ġ and Ḣ
are in L2(Rn+1) ∩ Ẇ 1,2(Rn+1), then

〈∂n+1∇mΠL∗
Ġ, Ḣ〉Rn+1 = −〈Ġ, ∂n+1∇mΠLḢ〉Rn+1 . (4.20)

If Ġ is supported in J and Ḣ is supported in K, where J and K are disjoint compact sets, then by the
Caccioppoli inequality, both the left-hand and right-hand sides are at most CJ,K‖Ġ‖L2(J)‖Ḣ‖L2(K);
thus, by density, formula (4.20) is valid whenever Ġ ∈ L2(Rn+1) and Ḣ ∈ L2(Rn+1) have disjoint
compact support.

We may now see that the p > 2 case of the bound (4.19) follows from the bound (4.11), formula
(4.20), and the p < 2 case of the bound (4.19) (that is, Lemma 4.10).

Remark 4.2. The nontangential bounds (4.16) and (4.18) and the area integral estimate (4.17) involve
the two-sided operators Ñ∗ and A∗

2, while the bound (4.19) involves one-sided operators A+
2 and A−

2 .
This restriction cannot be removed. Let F be a function that is smooth and supported in the

Whitney ball B((0, 1), 1/4). Let Ψ̇ = A∇mF . It follows from the definition of ΠL in Subection 2.4
that F = ΠL(A∇mF ) = ΠLΨ̇. Thus,

‖A+
2 (t∇m∂tΠ

LΨ̇)‖Lp(Rn) = ‖A+
2 (t∇m∂tF )‖Lp(Rn).

By the ellipticity condition (1.11) and the definition (1.6) of A+
2 , if 0 < p <∞, then

‖A+
2 (∇mF )‖Lp(Rn) ≈ ‖∇mF‖L2(B((0,1),1/4)) ≈ ‖A+

2 Ψ̇‖Lp(Rn),

where the constants of approximation depend on p. Thus, ‖A+
2 (∇mF )‖Lp(Rn) ≤ Cp‖A+

2 Ψ̇‖Lp(Rn).
But for any fixed number C̃, we may choose F so that

‖A+
2 (t∇m∂tF )‖Lp(Rn) 6≤

C̃

Cp
‖A+

2 (∇mF )‖Lp(Rn)

and so
‖A+

2 (t∇m∂tΠ
LΨ̇)‖Lp(Rn) 6≤ C̃‖A+

2 Ψ̇‖Lp(Rn).

Thus, no two-sided analogue to the bound (4.19) is possible.

5 The double and single layer potentials
In this section, we will prove Theorem 1.2.

We will establish estimates on the double and single layer potentials using the duality results
of Lemma 4.1 and the bounds on the Newton potential of Corollary 4.1. Recall that Lemma 4.1
involves the Dirichlet and Neumann boundary values of the Newton potential along Rn = ∂Rn+1

± ,
while Corollary 4.1 yields the nontangential and area integral bounds, that is, the bounds in the
interior of Rn+1

± . Thus, we will need Fatou type theorems to pass from Corollary 4.1 to the useful
estimates on boundary values.

We will list three Fatou type theorems from [15, 23] in Subsection 5.1. These theorems suffice to
prove the bounds (1.26)–(1.31); the arguments will be given in Subsection 5.2. The bounds (1.28) and
(1.30) allow us to eliminate a technical assumption in certain results of [23]; these simplified theorems
will be stated in Subsection 5.3, after the bounds (1.28) and (1.30) have been established, and will be
used in Subsection 5.4 to establish the bounds (1.32) and (1.33).
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5.1 Fatou type theorems
In this section, we list some known results concerning the boundary values of functions that satisfy
nontangential or area integral estimates.

We begin with the following theorem concerning the Dirichlet boundary values.

Lemma 5.1 ([15, Lemma 5.1]). Let u̇ be defined and locally square integrable in Rn+1
+ . Suppose that

Ñ+u̇ ∈ Lp(Rn) for some p with 1 < p ≤ ∞. Suppose also that Tr+ u̇ exists in the sense of formula
(2.4); that is, there is an array of functions Tr+ u̇ such that

lim
t→0+

ˆ

K

∣∣u̇(x, t)− Tr+ u̇(x)
∣∣ dx = 0

for any compact set K ⊂ Rn. Then Tr+ u̇ satisfies

‖Tr+ u̇‖Lp(Rn) ≤ ‖Ñ+u̇‖Lp(Rn).

We will also need the following Fatou type theorems for the Neumann boundary values. Note that
in [23], these theorems are stated for the solutions v, w to Lv = Lw = 0 in Rn+1

+ with A+
2 (t∇mv),

A+
2 (t∇m∂tw) ∈ Lp(Rn). We will usually apply these theorems to the solutions v, w to L∗v =

L∗w = 0 in Rn+1
− with A−

2 (t∇mv), A−
2 (t∇m∂tw) ∈ Lp′

(Rn); we have modified the theorem statements
accordingly.

Theorem 5.1 ([23, Theorem 6.1]). Let L be an operator of order 2m of the form (2.7) associated to
bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let 1 < p < ∞ and 1/p+ 1/p′ = 1. Let v satisfy A−
2 (t∇mv) ∈ Lp′

(Rn) and L∗v = 0 in Rn+1
− . If

p < 2, suppose further that v ∈ Ẇm,2(Rn × (−∞,−σ)) for all σ > 0, albeit possibly with norms that
approach ∞ as σ → 0+.

Then for all φ ∈ C∞
0 (Rn+1), we have∣∣〈Ṫrm−1 φ, Ṁ

−
A∗ v〉Rn

∣∣ ≤ Cp‖Ṫrm−1 φ‖ẆA1,p
m−1(Rn)‖A

−
2 (t∇mv)‖Lp′ (Rn),

where Ṁ−
A∗ v is as in [23, Section 2.3.2]. In particular, if v ∈ Ẇm,2(Rn+1

− ), then, by [23, Lemma 2.4],
Ṁ−

A∗ v is as in formula (2.8).

The theorem as stated in [23] requires that v ∈ Ẇm,2(Rn × (−∞,−σ)) for all p; however, if p ≥ 2,
then this condition follows from Lemma 3.3 or its predecessor [23, Remark 5.3].

Theorem 5.2 ([23, Theorem 6.2]). Let L be an operator of order 2m of the form (2.7) associated to
bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let 1 < p <∞ and 1/p+ 1/p′ = 1. Let w satisfy A−
2 (t∇m∂tw) ∈ Lp′

(Rn), Ñ−(∇mw) ∈ Lp′
(Rn),

and L∗w = 0 in Rn+1
− . If p < 2, we impose the additional condition ∂n+1w ∈ Ẇm,2(Rn × (−∞,−σ))

for all σ > 0.
Then for all φ ∈ C∞

0 (Rn+1), we have∣∣〈Ṫrm−1 φ, Ṁ
−
A∗ w〉Rn

∣∣ ≤ Cp‖Ṫrm−1 φ‖ẆA0,p
m−1(Rn)

(
‖A−

2 (t∇m∂tw)‖Lp′ (Rn) + ‖Ñ−(∇mw)‖Lp′ (Rn)

)
where Ṁ−

A∗ w is as in formula (1.7).

5.2 The bounds (1.26)–(1.31)
In this section, we will prove most of Theorem 1.2; specifically, we will establish the estimates (1.26)–
(1.31). Throughout this section, we will let L and A be as in Theorem 1.2; that is, L is an operator
of the form (2.7) of order 2m associated to bounded t-independent coefficients A that satisfy the
ellipticity condition (1.11).
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The estimate (1.26)

By Lemma 3.6, if 1 < p <∞, then

‖Ñ∗(∇mSLġ)‖Lp(Rn) ≤ Cp sup
Ḣ

|〈Ḣ,∇mSLġ〉Rn+1 |
‖C̃∗

1(tḢ)‖Lp′ (Rn)

,

where the supremum is taken over all Ḣ ∈ L2(Rn+1) supported in a compact subset of Rn+1
+ ∪ Rn+1

−

such that the denominator is positive. By formula (4.1), if ġ ∈ Ḃ
−1/2,2
2 (Rn), then

‖Ñ∗(∇mSLġ)‖Lp(Rn) ≤ Cp sup
Ḣ

|〈Ṫrm−1 Π
L∗

Ḣ, ġ〉Rn |
‖C̃∗

1(tḢ)‖Lp′ (Rn)

.

Since ΠL∗
Ḣ ∈ Ẇm,2(Rn+1), we find that Ṫrm−1 Π

L∗
Ḣ exists in the sense of Sobolev spaces, and

thus in the sense of formulas (2.4) and (2.5). By Lemma 5.1,

‖Ṫrm−1 Π
L∗

Ḣ‖Lp′ (Rn) ≤ ‖Ñ∗(∇m−1ΠL∗
Ḣ)‖Lp′ (Rn),

and so, by Lemmas 4.7 and 4.8, if p−1,L∗ < p < p+0,L and ġ ∈ Ḃ
−1/2,2
2 (Rn) ∩ Lp(Rn), then

‖Ñ∗(∇mSLġ)‖Lp(Rn) ≤ C̃p‖ġ‖Lp(Rn),

where C̃p is as in Corollary 4.1. By density, the bound (1.26) is valid.

The estimate (1.27)

By Lemma 3.6 and formula (4.2), if φ̇ ∈ ẆA
1/2,2
m−1 (Rn), then

‖Ñ+(∇mDAφ̇)‖Lp(Rn) ≤ Cp sup
Ḣ

|〈Ḣ,∇mDAφ̇〉Rn+1
+

|

‖C̃+
1 (tḢ)‖Lp′ (Rn)

= Cp sup
Ḣ

|〈Ṁ−
A∗ ΠL∗

(1+Ḣ), φ̇〉Rn |
‖C̃+

1 (tḢ)‖Lp′ (Rn)

.

By Theorem 5.1, if φ̇ = Ṫrm−1 Φ for some Φ ∈ C∞
0 (Rn+1), then

‖Ñ+(∇mDAφ̇)‖Lp(Rn) ≤ Cp sup
Ḣ

‖φ̇‖ẆA1,p
m−1(Rn)‖A

−
2 (t∇mΠL∗

(1+Ḣ))‖Lp′ (Rn)

‖C̃+
1 (tḢ)‖Lp′ (Rn)

.

By Lemmas 4.6 and 4.10, if p−1,L∗ < p < p+0,L, then

‖Ñ+(∇mDAφ̇)‖Lp(Rn) ≤ C̃p‖φ̇‖ẆA1,p
m−1(Rn).

We establish a bound on Ñ−(∇mDAφ̇) using Subsection 3.1 and extend to all φ̇ ∈ ẆA1,p
m−1(Rn) by

density. This completes the proof of the bound (1.27).

The estimate (1.28)

By the bound (4.11) and formula (4.4), if 1 < p <∞ and ġ ∈ Ḃ
−1/2,2
2 (Rn), then

‖A∗
2(t∇m∂tSLġ)‖Lp(Rn) ≤ Cp sup

Ψ̇

|〈Ψ̇,∇m∂n+1SLġ〉Rn+1 |
‖A∗

2Ψ̇‖Lp′ (Rn)

= Cp sup
Ψ̇

|〈Ṫrm−1 ∂n+1Π
L∗

Ψ̇, ġ〉Rn |
‖A∗

2Ψ̇‖Lp′ (Rn)

.

We may take Ψ̇ to be supported away from ∂Rn+1
± . By Lemma 3.2, Ṫrm ΠL∗

Ψ̇ exists in the sense of
formula (2.5), and so, by Lemma 5.1,

‖A∗
2(t∇m∂tSLġ)‖Lp(Rn) ≤ Cp sup

Ψ̇

‖Ñ−(∇m−1∂n+1Π
L∗

(1+Ψ̇))‖Lp′ (Rn)‖ġ‖Lp(Rn)

‖A+
2 Ψ̇‖Lp′ (Rn)

.
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By the bound (4.18) with j = 1, if p−1,L∗ < p < p+1,L and ġ ∈ Ḃ
−1/2,2
2 (Rn) ∩ Lp(Rn), we have

‖A∗
2(t∇m∂tSLġ)‖Lp(Rn) ≤ C̃p‖ġ‖Lp(Rn), p−1,L∗ < p < p+1,L. (5.1)

By density, the bound (1.28) is valid.

The estimate (1.29)

By the bound (4.11) and formula (4.5), if φ̇ ∈ ẆA
1/2,2
m−1 (Rn), then

∥∥A+
2 (t∇m∂tDAφ̇)

∥∥
Lp(Rn)

≤ Cp sup
Ψ̇

|〈Ψ̇,∇m∂tDAφ̇〉Rn+1
+

|

‖A+
2 Ψ̇‖Lp′ (Rn)

= Cp sup
Ψ̇

|〈Ṁ−
A∗ ∂n+1Π

L∗
(1+Ψ̇), φ̇〉Rn |

‖A+
2 Ψ̇‖Lp′ (Rn)

.

By Theorem 5.1 and the bound (4.19), if p−1,L∗ < p < p+1,L and φ̇ = Ṫr+m−1 Φ for some Φ ∈ C∞
0 (Rn+1),

it follows that

∥∥A+
2 (t∇m∂tDAφ̇)

∥∥
Lp(Rn)

≤ Cp sup
Ψ̇

‖A−
2 (t∇m∂tΠ

L∗
(1+Ψ̇))‖Lp′ (Rn)‖φ̇‖ẆA1,p

m−1(Rn)

‖A+
2 Ψ̇‖Lp′ (Rn)

≤ Cp‖φ̇‖ẆA1,p
m−1(Rn) .

As before, we may use density arguments and Subsection 3.1 to complete the proof of the bound
(1.29).

The estimate (1.30)

By the bound (4.11), formula (4.3), and Lemma 5.1, if 1 < p <∞ and ḣ ∈ L2(Rn) ∩ Lp(Rn), then

‖A∗
2(t∇mSL

∇ḣ)‖Lp(Rn) ≤ Cp sup
Ψ̇

|〈Ψ̇,∇mSL
∇ḣ〉Rn+1 |

‖A∗
2Ψ̇‖Lp′ (Rn)

= Cp sup
Ψ̇

〈Ṫrm ΠL∗
Ψ̇, ḣ〉Rn

‖A∗
2Ψ̇‖Lp′ (Rn)

≤ Cp sup
Ψ̇

‖Ñ∗(∇mΠL∗
Ψ̇)‖Lp′ (Rn)‖ḣ‖Lp(Rn)

‖A∗
2Ψ̇‖Lp′ (Rn)

.

By density and the bound (4.18) with j = 0, if p−0,L∗ < p < p+1,L, then

‖A∗
2(t∇mSL

∇ḣ)‖Lp(Rn) ≤ C̃p‖ḣ‖Lp(Rn), p−0,L∗ < p < p+1,L. (5.2)

Thus, the bound (1.30) is valid.

The estimate (1.31)

By the bound (4.11) and formula (4.2), if 1 < p <∞ and ḟ ∈ ẆA
1/2,2
m−1 (Rn), then

‖A+
2 (t∇mDAḟ)‖Lp(Rn) ≈ sup

Ψ̇

|〈Ψ̇,∇mDAḟ〉Rn+1
+

|

‖A+
2 Ψ̇‖Lp′ (Rn)

= sup
Ψ̇

|〈Ṁ−
A∗ ΠL∗

(1+Ψ̇), ḟ〉Rn |
‖A+

2 Ψ̇‖Lp′ (Rn)

.

By Theorem 5.2, if ḟ = Ṫrm−1 F for some F ∈ C∞
0 (Rn+1), we get∣∣〈Ṁ−

A∗ ΠL∗
(1+Ψ̇), ḟ〉Rn

∣∣ ≤ Cp

∥∥Ñ−(∇mΠL∗
(1+Ψ̇)) +A−

2 (t∇m∂tΠ
L∗

(1+Ψ̇))
∥∥
Lp′ (Rn)

‖ḟ‖ẆA0,p
m−1(Rn)

provided the right-hand side is finite. Thus, by the bounds (4.18) and (4.19), if p−0,L∗ < p < p+1,L, then

‖A+
2 (t∇mDAḟ)‖Lp(Rn) ≤ C‖ḟ‖ẆA0,p

m−1(Rn).

By density and due to Subsection 3.1, we conclude that the bound (1.31) is valid.
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5.3 Further Fatou type theorems
In order to establish the bounds (1.32) and (1.33), we will need further Fatou type theorems.

The Fatou theorems [23, Theorems 5.1 and 5.2] contain a technical assumption involving the
single layer potential. As observed in [23, Remark 5.3], this technical assumption is true if p ≥ 2;
given that the bounds (1.28) and (1.30) are established (see the bounds (5.1) and (5.2) above), we
find that this technical assumption is true for a wider range of p. Thus, we will now restate the parts
of [23, Theorems 5.1, 5.2 and 6.2] necessary for the proofs of the bounds (1.32) and (1.33). As in
Subsection 5.1, we have interchanged the roles of L and L∗, p and p′, and Rn+1

+ and Rn+1
− relative to

their roles in [23].
In [23], p+j is defined as p+j = min(p+j,L, p

+
j,L∗); however, a careful examination of the proofs in [23]

yields that the results are valid for p±j,L and p±j,L∗ , as indicated below.

Theorem 5.3 ([23, Theorem 5.1]). Let L be an operator of order 2m of the form (2.7) associated to
bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let p−1,L∗ < p <∞ and 1/p+ 1/p′ = 1. Let v satisfy A−
2 (t∇mv) ∈ Lp′

(Rn) and L∗v = 0 in Rn+1
− .

If p < 2, suppose further that v ∈ Ẇm,2(Rn× (−∞,−σ)) for all σ > 0, albeit possibly with norms that
approach ∞ as σ → 0+.

Then Ṫr−m−1 v exists in the sense of formula (2.4), and there is some constant array ċ such that

‖Ṫr−m−1 v − ċ‖Lp′ (Rn) ≤ C(1, L∗, p′)‖A−
2 (t∇mv)‖Lp′ (Rn).

Theorem 5.4 ([23, Theorems 5.2 and 6.2]). Let L be an operator of order 2m of the form (2.7)
associated to bounded t-independent coefficients A that satisfy the ellipticity condition (1.11).

Let p−0,L∗ < p < ∞ and 1/p + 1/p′ = 1. Let w ∈ Ẇm,2
loc (Rn+1

− ) satisfy L∗w = 0 in Rn+1
− and

A−
2 (t∇m∂tw) ∈ Lp′

(Rn). If p < 2, we impose the additional condition ∂n+1w ∈ Ẇm,2(Rn × (−∞, σ))
for all σ > 0.

If there is some t < 0 such that ∇mw( · , t) ∈ Lp′
(Rn), then Ṫr−m w exists in the sense of formula

(2.4) and satisfies
‖Ṫr−m w‖Lp′ (Rn) ≤ C(0, L∗, p′)‖A−

2 (t∇m∂tw)‖Lp′ (Rn).

We also have the uniform bound

sup
t>0

‖∇mw( · , t)‖Lp′ (Rn) ≤ C(0, L∗, p′)‖A−
2 (t∇m∂tw)‖Lp′ (Rn)

and the limits

lim
t→∞

‖∇mw( · , t)‖Lp′ (Rn) = lim
t→0+

‖∇mw( · , t)− Ṫr−m w‖Lp′ (Rn) = 0.

Finally, we have that Ṁ−
A∗ w exists in the sense of formula (1.7) and∣∣〈Ṫrm−1 φ, Ṁ
−
A∗ w〉Rn

∣∣ ≤ C(0, L∗, p′)‖Ṫrm−1 φ‖ẆA0,p
m−1(Rn)‖A

−
2 (t∇m∂tw)‖Lp′ (Rn)

for every φ ∈ C∞
0 (Rn+1).

5.4 The bounds (1.32) and (1.33)
In this section, we will complete the proof of Theorem 1.2 by establishing the bounds (1.32) and
(1.33). As in Subsection 5.2, throughout this section, we will let L and A be as in Theorem 1.2.

We begin with the bound (1.32). Let ḣ ∈ L2(Rn)∩Lp(Rn) for some p with p−0,L∗ < p < 2. By the
bound (1.22) with p = 2, we may apply Lemma 3.8 with u = SL

∇ḣ; by Lemma 3.8 and formula (4.3),

‖Ñ+(∇m−1SL
∇ḣ)‖Lp(Rn) ≤ Cp sup

Ψ̇

|〈Ψ̇,∇mSL
∇ḣ〉Rn+1

+
|

‖C̃+
1 (t ∂tΨ̇)‖Lp′ (Rn)

= Cp sup
Ψ̇

|〈Ṫr−m ΠL∗
(1+Ψ̇), ḣ〉Rn |

‖C̃+
1 (t ∂tΨ̇)‖Lp′ (Rn)

,
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where the supremum is taken over all Ψ̇ ∈ L2(Rn+1
+ ) that are supported in a compact subset of Rn+1

+

and have a weak vertical derivative in L2(Rn+1
+ ).

By the definition of the Newton potential and the Caccioppoli inequality, we have

∂n+1Π
L∗

(1+Ψ̇) ∈ Ẇm,2(Rn+1
− ).

By Lemma 3.2 and the bound (4.18), we have that ∇mΠL∗
(1+Ψ̇)( · , t) ∈ Lp′

(Rn) for any (hence
some) t < 0. Thus, we can apply Theorem 5.4 with w = ΠL∗

(1+Ψ̇) and see that∣∣〈Ṫr−m ΠL∗
(1+Ψ̇), ḣ〉Rn

∣∣ ≤ C(0, L∗, p′)‖A−
2 (t∇m∂tΠ

L∗
(1+Ψ̇))‖Lp′ (Rn)‖ḣ‖Lp(Rn) .

By formula (4.7) and the bound (4.17),∥∥A−
2 (t∇m∂tΠ

L∗
(1+Ψ̇))

∥∥
Lp′ (Rn)

=
∥∥A−

2 (t∇mΠL∗
(1+∂tΨ̇))

∥∥
Lp′ (Rn)

≤ C(1, L∗, p′)‖C̃+
1 (t ∂tΨ̇)‖Lp′ (Rn).

Thus, if p−0,L∗ < p < 2, then

‖Ñ+(∇m−1SL
∇ḣ)‖Lp(Rn) ≤ C(0, L∗, p′)‖ḣ‖Lp(Rn).

By density and Subsection 3.1, the bound (1.32) is valid.
Similarly, let ḟ = Ṫrm−1 F for some F ∈ C∞

0 (Rn+1). By the bound (1.23) with p = 2, Lemma 3.8,
and formula (4.2), if 1 < p < 2, then

‖Ñ+(∇m−1DAḟ)‖Lp(Rn) ≤ Cp sup
Ψ̇

|〈Ψ̇,∇mDAḟ〉Rn+1
+

|

‖C̃+
1 (t ∂tΨ̇)‖Lp′ (Rn)

= Cp sup
Ψ̇

|〈Ṁ−
A∗ ΠL∗

(1+Ψ̇), ḟ〉Rn |
‖C̃+

1 (t ∂tΨ̇)‖Lp′ (Rn)

.

By Theorem 5.4, formula (4.7) and the bound (4.17), if p−0,L∗ < p < 2, then∣∣〈Ṁ−
A∗ ΠL∗

(1+Ψ̇), ḟ〉Rn

∣∣ ≤ C(0, L∗, p′)
∥∥A−

2 (t∇m∂tΠ
L∗

(1+Ψ̇))
∥∥
Lp′ (Rn)

‖ḟ‖Lp(Rn)

≤ C(0, L∗, p′)‖C̃+
1 (t ∂tΨ̇)‖Lp′ (Rn)‖ḟ‖Lp(Rn).

By density and due to Subsection 3.1, the bound (1.33) is valid. This completes the proof of Theo-
rem 1.2.

6 The Green formula
A useful tool in the theory of higher order equations, and one of the reasons layer potentials are of
interest, is the Green formula

1+∇mu = −∇mDA(Ṫr+m−1 u) +∇mSL(Ṁ+
A u). (6.1)

This formula is valid for all u ∈ Ẇm,2(Rn+1
+ ) that satisfy Lu = 0 in Rn+1

+ . See [14, Lemma 5.2] or [20,
formula (2.26)]. It is also valid if Lu = 0 in Rn+1

+ , A+
2 (t∇m∂tu) ∈ L2(Rn) and ∇mu( · , t) ∈ L2(Rn) for

some t > 0; see [21, Theorem 4.3]. This Green’s formula was used in [21] to establish the uniqueness
of solutions to the L2 Neumann problem (1.4); the corresponding formula in the lower half-space was
used to prove Lemma 4.9 above.

In this section, we will show that the Green formula is still valid if Lu = 0 in Rn+1
+ , A+

2 (t∇m∂tu) ∈
Lp(Rn) and sup

t>0
‖∇mu( · , t)‖Lp(Rn) < ∞ for some p with p−1,L∗ < p ≤ 2. The Green formula for such

solutions will be used in Section 7 to establish the uniqueness of solutions to the Neumann problem
(1.9).

We begin with some useful auxiliary lemmas. Specifically, recall from Theorem 5.4 that ∇mw( · , t)
→ Ṫrm w as t→ 0+ and ∇mw( · , t) → 0 as t→ ∞. We wish to prove a similar result for the Neumann
boundary values. Our argument will follow the proof of [21, Lemma 4.2].
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Lemma 6.1. Let L be an operator of the form (2.7) of order 2m associated to bounded coefficients A
that satisfy the ellipticity condition (1.11).

Let p satisfy 0 < p ≤ 2 and let j be an integer with 0 ≤ j ≤ m. Let u ∈ Ẇm,2
loc (Rn+1

+ ) be such that
Lu = 0 in Rn+1

+ and A+
2 (t∇ju) ∈ Lp(Rn). Define uε(x, t) = u(x, t+ ε). If ε > 0, then

‖A+
2 (t∇juε)‖Lp(Rn) ≤ C‖A+

2 (t∇ju)‖Lp(Rn)

and
lim

ε→0+

∥∥A+
2 (t∇j(u− uε))

∥∥
Lp(Rn)

= lim
T→∞

‖A+
2 (t∇juT )‖Lp(Rn) = 0.

Proof. We define

Aℓ
fH(x) =

( ∞̂

ℓ

ˆ

|x−y|<t

|H(y, t)|2 dy dt
tn+1

)1/2

,

Aℓ
nH(x) =

( ℓˆ

0

ˆ

|x−y|<t

|H(y, t)|2 dy dt
tn+1

)1/2

,

so that
A+

2 H(x)2 = Aℓ
fH(x)2 +Aℓ

nH(x)2.

Let c > 1 be a constant to be chosen later. We start with analyzing Aε/c
n (t∇juε). Let G be a grid

of pairwise-disjoint open cubes in Rn of side length ε/c whose union is almost all of Rn. Then

‖Aε/c
n (t∇juε)‖pLp(Rn) =

∑
Q∈G

ˆ

Q

Aε/c
n (t∇juε)(x)

p dx.

By Hölder’s inequality,

‖Aε/c
n (t∇juε)‖pLp(Rn) ≤

∑
Q∈G

|Q|1−p/2

(ˆ

Q

Aε/c
n (t∇juε)(x)

2 dx

)p/2

.

By definition of uε and Aℓ
n,

‖Aε/c
n (t∇juε)‖pLp(Rn) ≤

∑
Q∈G

|Q|1−p/2

(ˆ

Q

ε/cˆ

0

ˆ

|x−y|<t

|∇ju(y, t+ ε)|2 dy dt
tn−1

dx

)p/2

.

Changing the order of integration and evaluating the integral dx, we have

‖Aε/c
n (t∇juε)‖pLp(Rn) ≤ αp/2

n

∑
Q∈G

|Q|1−p/2

( ε/cˆ

0

ˆ

3Q

t|∇ju(y, t+ ε)|2 dy dt
)p/2

,

where αn is the area of the unit disk in Rn.
Making a change of variables, we see that

‖Aε/c
n (t∇juε)‖pLp(Rn) ≤ αp/2

n

∑
Q∈G

|Q|1−p/2

( ε+ε/cˆ

ε

ˆ

3Q

(t− ε)|∇ju(y, t)|2 dy dt
)p/2

.

Let c = 2
√
n =

√
4n. If x ∈ Q, y ∈ 3Q, and t ∈ (ε, ε + ε/c), then |x− y| < 2

√
n ℓ(Q) = ε < t. Thus,

if x ∈ Q, then

( ε+ε/
√
4nˆ

ε

ˆ

3Q

(t− ε)|∇ju(y, t)|2 dy dt
)p/2

≤
((

ε+
ε√
4n

)n
ε+ε/

√
4nˆ

ε

ˆ

|x−y|<t

|t∇ju(y, t)|2 dy dt
tn+1

)p/2

.
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The right-hand side is at most

(Cn|Q|)p/2 min
(
Aε+ε/

√
4n

n (t∇ju)(x),Aε
f (t∇ju)(x)

)p
.

For ease of notation, we replace ε+ ε/
√
4n by 2ε. Thus,

‖Aε/
√
4n

n (t∇juε)‖pLp(Rn) ≤ Cp/2
n

∑
Q∈G

ˆ

Q

min
(
A2ε

n (t∇ju)(x),Aε
f (t∇ju)(x)

)p
dx.

Summing over Q, we have

‖Aε/
√
4n

n (t∇juε)‖Lp(Rn) ≤ Cn min
(
‖A2ε

n (t∇ju)‖Lp(Rn), ‖Aε
f (t∇ju)‖Lp(Rn)

)
. (6.2)

We now turn to Aε/
√
4n

f . By definition of uε,

Aε/
√
4n

f (t∇j(u− uε))(x) =

( ∞̂

ε/
√
4n

ˆ

|x−y|<t

|∇j(u(y, t)− u(y, t+ ε))|2 dy dt
tn−1

)1/2

=

( ∞̂

ε/
√
4n

ˆ

|x−y|<t

∣∣∣∣
t+εˆ

t

∇j∂su(y, s) ds

∣∣∣∣2 dy dttn−1

)1/2

.

Applying Hölder’s inequality and changing the order of integration, we obtain

Aε/
√
4n

f (t∇j(u− uε))(x) ≤
( ∞̂

ε/
√
4n

ˆ

|x−y|<t

ε

t+εˆ

t

|∇j∂su(y, s)|2 ds
dy dt

tn−1

)1/2

≤ Cn

(
ε2

∞̂

ε/
√
4n

ˆ

|x−y|<s

|∇j∂su(y, s)|2
dy ds

sn−1

)1/2

.

By the Caccioppoli inequality,

Aε/
√
4n

f (t∇j(u− uε))(x) ≤ C

( ∞̂

ε/
√
16n

ε2

s2

ˆ

|x−y|<2s

|∇ju(y, s)|2 dy ds
sn−1

)1/2

.

Now, define

Ar
2H(x) =

( ∞̂

0

ˆ

|x−y|<rt

|H(y, t)|2 dy dt
tn+1

)1/2

for any r > 0, so that A+
2 H = A1

2H. It is well known (see [30, Proposition 4] or [26, Theorem 3.4])
that if 0 < p <∞, then ‖A2

2H‖Lp(Rn) ≤ Cp‖A1
2H‖Lp(Rn). Thus,

‖Aε/
√
4n

f (t∇j(u− uε))‖Lp(Rn) ≤ Cp‖Aε/
√
16n

f (ε∇ju)‖Lp(Rn). (6.3)

The bound ‖A+
2 (t∇juε)‖Lp(Rn) ≤ Cp‖A+

2 (t∇ju)‖Lp(Rn) follows from the bounds (6.2) and (6.3).
We now use these bounds to bound A+

2 (t∇juT ) as T → ∞ and A+
2 (t∇j(u− uε)) as ε→ 0+.

First, by definition of Aℓ
n and Aℓ

f ,

‖A+
2 (t∇juT )‖Lp(Rn) ≤ ‖AT/

√
4n

n (t∇juT )‖Lp(Rn) + ‖AT/
√
4n

f (t∇juT )‖Lp(Rn).
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Next, by the bounds (6.2) and (6.3),

‖A+
2 (t∇juT )‖Lp(Rn) ≤ Cp‖AT/

√
16n

f (t∇ju)‖Lp(Rn).

If A+
2 (t∇ju)(x) < ∞, then AT/

√
16n

f (t∇ju)(x) → 0 as T → ∞, and so, by the dominated conver-
gence theorem, if A+

2 (t∇ju) ∈ Lp(Rn), then AT/
√
16n

f (t∇ju) → 0 in Lp(Rn) as T → ∞. Thus,
‖A+

2 (t∇juT )‖Lp(Rn) → 0 as T → ∞, as desired.
We now turn to u− uε. By definition of Aℓ

n and Aℓ
f ,

‖A+
2 (t∇j(u− uε))‖Lp(Rn)

≤ ‖Aε/
√
4n

n (t∇ju)‖Lp(Rn) + ‖Aε/
√
4n

n (t∇juε)‖Lp(Rn) + ‖Aε/
√
4n

f (t∇j(u− uε))‖Lp(Rn).

By the bounds (6.2) and (6.3),

‖A+
2 (t∇j(u− uε))‖Lp(Rn) ≤ C‖A2ε

n (t∇ju)‖Lp(Rn) + Cp‖Aε/
√
16n

f (ε∇ju)‖Lp(Rn).

Both terms converge to zero by the dominated convergence theorem and hence the proof is complete.

Combining Lemma 6.1 with Theorem 5.4 (or, for more notational convenience, [23, Theorem 6.2])
yields the following corollary.
Corollary 6.1. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Suppose that w ∈ Ẇm,2
loc (Rn+1

+ ) satisfies Lw = 0 in Rn+1
+ , A+

2 (t∇m∂tw) ∈ Lp(Rn) for some p with
1 < p ≤ 2, and ∇mw( · , t) ∈ Lp(Rn) for some t > 0.

Let wε(x, t) = w(x, t+ ε). Then

lim
T→∞

‖Ṁ+
A wT ‖(ẆA0,p′

m−1(Rn))∗
= 0, lim

ε→0+
‖Ṁ+

A(w − wε)‖(ẆA0,p′
m−1(Rn))∗

= 0.

We are now in a position to prove the Green formula.
Theorem 6.1. Let L be an operator of the form (2.7) of order 2m associated to bounded t-independent
coefficients A that satisfy the ellipticity condition (1.11).

Let p satisfy p−1,L∗ < p ≤ 2, where p−1,L∗ is as in formula (1.14). Suppose that w ∈ Ẇm,2
loc (Rn+1

+ )

satisfies Lw = 0 in Rn+1, A+
2 (t∇m∂tw) ∈ Lp(Rn), and ∇mw( · , t) ∈ Lp(Rn) for some t > 0.

Then we have the Green formula

1+∇mw = −∇mDA(Ṫr+m−1 w) +∇mSL(Ṁ+
A w).

Proof. Let wε(x, t) = w(x, t + ε) and let wε,T = wε − wT . If A is t-independent, then Lwε,T = 0 in
Rn+1

+ for any T > ε > 0. By Lemma 3.3 or [23, Remark 5.3], if T > ε > 0, then wε,T ∈ Ẇm,2(Rn+1
+ ).

Recall that formula (6.1) is valid for all solutions in Ẇm,2(Rn+1
+ ). Thus, we have

1+∇mwε,T = −∇mDA(Ṫr+m−1 wε,T ) +∇mSL(Ṁ+
A wε,T ).

Let B = B((x0, t0), |t0|/2) be a Whitney ball in Rn+1
± . By Theorem 5.4, we find that Ṫr+m−1 wε,T →

Ṫr+m−1 w in ẆA1,p
m−1(Rn) as ε → 0+ and T → ∞, and by Corollary 6.1, Ṁ+

A wε,T → Ṁ+
A w in

(ẆA0,p′

m−1(Rn))∗ as ε→ 0+ and T → ∞. By the bounds (1.27) and (1.26) established in Subsection 5.2,
we have

−∇mDA(Ṫr+m−1 wε,T ) +∇mSL(Ṁ+
A wε,T ) −→ −∇mDA(Ṫr+m−1 w) +∇mSL(Ṁ+

A w)

in L2(B) as T → ∞ and ε→ 0+.
Since A+

2 (t∇m∂tw) ∈ Lp(Rn), we have that wε → w as ε → 0+ in Ẇm,2(B). By Theorem 5.4,
∇mwT ( · , t) → 0 in Lp(Rn) for any fixed t > 0, uniformly for t in (−3|t0|/2, 3|t0|/2). Therefore,
wT → 0 in Ẇm,p(B); by the bound (1.13), wT → 0 in Ẇm,2(B) as T → ∞.

Thus, taking appropriate limits we obtain the Green formula, as desired.
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7 The Neumann problem
In this section, we prove Theorem 1.1, that is, establish the well posedness of the Neumann problem
with boundary data in Lp(Rn) for the operators with bounded elliptic t-independent self-adjoint
coefficients.

Our proof of Theorem 1.1 is based on a duality argument. That is, we show that the well posedness
of the Neumann problem with the boundary data in Ẇ−1,p′

(Rn) implies the well posedness with the
boundary data in Lp(Rn) for adjoint coefficients; as well posedness of the subregular Neumann problem
was established in [15], this implies the well posedness of the Lp Neumann problem.

We begin with precisely stating the well posedness result of [15].
Theorem 7.1 ( [15]). Let L and A satisfy the conditions given in Theorem 1.1.

Then there is some ε1 > 0, depending only on the standard parameters n, m, λ, and ‖A‖L∞(Rn),
with the following significance. If

max
(
0,

1

2
− 1

n
− ε1

)
<

1

p′
≤ 1

2
, (7.1)

then for every ḣ in Ẇ−1,2(Rn) ∩ Ẇ−1,p′
(Rn), there is a solution v, unique up to adding polynomials

of degree m− 2, to the subregular Neumann problem
L∗v = 0 in Rn+1

+ ,

Ṁ+
A∗ v 3 ḣ,

‖A+
2 (t∇mv)‖L2(Rn) + ‖Ñ+(∇m−1v)‖L2(Rn) ≤ C2‖ḣ‖Ẇ−1,2(Rn),

‖A+
2 (t∇mv)‖Lp′ (Rn) + ‖Ñ+(∇m−1v)‖Lp′ (Rn) ≤ Cp′‖ḣ‖Ẇ−1,p′ (Rn).

(7.2)

The numbers C2 and Cp′ depend only on n, m, λ, ‖A‖L∞(Rn), and p′.

We note that the p′ = 2 case, like the L2 Neumann problem (1.4), is from [21,24]. Here, Ṁ+
A∗ v is

as given in [23, Section 2.3.2].
If A is self-adjoint, then A = A∗ and L = L∗; however, we have phrased the problem (7.2) in

terms of A∗ and L∗ for ease of notation for duality arguments. We now state our duality theorem;
Theorem 1.1 will follow easily from Theorem 7.2.
Theorem 7.2. Suppose that L is an elliptic operator of the form (2.7) of order 2m associated to the
coefficients A that are bounded, t-independent in the sense of formula (1.2), and satisfy the ellipticity
condition (1.11).

Let p and p′ satisfy p−1,L∗ < p < 2 and 1/p + 1/p′ = 1, where p−1,L∗ is as in formulas (1.14) and
(1.13). Suppose that for every ḣ ∈ Ẇ−1,2(Rn) ∩ Ẇ−1,p′

(Rn), there is a unique solution v to the
Neumann problem (7.2) for L∗.

Then for every ġ ∈ Lp(Rn), there is a solution w, unique up to adding polynomials of degree at
most m− 1, to the Lp-Neumann problem

Lv = 0 in Rn+1
+ ,

Ṁ+
A v 3 ġ,

‖A+
2 (t∇m∂tw)‖Lp(Rn) + ‖Ñ+(∇mw)‖Lp(Rn) ≤ Cp‖ġ‖Lp(Rn),

(7.3)

where Cp depends only on p, n, m, λ, ‖A‖L∞(Rn), the number c(1, L∗, p′, 2) in formula (1.13), and
the constants C2 and Cp′ in the problem (7.2).
Proof. Fix some such p and p′. We use the method of layer potentials of [17, 19, 69], specifically as
formulated in [14].

Let X±
p and X̃±

p′ be the spaces of all equivalence classes of functions such that the appropriate
norms

‖w‖X±
p
= ‖Ñ±(∇mw)‖Lp(Rn) + ‖A±

2 (t∇m∂tw)‖Lp(Rn),

‖v‖X̃±
p′

= ‖Ñ±(∇m−1v)‖Lp′ (Rn) + ‖A±
2 (t∇mv)‖Lp′ (Rn)
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are finite.
We define the following function spaces:

Y± =
{
wp + w2 : wp ∈ X±

p , w2 ∈ X±
2 , Lwp = Lw2 = 0 in Rn+1

±
}
,

Ỹ± =
{
v ∈ X̃±

p′ ∩ X̃±
2 : L∗v = 0 in Rn+1

±
}
,

D = ẆA1,p
m−1(R

n) + ẆA1,2
m−1(R

n),

D̃ = ẆA0,p′

m−1(R
n) ∩ ẆA0,2

m−1(R
n),

N = (ẆA0,p′

m−1(R
n))∗ + (ẆA0,2

m−1(R
n))∗,

Ñ = (ẆA1,p
m−1(R

n))∗ ∩ (ẆA1,2
m−1(R

n))∗.

We are interested in a family of norms on these function spaces. For each number δ > 0, let

‖w‖Y±
δ
= inf

{
‖wp‖X±

p
+

1

δ
‖w2‖X±

2
: w = wp + w2, Lwp = Lw2 = 0

}
,

‖φ̇‖Dδ
= inf

{
‖φ̇p‖ẆA1,p

m−1(Rn) +
1

δ
‖φ̇2‖ẆA1,2

m−1(Rn) : φ̇ = φ̇p + φ̇2

}
,

‖Ġ‖Nδ
= inf

{
‖Ġp‖(ẆA0,p′

m−1(Rn))∗
+

1

δ
‖Ġ2‖(ẆA0,2

m−1(Rn))∗ : Ġ = Ġp + Ġ2

}
,

‖v‖Ỹ±
δ
= ‖v‖X̃±

p′
+ δ‖v‖X̃±

2
,

‖ḟ‖D̃δ
= ‖ḟ‖

ẆA0,p′
m−1(Rn)

+ δ‖ḟ‖ẆA0,2
m−1(Rn),

‖Ḣ‖Ñδ
= ‖Ḣ‖(ẆA1,p

m−1(Rn))∗ + δ‖Ḣ‖(ẆA1,2
m−1(Rn))∗ .

Then Nδ = (D̃δ)
∗ and Ñδ = (Dδ)

∗. See [54, formula (1.3) and Theorem 1.7].
By Theorems 5.1, 5.2, 5.3 and 5.4, the operators

Ṫr±m−1 : Y±
δ → Dδ, Ṫr±m−1 : Ỹ±

δ → D̃δ, Ṁ±
A : Y±

δ → Nδ, Ṁ±
A∗ : Ỹ±

δ → Ñδ

are bounded with bounds depending only on p and the standard parameters, and in particular, not on
δ provided δ > 0. By Theorem 1.2 and the bounds (1.20)–(1.23) we have that the double and single
layer potentials are bounded

DA : Dδ → Y±
δ , DA∗

: D̃δ → Ỹ±
δ , SL : Nδ → Y±

δ , SL∗
: Ñδ → Ỹ±

δ

with bounds independent of δ.
By [21, Theorem 4.3], and by Theorem 6.1 and Subsection 3.1, we find that if v ∈ Ỹ±

δ and w ∈ Y±
δ ,

then the Green formulas

1±∇mv = ∓∇mDA∗
(Ṫr±m−1 v) +∇mSL∗

(Ṁ±
A∗ v),

1±∇mw = ∓∇mDA∗
(Ṫr±m−1 w) +∇mSL∗

(Ṁ±
A∗ w)

are valid.
Finally, the jump relations

Ṫr+m−1 DAḟ − Ṫr−m−1 DAḟ = −ḟ , Ṫr+m−1 SLġ − Ṫr−m−1 SLġ = 0̇, (7.4)
Ṁ+

A DAḟ + Ṁ−
A DAḟ 3 0̇, Ṁ+

A SLġ + Ṁ−
A SLġ = ġ (7.5)

of [14, Conditions 6.19–6.22] are valid for all ḟ ∈ ẆA
1/2,2
m−1 (Rn) and all ġ ∈ (ẆA

1/2,2
m−1 (Rn))∗; see [14,

Lemma 5.4]. By density, the relations (7.4) and (7.5) are true for all ḟ in Dδ or D̃δ and all ġ in Nδ

or Ñδ.
Thus, [14, Conditions 6.14–6.22] are valid for the spaces Ỹ±

δ , D̃δ and Ñδ, and so, by [14, Theo-
rems 6.23 and 6.24] and the well posedness of the Neumann problem (7.2), we get that Ṁ+

A∗ DA∗ is in-
vertible D̃δ → Ñδ and ‖(Ṁ+

A∗ DA∗
)−1‖ is independent of δ. By duality (see [14, Lemma 5.3]), Ṁ+

A DA
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is invertible Dδ → Nδ. Furthermore, the norm is independent of δ and the value of (Ṁ+
A DA)−1ġ is

independent of δ.
Let w = DA((Ṁ+

A DA)−1Ġ), Ġ ∈ Lp(Rn) ⊂ Nδ.
Then w ∈ Y+

δ and so w = wδ
p +wδ

2 for some wδ
p ∈ X+

p , wδ
2 ∈ X+

2 with Lwδ
p = Lwδ

2 = 0 in Rn+1
+ and

with
‖wδ

p‖X+
p
+

1

δ
‖wδ

2‖X+
2
≤ C‖Ġ‖Ñδ

≤ C‖Ġ‖Lp(Rn).

Taking the limit as δ → 0+, we see that wδ
2 → 0 in Ẇm,2

loc (Rn+1
+ ). Thus w = lim

δ→0+
wδ

p and so

‖Ñ±(∇mw) +A±
2 (t∇m∂tw)‖Lp′ (Rn) ≤ C‖Ġ‖Lp(Rn),

as desired.
Thus, the solutions to the Neumann problem (7.3) exist. We have seen that Ṁ+

A DA is one-to-one
on D = ẆA1,p

m−1(Rn) + ẆA1,2
m−1(Rn), and so it is also one-to-one on the subspace ẆA1,p

m−1(Rn). The
Green formula of Theorem 6.1 allows us to apply [14, Theorem 6.13] to see that the solutions to the
problem (7.3) are unique, as desired.

We conclude the paper by proving Theorem 1.1.

Proof of Theorem 1.1. The ellipticity condition (1.3) in Theorem 1.1 implies that the condition (1.11)
in Theorem 7.2 is valid. Thus, if L and A satisfy the conditions of Theorem 1.1, then they satisfy the
conditions of Theorems 7.1 and 7.2, as well.

There is an ε > 0, depending only on n and the number ε1 in formula (7.1), such that if p satisfies
the bound (1.8), then p′ satisfies the bound (7.1). Thus, if ε > 0 is small enough and the conditions
of Theorem 1.1 are satisfied, then the subregular Neumann problem (7.2) is well posed.

Recall from formula (1.15) that there is some ε̃ > 0 depending on the standard parameters such
that

p−1,L∗ ≤ max
(
1,

2n

n+ 2
− ε̃

)
.

By Remark 1.1, if max
(
1, 2n

n+2 − ε̃
)
< p < 2, then c(1, L∗, p, 2) depends only on p and the standard

parameters.
Thus, if ε is small enough and p satisfies the condition (1.8) of Theorem 1.1, then p and L also

satisfy the conditions of Theorem 7.2. Thus, the Neumann problem (7.3) (or (1.9)) is well posed.
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