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Abstract. The purpose of this paper is to study the existence of solutions for a non-linear fourth-
order discrete problem involving the operator (p1(k), p2(k))-Laplacian under appropriate assumptions
on the nonlinearity and the parameter λ, when the approach is based on the variational methods and
critical point theory.
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1 Introduction
Let T ≥ 2 be a positive integer, [a, b]Z = {a; a + 1; . . . ; b} be the discrete interval, where a and b are
integers with a < b, and let λ be a positive parameter. The main goal of this paper is to establish the
existence of solutions for the following discrete boundary value problem:

(P) :

∆2
( 2∑

i=1

αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
= λf(k, u(k)), k ∈ [1, T ]Z,

u(−1) = u(0) = u(T + 1) = u(T + 2) = 0,

where f : [1, T + 2]Z ×R → R is a continuous function, αi : [−1, T + 2]Z → [1,∞), pi : [−1, T + 2]Z →
[2,∞) for i = 1, 2 are the given functions, ∆u(k) = u(k+1)−u(k) for all k ∈ [−1, T+2]Z is the forward
difference operator and ϕp(k) is called the p(k)-Laplacian operator defined as ϕp(k)(s) = |s|p(k)−2s,
s ∈ R.

From the definition of the forward difference operator, it is clear that

∆2u(k) = ∆(∆u(k)) = u(k + 2)− 2u(k + 1) + u(k) for all k ∈ [1, T ]Z,

moreover, u(−1) = u(0) = u(T + 1) = u(T + 2) = 0 implies that ∆u(−1) = ∆u(T + 1) = 0.
We say that a function u : [−1, T+2]Z → R is a solution of problem (P) if it satisfies both equations

of (P).
For convenience, denote

p+i : = max
k∈[−1,T+2]Z

pi(k), p−i : = min
k∈[−1,T+2]Z

pi(k),

p+ : = max{p+1 , p+2 }, p− : = min{p−1 , p−2 },
α+
i : = max

k∈[−1,T+2]Z
αi(k), α+ : = max{α+

1 , α
+
2 }.

The theory of nonlinear difference equations has been intensively used to study the discrete models
in many fields such as computer science, economics, neural network, ecology, cybernetics, etc. In recent
years, a great deal of work has been done in the study of the existence of solutions for discrete boundary
value problems. For the background and recent results, we refer the reader to [1–11, 14, 15] and the
references therein. It is well known that the critical point theory is a powerful tool to investigate the
problems for differential equations.

However, to the best of our knowledge, research concerning the discrete anisotropic problems like
(P) involving variable exponents has been initiated by Kone and Ouaro in [14] and by Mihǎilescu,
Rǎdulescu and Tersian in [15], where the critical point theory and more known tools are applied to
get the existence and multiplicity of solutions. Further tools and ideas to study anisotropic discrete
nonlinear problems one can be found in [3] and [6].

We can consider problem (P) as the discrete counterpart of the following functional differential
equation:

d2

dt2

(
α1(t)

∣∣∣d2u(t)
dt2

∣∣∣p1−2(d2u(t)
dt2

))
+
d2

dt2

(
α2(t)

∣∣∣d2u(t)
dt2

∣∣∣p2−2(d2u(t)
dt2

))
= f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.

A particular equation of the above equation is{
u(4)(t) = f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

which is used to model deformations of elastic beams and image processing [7, 11]. Also, for the
continuous counterpart of the fourth order discrete problems, one can see [16].

In this paper, we are inspired by the results in [10] where the authors study the existence and
multiplicity of a Dirichlet boundary value problem by means of the critical point theorems with variable
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exponent, in fact, we are trying to prove some of the results with different boundary conditions, of
course, with necessary modifications.

The rest of this paper is structured as follows. In Section 2, we introduce some basic properties
and provide several auxiliary inequalities useful for our approach. After variational framework, in
Section 3, we state and prove our main results.

2 Preliminaries
In this section, we recall some notations, definitions and properties.

Let E be a real finite-dimensional space and Φ, G : E → R be two continuously Gâteaux differen-
tiable mappings with derivatives φ, g : E → E∗. We consider the following equation:

φ(u) = g(u), u ∈ E. (2.1)

We give the functional J : E → R defined by

J(u) = Φ(u)−G(u).

Proposition 2.1 (see [9]). Assume that G and Φ are convex on E and W ⊂ E contains at least two
points. Let there exist u0 ∈ E and v ∈ W satisfying φ(v) = g(u0) such that J(u0) ≤ inf

x∈W
J(x). Then

u0 is a critical point to J , so u0 is a solution of (2.1). Moreover, if J is anti-coercive, then (2.1) has
another solution, different from u0.

In the present paper, solutions to (P) will be investigated in the Banach space

E :=
{
u : [−1, T + 2]Z → R : u(0) = u(−1) = u(T + 1) = u(T + 2) = 0

}
,

and we define the norm

‖u‖− :=
( 2∑

i=1

T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣p−)1/p−

.

Let us also introduce other equivalent norms, namely,

‖u‖+ =
( 2∑

i=1

T+2∑
k=1

α(k − 2)
∣∣∆2u(k − 2)

∣∣p+)1/p+

,

‖u‖∞ = max
k∈[1,T ]Z

|u(k)|,

|u|p =
( T+2∑

k=1

|u(k)|p
)1/p

for all p > 1

and the Luxemburg norm defined by

‖u‖p( · ) = inf
{
µ > 0 :

2∑
i=1

T+2∑
k=1

αi(k − 2)
∣∣∣∆2u(k − 2)

µ

∣∣∣pi(k−2)

≤ 1

}
.

Moreover, we note that there exists a constant M > 0 satisfying

‖u‖− ≤M‖u‖p( · ). (2.2)

In the next lemma we present some auxiliary inequalities that we will use later.
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Lemma 2.1. For all u ∈ E, we have

(A.1)
T+2∑
k=1

∣∣∆2u(k − 2)
∣∣p ≤ 3p−1(2p + 2)

T+2∑
k=1

|u(k)|p for any p > 1,

(A.2) ‖u‖− ≤ (T + 2)
1

p−
− 1

p+ (2α+Cp)
1

p− |u|p+ with Cp = 3p
−−1(2p + 2),

(A.3) ‖u‖+ ≤
(
(T + 2)α+

) p+−p−

p+p− ‖u‖−,

(A.4) ‖u‖∞ ≤ 1

8
C

2p−−1

p− ‖u‖− with C = (T + 2)α+.

Proof. To obtain relation (A.1), we use a similar argument as in [12,13].
Note that the function x 7→ |x|p is convex on R for any p > 1, then, by Jensen’s inequality, we

have ∣∣a1 + a2 + a3
∣∣p ≤ 3p−1

(
|a1|p + |a2|p + |a3|p

)
for any p > 1,

where a1, a2 and a3 are the real numbers. Thus

T+2∑
i=1

∣∣∆2u(i− 2)
∣∣p =

T+2∑
i=1

∣∣u(i)− 2u(i− 1) + u(i− 2)
∣∣p

≤ 3p−1
( T+2∑

i=1

|u(i)|p + 2p
T+2∑
i=1

|u(i− 1)|p +
T+2∑
i=1

|u(i− 2)|p
)
≤ 3p−1(2p + 2)

T+2∑
i=1

|u(i)|p.

So, (A.1) holds.
By (A.1), we get (A.2) as follows:

‖u‖p
−

− ≤ 2α+
T+2∑
i=1

(
|∆2u(i− 2)|p

−)
≤

(
2α+3p

−−1(2p
−
+ 2)

) T+2∑
i=1

|u(i)|p
−
. (2.3)

By the Hölder inequality, we get

T+2∑
i=1

|u(i)|p
−
≤ (T + 2)

1− p−

p+

( T+2∑
i=1

|u(i)|p
+
) p−

p+

. (2.4)

We combine (2.3) and (2.4) and obtain (A.2).
By similar arguments as in [11], we obtain relation (A.3). In fact, by the Hölder inequality, we

observe that

‖u‖p
+

+ ≤ C
p−−p+

p−
( 2∑

i=1

T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣p−) p+

p− ≤ C
p−−p+

p−p+ ‖u‖p
+

− .

To prove (A.4), for all u ∈ E and k ∈ [−1, T + 2]Z, we have

|u(k)| =
∣∣∣ k∑
i=1

∆u(i− 1)
∣∣∣ ≤ k∑

i=1

|∆u(i− 1)|

and

|u(k)| =
∣∣∣ T+2∑
i=k+1

∆u(i− 1)
∣∣∣ ≤ T+2∑

i=k+1

|∆u(i− 1)|.
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Combining the above inequalities and adding the left- and right-hand sides, we can see that

2|u(k)| ≤
T+2∑
i=1

|∆u(i− 1)|.

Since u(−1) = 0, for any k ∈ [−1, T + 2], we get

|u(k)| ≤ 1

2

T+2∑
i=1

|∆u(i− 1)|. (2.5)

Arguing similarly, for any k ∈ [1, T + 2], we obtain

|∆u(k − 1)| ≤ 1

2

T+2∑
i=1

∣∣∆2u(i− 2)
∣∣. (2.6)

Note that for i = 1, 2 we have αi(k) ≥ 1 for any k ∈ [−1, T + 2]Z, then, by (2.5) and (2.6), we get

|u(k)| ≤ 1

4

2∑
i=1

T+2∑
j=1

αi(j − 2)|∆u(j − 1)| for any k ∈ [−1, T + 2]Z

and

|∆u(k − 1)| ≤ 1

2

T+2∑
i=1

α(i− 2)
∣∣∆2u(i− 2)

∣∣ for any k ∈ [1, T + 2]Z.

So, for any k ∈ [−1, T + 2]Z, by the Hölder inequality, we get

|u(k)| ≤ 1

2
max

k∈[1,T+2]
|∆u(k − 1)|

T+2∑
j=1

αi(j − 2)

≤ 1

4
(T + 2)α+

T+2∑
j=1

αi(j − 2)
∣∣∆2u(j − 2)

∣∣ ≤ 1

8
(T + 2)α+

2∑
i=1

T+2∑
j=1

αi(j − 2)
∣∣∆2u(j − 2)

∣∣
≤ 1

8

(
(T + 2)α+

) 2p−−1

p−
( 2∑

i=1

T+2∑
j=1

αi(j − 2)
∣∣∆2u(j − 2)

∣∣p−) 1

p−
=

1

8
C

2p−−1

p− ‖u‖−.

Thus the proof of Lemma 2.1 is complete.

Let ψ : E → R be the functional given by the formula

ψ(u) :=

2∑
i=1

T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣pi(k−2)
.

Then we have the following inequalities (see [4]):

‖u‖p( · ) > 1 =⇒ ‖u‖p
−

p( · ) ≤ ψ(u) ≤ ‖u‖p
+

p( · ). (2.7)

Lemma 2.2. For all u ∈ E, we have

ψ(u) ≤ C
p+−p−

p− ‖u‖p
+

− + 2α+(T + 2). (2.8)
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Proof. By a similar argument as in [13], for i = 1, 2 and for any u ∈ E, we have
T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣pi(k−2)

≤
∑

k∈[1,T+2]Z: {|∆2u(k−2)|<1}

αi(k − 2)
∣∣∆2u(k − 2)

∣∣p−

+
∑

k∈[1,T+2]Z: {|∆2u(k−2)|≥1}

αi(k − 2)
∣∣∆2u(k − 2)

∣∣p+

=

T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣p+

+
∑

k∈[1,T+2]Z: |∆2u(k−2)|<1}

αi(k − 2)
(∣∣∆2u(k − 2)

∣∣p−

−
∣∣∆2u(k − 2)

∣∣p+)

≤
T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣p+

+ α+(T + 2).

So,
2∑

i=1

T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣pi(k−2) ≤
2∑

i=1

T+2∑
k=1

αi(k − 2)
∣∣∆2u(k − 2)

∣∣p+

+ 2α+(T + 2).

Therefore, in view of (A.4), we deduce inequality (2.8).

3 Variational framework
Let u ∈ E. We put

Φ(u) :=

2∑
i=1

T+2∑
k=1

(αi(k − 2)

pi(k − 2)

∣∣∆2u(k − 2)
∣∣pi(k−2)

)
(3.1)

and

G(u) :=

T+2∑
k=1

F (k, u(k)), (3.2)

where

F (k, r) :=

r∫
0

f(k, s) ds for all (k, r) ∈ [1, T + 2]Z × R.

Let λ ∈ (0,+∞) be a positive parameter and Jλ : E → R be the functional defined by

Jλ(u) = Φ(u)− λG(u) =

2∑
i=1

T+2∑
k=1

(αi(k − 2)

pi(k − 2)

∣∣∆2u(k − 2)
∣∣pi(k−2)

)
− λ

T+2∑
k=1

F (k, u(k)).

The derivative of G reads as

G′(u)(v) =

T+2∑
k=1

f(k, u(k))v(k)

for all u, v ∈ E. For the functional Φ, by considering the boundary values and summing by parts
twice, we can observe that

Φ′(u)(v) =

2∑
i=1

T+2∑
k=1

∆2
(
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
v(k)
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for all u, v ∈ E. In fact, it is easy to see that

Φ′(u)(v) =

2∑
i=1

T+2∑
k=1

αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

)
∆2v(k − 2).

Let u, v ∈ E, we take into account the boundary conditions, then for i = 1, 2 we have
T+2∑
k=1

αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

)
∆2v(k − 2)

= αi(T )ϕpi(T )(∆
2u(T ))∆2v(T ) +

T+1∑
k=1

αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

)
∆2v(k − 2)

= αi(T )ϕpi(T )(∆
2u(T ))∆2v(T ) +

[
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

)
∆v(k − 2)

]T+2

1

−
T+1∑
k=1

∆
(
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
∆v(k − 1)

=

T+1∑
k=1

∆
(
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
∆v(k − 1)

= −
[
∆
(
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
v(k − 1)

]T+2

1

+

T+1∑
k=1

∆2
(
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
v(k)

=

T+2∑
k=1

∆2
(
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
v(k).

Hence, for all u, v ∈ E, we have

Φ′(u)(v) =

2∑
i=1

T+2∑
k=1

∆2
(
αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
v(k).

It is obvious that Φ and G are of the class C1 on E. Then Jλ is also of the class C1 on E.

Lemma 3.1. The function ũ ∈ E is a solution of problem (P) if and only if ũ is a critical point of
Jλ in E.

Proof. Let ũ be a critical point of Jλ in E. Then for all v ∈ E, J ′
λ(ũ)(v) = 0 and ∆ũ(−1) =

∆ũ(T +1) = ũ(−1) = ũ(T +2) = 0. Thus, for every v ∈ E, taking twice summation by parts formula
and also v(−1) = v(0) = v(T + 1) = v(T + 2) = 0, we have

0 = J ′
λ(ũ)(v) =

2∑
i=1

T+2∑
k=1

(
∆2

(
αi(k − 2)ϕpi(k−2)

(
∆2ũ(k − 2)

)))
v(k)− λ

T+2∑
k=1

f(k, ũ(k))v(k).

Since v ∈ E is arbitrary, we get
2∑

i=1

∆2
(
αi(k − 2)

∣∣∆2ũ(k − 2)
∣∣pi(k−2)−2

∆2ũ(k − 2)
)
= λf(k, ũ(k)) (3.3)

for all k ∈ [1, T ]Z. Therefore, ũ is a solution of (P). We deduce that any critical point of Jλ in E is a
solution of problem (P).

Remark 3.1. From Lemma 3.1, we conclude that finding the solutions to problem (P) is equivalent
to finding the critical points of the functional Jλ.
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Lemma 3.2. The functional Φ is coercive, i.e., Φλ(u) → +∞ as ‖u‖− → +∞.
Proof. Note that ‖u‖− → +∞ implies ‖u‖p( · ) → +∞, so, for ‖u‖− large enough, by (2.2) and (2.7),
we get

Φ(u) =

2∑
i=1

T+2∑
k=1

(αi(k − 2)

pi(k − 2)

∣∣∆2u(k − 2)
∣∣pi(k−2)

)
≥ ψ(u)

p+
≥

‖u‖p
−

−
p+Mp− .

We conclude that Φ(u) → +∞ as ‖u‖− → +∞, so, the functional Φ is coercive.

Now, we state the following assumptions.
(H.1) x 7−→ F (k, x) is convex on R for all k ∈ [1, T + 2]Z, and

F∞ := min
k∈[1,T+2]Z

lim sup
x→+∞

F (k, x)

|x|p+ > 0.

(H.2)

F0 := max
k∈[1,T+2]Z

lim inf
x→0

F (k, x)

|x|p−+1
<∞.

We put the notations

λ∗ :=
C

p−−p+

p−

p−F∞(2α+ + Cp)
− p+

p− (T + 2)
1− p+

p−

and

λ∗∗ =
4C

1−2p−

p−

(p− + 1)F0Mp−+2
.

Lemma 3.3. Suppose that (H.1) holds. Then for any λ > λ∗, the functional Jλ is anti-coercive, i.e.,
Jλ(u) → −∞ as ‖u‖− → +∞.

Proof. Take λ > λ∗. Since lim sup
x→+∞

F (k,x)

|x|p+
≥ F∞, there exists ϵ > 0 such that

F (k, x) ≥ F∞|x|p
+

for all k ∈ [1, T + 2]Z and x ∈ R with |x| > ϵ.
For ‖u‖− large enough, by (A.3), we get

−λG(u) ≤ −λF∞
T+2∑
k=1

|u(k)|p
+

≤ −λF∞(2α+Cp)
− p+

p− (T + 2)
1− p+

p− ‖u‖p
+

− (3.4)

and by (2.8), we have

Φ(u) ≤ ψ(u)

p−
≤ 1

p−

(
C

p−−p+

p− ‖u‖p
+

− + 2(T + 2)α+
)
. (3.5)

So, combining (3.4) and (3.5), it follows that

Jλ(u) = Φ(u)− λG(u)

=

2∑
i=1

T+2∑
k=1

(αi(k − 2)

pi(k − 2)

∣∣∆2u(k − 2)
∣∣pi(k−2)

)
− λ

T+2∑
k=1

F (k, u)

≤ 1

p−

(
C

p−−p+

p− ‖u‖p
+

− + 2(T + 2)α+
)
− λF∞(2α+Cp)

− p+

p− (T + 2)
1− p+

p− ‖u‖p
+

−

=
2(T + 2)α+

p−
+
( 1

p−
C

p−−p+

p− ‖u‖p
+

− − λF∞(2α+Cp)
− p+

p− (T + 2)
1− p+

p−
)
‖u‖p

+

=
2(T + 2)α+

p−
+ F∞(2α+Cp)

− p+

p− (T + 2)
1− p+

p− (λ∗ − λ)‖u‖p
+

− .

We conclude that Jλ(u) → −∞ as ‖u‖− → +∞ because F∞ > 0 and λ > λ∗.
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4 Main results
Our main results are the following.
Theorem 4.1. Assume that assumption (H.2) holds. Then, for any λ ∈ (0, λ∗∗) problem (P) has at
least one nontrivial solution.
Proof. From (H.2), one can conclude that for all |x| ≤M and all k ∈ [1, T + 2]Z,

f(k, x) ≤ (p− + 1)F0|x|p
−
, (4.1)

where M > 0 is defined in (2.2). Let us take the set W ⊂ E defined by

W =
{
x ∈ E : ‖x‖p( · ) ≤M

}
.

In order to apply Proposition 2.1, we start by recalling that for any λ ∈ (0, λ∗∗) is fixed. The
functional Jλ is continuous and the subset W is closed and bounded, therefore there exists a minimum
of Jλ over W , which we denote by u0, moreover,

‖u0‖p( · ) < M. (4.2)

Now, on the space E, we consider the following boundary value problem connected to (P):∆2
( 2∑

i=1

αi(k − 2)ϕpi(k−2)

(
∆2u(k − 2)

))
= λf(k, u0(k)), k ∈ [1, T ]Z,

u(−1) = u(0) = u(T + 1) = u(T + 2) = 0.

(4.3)

Note that the functionals Φ and G are convex and of the class C1 on E. Then, from Lemma 3.2, the
functional J : E → R corresponding to (4.3) defined by

J(x) = Φ(x)− λG(u0)

is C1 coercive and strictly convex on E, so there exists v ∈ E that solves problem (4.3).
Next, we prove that v ∈W. Consider the following cases.

Case 1. Suppose that ‖v‖− ≥ 1. Multiplying

∆2
( 2∑

i=1

αi(k − 2)ϕpi(k−2)

(
∆2v(k − 2)

))
= λf(k, u0(k))

by v and summing from 1 to T + 2, we have
2∑

i=1

T+2∑
k=1

∆2
(
αi(k − 2)ϕpi(k−2)

(
∆2v(k − 2)

))
v(k) = λ

T+2∑
k=1

f(k, u0(k))v(k).

By taking twice the summation by parts and taking into account that v(−1) = v(0) = v(T + 1) =
v(T + 2) = 0, we get

ψ(v) = λ

T+2∑
k=1

f(k, u0(k))v(k).

Moreover, in view of (2.7), we have
‖v‖p

−

p( · ) ≤ ψ(v).

Then, from (2.2), (4.1) and (4.2), we obtain

λ

T+2∑
k=1

f(k, u0(k))v(k) ≤ λ

T+2∑
k=1

(p− + 1)F0|u0(k)|p
−
v(k) ≤ (p− + 1)λF0‖v‖∞

T+2∑
k=1

|u0|p
−

≤ (p− + 1)λF0M
p−

‖u0‖p
−

p( · )‖v‖∞ ≤ (p− + 1)λF0M
2p−

‖v‖∞

≤ 1

4
(p− + 1)λF0M

2p−
C

2p−−1

p− ‖v‖− ≤ 1

4
(p− + 1)λF0M

2p−+1C
2p−−1

p− ‖v‖p( · ).
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So,
‖v‖p

−

p( · ) ≤
1

4
(p− + 1)λF0M

2p−+1C
2p−−1

p− ‖v‖p( · )

and thus
‖v‖p

−−1
p( · ) ≤ 1

4
(p− + 1)λF0M

2p−+1C
2p−−1

p− .

Hence, for any 0 < λ < λ∗∗, we obtain

‖v‖p
−−1

p( · ) ≤ 1

4
(p− + 1)λF0M

2p−+1C
2p−−1

p− < Mp−−1.

Therefore, v ∈W .

Case 2. If ‖v‖− < 1, the conclusion is immediate.
Finally, applying Proposition 2.1, we prove that problem (P) has at least one nontrivial soluti-

on.

Theorem 4.2. Assume that assumption (H.1) is satisfied. Then, for any λ > λ∗, problem (P) has at
least one nontrivial solution.

Proof. The functional Jλ is of the class C1 on E, moreover, in view of Lemma 3.3, for any λ ∈
(λ∗,+∞), Jλ is anti-coercive in a finite-dimensional space, so. it has obviously at least one maximizer,
therefore it has a critical point.

Thus, by Lemma 3.1, problem (P) has at least one nontrivial solution.

Remark 4.1. If λ∗ < λ∗∗, combining the results of Theorems 4.1 and 4.2, we conclude that for any
parameter λ such that λ∗ < λ < λ∗∗, problem (P) has at least two nontrivial solutions.
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