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Abstract. In the paper, we prove norm convergence of Nörlund means and T -means in Lebesgue
spaces for any 1 ≤ p <∞.
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1 Introduction
Concerning some definitions and notations used in this introduction, we refer to Section 2. Fejér’s
theorem shows that (see, e.g., [1,3,4]) if one replaces ordinary summation by Fejér means σn defined by

σnf :=
1

n

n∑
k=1

Skf,

then for any 1 ≤ p ≤ ∞ there exists an absolute constant Cp depending only on p such that ∥σnf∥p ≤
Cp∥f∥p.

If we define the maximal operator σ∗ of Fejér means by

σ∗f := sup
n∈N

|σnf |,

then the weak type inequality
µ(σ∗f > λ) ≤ c

λ
∥f∥1 (λ > 0)

holds for any integrable function. For example, this result can be found in Zygmund [38] (see also [7,
11]) for trigonometric series, in Schipp [26] for Walsh series and in Pál, Simon [21] (see also [23,35–37])
for bounded Vilenkin series. It follows that the Fejér means with respect to trigonometric and Vilenkin
systems of any integrable function converge a.e. to this function.

In this paper, we consider some more general summability methods, which are called Nörlund
and T -means. In particular, the n-th Nörlund mean tn and T -mean Tn of the Fourier series of f are
defined, respectively, by

tnf :=
1

Qn

n∑
k=1

qn−kSkf, (1.1)

Tnf :=
1

Qn

n−1∑
k=0

qkSkf, (1.2)

where Qn :=
n−1∑
k=0

qk. Here, {qk : k ≥ 0} is a sequence of nonnegative numbers, where q0 > 0 and

lim
n→∞

Qn = ∞. Then the summability method (1.1) generated by {qk : k ≥ 0} is regular if and only
if (see [13])

lim
n→∞

qn−1

Qn
= 0.

Moreover, the summability method (1.2) is regular if and only if

lim
n→∞

Qn = ∞.

It is well-known (for details, see, e.g., [25]) that every Nörlund summability method generated by the
non-increasing sequence (qk, k ∈ N) is regular, but Nörlund means generated by the non-decreasing
sequence (qk, k ∈ N) is not always regular. On the other hand, every T -mean generated by the non-
decreasing sequence (qk, k ∈ N) is regular, but any T -mean generated by the non-increasing sequence
(qk, k ∈ N) is not always regular. In this paper, we investigate only regular Nörlund and T -means.

The convergence almost everywhere (a.e.) and summability of Nörlund and T -means were studied
by several authors. Here we mention the works by Bhahota, Persson and Tephnadze [5] (see also
[2,4,12,24]), Tephnadze [28–32], Fridli, Manchanda, Siddiqi [6], Móricz and Siddiqi [14], Nagy [15,16]
(see also [4, 17–20,22,25]).

We also define the maximal operator t∗ of Nörlund means by

t∗f := sup
n∈N

|tnf |.
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If {qk : k ∈ N} is non-increasing and satisfies the condition

1

Qn
= O

( 1

n

)
as n→ ∞, (1.3)

then the proof of the weak-type inequality

yµ
{
t∗f > y

}
≤ c∥f∥1, f ∈ L1(Gm), y > 0, (1.4)

can be found in [23]. When the sequence {qk : k ∈ N} is non-decreasing, then the weak-(1,1) type
inequality (1.4) holds for every maximal operator of Nörlund means. It follows that for such Nörlund
means of f ∈ L1(Gm), we have

lim
n→∞

tnf(x) = f(x) a.e. on Gm.

Define the maximal operator of T -means by

T ∗f := sup
n∈N

|Tnf |.

It was proved in [33] that if {qk : k ∈ N} is non-increasing, or if {qk : k ∈ N} is non-decreasing and
satisfies the condition

qn−1

Qn
= O

( 1

n

)
as n→ ∞, (1.5)

then
yµ {T ∗f > y} ≤ c∥f∥1, f ∈ L1(Gm), y > 0.

This implies that for such T -means and for f ∈ L1(Gm), we have

lim
n→∞

Tnf(x) = f(x) a.e. on Gm.

Móricz and Siddiqi [14] investigated the approximation properties of some special Nörlund means
of Walsh–Fourier series of Lp functions in a norm. In particular, they proved that if f ∈ Lp(Gm),
1 ≤ p ≤ ∞, n =Mj + k, 1 ≤ k ≤Mj (n ∈ N+) and (qk, k ∈ N) is a sequence of non-negative numbers
such that

nα−1

Qα
n

n−1∑
k=0

qαk = O(1) for some 1 < α ≤ 2,

then

∥tnf − f∥p ≤ Cp

Qn

n−1∑
i=0

Miqn−Miωp

( 1

Mi
, f

)
+ Cpωp

( 1

Mj
, f

)
,

when (qk, k ∈ N) is non-decreasing, while

∥tnf − f∥p ≤ Cp

Qn

n−1∑
i=0

(Qn−Mj+1 −Qn−Mj+1+1)ωp

( 1

Mi
, f

)
+ Cpωp

( 1

Mj
, f

)
,

when (qk, k ∈ N) is non-increasing.
In this paper, we prove the norm convergence of Nörlund and T -means in Lebesgue spaces for

some 1 ≤ p <∞.
The paper is organized as follows. The main results are presented, proved and discussed in Sec-

tion 3. In particular, Theorems 3.1 and 3.2 are the parts of this new approach. The announced results
for Nörlund and T -means can be found in Theorems 4.1 and 4.2, respectively. In order not to violate
the presentations in Section 3, we use Section 2 for some necessary preliminaries (e.g., definitions,
notations, lemmas).
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2 Preliminaries
Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Let m := (m0,m1, . . . ) denote a
sequence of positive integers, not less than 2. Denote by

Zmk
:= {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the group Zmj

with the product of the
discrete topologies of Zmj

’s. The direct product µ of the measures

µk({j}) :=
1

mk
(j ∈ Zmk

)

is the Haar measure on Gm with µ(Gm) = 1. In this paper, we discuss only the bounded Vilenkin
groups, that is,

sup
n∈N

mn <∞.

The elements of Gm are represented by the sequences x := (x0, x1, . . . , xk, . . . ) (xk ∈ Zmk
). It is

easy to provide a base for the neighborhood of Gm, namely,

I0(x) := Gm,

In(x) :=
{
y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1

}
(x ∈ Gm, n ∈ N).

The intervals In(x) (n ∈ N, x ∈ Gm) are called Vilenkin intervals. Denote In := In(0) for n ∈ N and
In := Gm \ In. Let

en := (0, . . . , 0, xn = 1, 0, . . . ) ∈ Gm (n ∈ N).

If we define the so-called generalized number system based on m in the following way:

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as

n =

∞∑
k=0

njMj , where nj ∈ Zmj (j ∈ N),

and only a finite number of nj ’s differ from zero. Let |n| := max{j ∈ N, nj ̸= 0}. Defining
In := Gm \ In and

Ik,lN :=

{
IN (0, . . . , 0, xk ̸= 0, 0, . . . , 0, xl ̸= 0, xl+1, . . . , xN−1, . . . ) for 0 ≤ k < l < N,

IN (0, . . . , 0, xk ̸= 0, xk+1 = 0, . . . , xN−1 = 0, xN , . . . ) for 0 ≤ k < l = N,

we have

IN =

N−1⋃
s=0

Is \ Is+1 =
(N−2⋃

k=0

N−1⋃
l=k+1

Ik,lN

)⋃(N−1⋃
k=0

Ik,NN

)
.

Next, we introduce on Gm an orthonormal system, which is called the Vilenkin system. First,
define the complex-valued function rk(x) : Gm → C, the generalized Rademacher functions as

rk(x) := exp
(2πıxk
mk

)
(ı2 = −1, x ∈ Gm, k ∈ N).

We define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as

ψn(x) :=

∞∏
k=0

rnk

k (x) (n ∈ N).
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Especially, we call this system the Walsh–Paley one if m ≡ 2 (for details, see [10, 27]). The Vilenkin
system is orthonormal and complete in L2(Gm) (for details, see, e.g., [1, 27,34]).

If f ∈ L1(Gm), we can define the Fourier coefficients, the partial sums of the Fourier series, the
Fejér means, the Dirichlet and Fejér kernels with respect to the Vilenkin system ψ in the usual manner:

f̂(k) :=

∫
Gm

fψk dµ (k ∈ N),

Snf :=

n−1∑
k=0

f̂(k)ψk (n ∈ N+, S0f := 0),

σnf :=
1

n

n−1∑
k=0

Skf (n ∈ N+),

Dn :=

n−1∑
k=0

ψk (n ∈ N+),

Kn :=
1

n

n−1∑
k=0

Dk (n ∈ N+).

Recall that (for details, see, e.g., [1, 8, 9])

DMn
(x) =

{
Mn if x ∈ In,

0 if x ̸∈ In,

n|Kn| ≤ c

|n|∑
l=0

Ml|KMl
|

and ∫
Gm

Kn(x) dµ(x) = 1, sup
n∈N

∫
Gm

|Kn(x)| dµ(x) ≤ c <∞.

Moreover, if n > t, t, n ∈ N, then

KMn
(x) =



Mt

1− rt(x)
, x ∈ It \ It+1, x− xtet ∈ In,

Mn + 1

2
, x ∈ In,

0, otherwise.

(2.1)

3 Approximation of Vilenkin–Fejér Means
First, we prove the following important result.

Theorem 3.1. Let 1 ≤ p <∞, f ∈ Lp(Gm) and n ∈ N. Then

∥σnf − f∥p ≤ cpωp

( 1

MN
, f

)
+ cp

N−1∑
s=0

Ms

MN
ωp

( 1

Ms
, f

)
.

Proof. Let f ∈ Lp(Gm), 1 ≤ p <∞ and MN < n ≤MN+1. Then

∥σnf − f∥pp ≤ ∥σnf − σnSMN
f∥p + ∥σnSMN

f − SMN
f∥p + ∥SMN

f − f∥p
= ∥σn(SMN

f − f)∥p + ∥SMN
f − f∥p + ∥σnSMN

f − SMN
f∥p

≤ cpωp

( 1

MN
, f

)
+ ∥σnSMN

f − SMN
f∥p. (3.1)
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By routine calculations, we get

σnSMN
f − SMN

f =
1

n

MN∑
k=1

SkSMN
f +

1

n

n∑
k=MN+1

SkSMN
f − SMN

f

=
1

n

MN∑
k=1

Skf +
1

n

n∑
k=MN+1

SMN
f − SMN

f =
1

n

MN∑
k=1

Skf +
n−MN

n
SMN

f − SMN
f

=
MN

n
σMN

f − MN

n
SMN

f =
MN

n
(SMN

σMN
f − SMN

f) =
MN

n
SMN

(σMN
f − f). (3.2)

By using (3.2) and the fact that

∥SMN
f∥p ≤ Cp∥f∥p, f ∈ Lp(Gm), 1 ≤ p <∞,

we find that∥∥σnSMN
f − SMN

f
∥∥
p
=

(MN

n

)p∥∥SMN
(σMN

f − f)
∥∥
p

≤
∥∥SMN

(σMN
f − f)

∥∥
p
≤ ∥σMN

f − f∥p. (3.3)

Moreover,

σMN
f(x)− f(x) =

∫
Gm

(f(x− t)− f(x))KMN
(t) dµ(t) =

∫
IN

(f(x− t)− f(x))KMN
(t) dµ(t)

+

N−1∑
s=0

ms−1∑
ns=1

∫
IN (nses)

(f(x− t)− f(x))KMN
(t) dµ(t) := I + II. (3.4)

If we apply (2.1) and generalized Minkowski’s inequality, we get

∥I∥p ≤
∫
IN

∥f(x− t)− f(x)∥p
MN − 1

2
dµ(t) ≤ ωp

( 1

MN
, f

)∫
IN

MN − 1

2
dµ(t) ≤ ωp

( 1

MN
, f

)
(3.5)

and

∥II∥p ≤ cpMs

N−1∑
s=0

ms−1∑
ns=1

∫
IN (nses)

∥f(x− t)− f(x)∥p dµ(t)

≤ cpMs

N−1∑
s=0

ms−1∑
ns=1

∫
IN (nses)

ωp

( 1

Ms
, f

)
dµ(t) ≤ cp

N−1∑
s=0

Ms

Mn
ωp

( 1

Ms
, f

)
. (3.6)

The proof is complete by combining (3.1)–(3.6).

Corollary 3.1. Let f ∈ lip(α, p), i.e.,

ωp

( 1

Mn
, f

)
= O

( 1

Mα
n

)
as n→ ∞.

Then

∥σnf − f∥p =



O
( 1

MN

)
if α > 1,

O
( N

MN

)
if α = 1,

O
( 1

Mα
N

)
if α < 1.
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Theorem 3.2. Let 1 ≤ p <∞, f ∈ Lp(Gm) and

∥σMn
f − f∥p = o

( 1

Mn

)
as n→ ∞.

Then f is a constant function.

Proof. Since

σMn
f − SMn

f =
1

Mn

Mn−1∑
k=0

kf̂(k)ψk,

by using Minkowski’s integral inequality, we get∥∥∥Mn−1∑
k=0

kf̂(k)ψk

∥∥∥
p
≤Mn∥σMn

f − f∥p +Mn∥SMn
f − f∥p ≤ 2Mn∥σMn

f − f∥p → 0 as n→ ∞.

Let 0 ≤ j < Mn. Then

jf̂(j) =

∫
Gm

ψj(x)

Mn−1∑
k=0

kf̂(k)ψk(x) dµ(x).

Then, using the Hölder inequality, we obtain

|jf̂(j)| ≤
( ∫
Gm

∣∣∣Mn−1∑
k=0

kf̂(k)ψk(x)
∣∣∣p dµ(x))1/p

→ 0 as n→ ∞.

It follows that jf̂(j) = 0 and

f̂(j) =

{
f̂(0) if j = 0,

0 if j ̸= 0.

Then
f ∼ lim

n→∞

n∑
k=0

(
1− k

n

)
f̂(k)ψk(x) = f̂(0).

The proof is complete.

4 Nörlund and T -means
From Theorem 3.1 immediately follows the following

Corollary 4.1. Let 1 ≤ p <∞, f ∈ Lp(Gm) and n ∈ N. Then

∥σnf − f∥p → 0 as n→ ∞.

Based on Corollary 4.1, we can prove our next main result.

Theorem 4.1.

(a) Let tn be a regular Nörlund mean generated by the non-decreasing sequence {qk : k ∈ N}. Then
for any f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥tnf(x)− f(x)∥p → 0 as n→ ∞.

(b) Let tn be Nörlund mean generated by the non-increasing sequence {qk : k ∈ N} satisfying
condition (1.3). Then for any f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥tnf(x)− f(x)∥p → 0 as n→ ∞.
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Proof. (a) Suppose that
lim
n→∞

∥σnf(x)− f(x)∥p = 0.

If we invoke the Abel transformation, we get the following identities:

Qn :=

n−1∑
j=0

qj =

n∑
j=1

qn−j · 1 =

n−1∑
j=1

(qn−j − qn−j−1)j + q0n (4.1)

and

tnf =
1

Qn

( n−1∑
j=1

qn−j − qn−j−1

)
jσjf + q0nσnf). (4.2)

Combining (4.1) and (4.2), we can conclude that

∥tnf(x)− f(x)∥p ≤ 1

Qn

( n−1∑
j=1

(qn−j − qn−j−1)j∥σjf(x)− f(x)∥p + q0n∥σnf(x)− f(x)∥p
)

≤ 1

Qn

n−1∑
j=0

(qn−j − qn−j−1)jαj +
q0nαn

Qn
:= I + II,

where
αn := ∥σnf(x)− f(x)∥p → 0 as n→ ∞.

Since tn are regular Nörlund means generated by the sequence of non-decreasing numbers {qk : k ∈ N},
we obtain

II ≤ q0nαn

Qn
≤ Cαn → 0 as n→ ∞.

Moreover, since αn converges to 0, we find that there exists an absolute constant A such that
αn ≤ A for any n ∈ N, and for any ε > 0, there exists N0 ∈ N such that αn < ε when n > N0. Hence

I =
1

Qn

N0∑
j=1

(qn−j − qn−j−1)jαj +
1

Qn

n−1∑
j=N0+1

(qn−j − qn−j−1)jαj := I1 + I2.

Since αn ≤ A, we obtain

I1 =
1

Qn

N0∑
j=1

(qn−j − qn−j−1)jαj ≤
AN0qn−1

Qn
→ 0 as n→ ∞.

Moreover, by (4.1),

I2 =
1

Qn

n−1∑
j=N0+1

(qn−j − qn−j−1)jαj

≤ ε

Qn

n−1∑
j=N0+1

(qn−j − qn−j−1)j ≤
ε

Qn

n−1∑
j=0

(qn−j − qn−j−1)j < ε.

We conclude that I2 → 0, as well. Thus the proof of a) is complete.
(b) In view of condition (1.3), the proof of part b) is step by step analogous to that of part (a),

so, we omit the details.
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Corollary 4.2.

(a) Let tn be a regular Nörlund mean generated by the non-decreasing sequence {qk : k ∈ N}. Then
for some f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥tnf(x)− f(x)∥p → 0 as n→ ∞.

(b) Let tn be Nörlund mean generated by the non-increasing sequence {qk : k ∈ N} satisfying
condition (1.3). Then, for some f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥tnf(x)− f(x)∥p → 0 as n→ ∞.

Analogously, we can state the following results for T -means with respect to Vilenkin systems.

Theorem 4.2.

(a) Let Tn be a regular T -mean generated by the non-increasing sequence {qk : k ∈ N}. Then for
any f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥Tnf(x)− f(x)∥p → 0 as n→ ∞.

(b) Let Tn be T -mean generated by the non-decreasing sequence {qk : k ∈ N} satisfying condition
(1.5). Then for any f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥Tnf(x)− f(x)∥p → 0 as n→ ∞.

Proof. The proof is step by step analogous to that of Theorem 4.1, so we omit the details. We just
need to replace condition (1.3) by condition (1.5) in the proof.

Corollary 4.3.

(a) Let Tn be a regular T -mean generated by the non-increasing sequence {qk : k ∈ N}. Then for
any f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥Tnf(x)− f(x)∥p → 0 as n→ ∞.

(b) Let Tn be T -mean generated by the non-decreasing sequence {qk : k ∈ N} satisfying condition
(1.5). Then for any f ∈ Lp(Gm), where 1 ≤ p <∞,

lim
n→∞

∥Tnf(x)− f(x)∥p → 0 as n→ ∞.
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