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Abstract. In this paper, we show the existence and uniqueness of weak solutions to obstacle problem∫
Ω

σ(x,Du) : D(v − u) +
〈
u|u|p(x)−2, v − u

〉
dx ≥ 0,

for v belonging to the convex set Kψ,θ. The main tool used here is the Young measure theory and a
theorem of Kinderlehrer and Stampacchia combined with the theory of Sobolev spaces with variable
exponent.
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1 Introduction
We are interested in the following obstacle problem:∫

Ω

σ(x,Du) : D(v − u) +
〈
u|u|p(x)−2, v − u

〉
dx ≥ 0, v ∈ Kψ,θ, (1.1)

where
Kψ,θ =

{
v ∈W 1,p(x)(Ω;Rm) : v − θ ∈W

1,p(x)
0 (Ω;Rm), v ≥ ψ a.e. in Ω

}
. (1.2)

Here, Ω is a bounded open domain in Rn(n ≥ 2) and u : Ω → Rm is a vector-valued function and
variable exponent p(x) with locally log-Hölder continuity in Ω satisfies

1 < p− ≤ p(x) ≤ p+ <∞ for a.e. x ∈ Ω. (1.3)

An obstacle problem is a type of partial differential equation (PDE) in which the solution must remain
above a predetermined function, or obstacle. The obstacle is usually defined as a lower bound for the
solution of the PDE. This type of problem is often used to model physical systems such as heat flow,
or fluid dynamics, where the obstacle may represent the physical boundaries of the system.

Junxia and Yuming [19] studied the boundary regularity of weak solutions to a nonlinear obstacle
problem with C1,β-obstacle function and obtained the C1,α

loc boundary regularity. In [27], the author
has considered obstacle problems with measure data related to elliptic equations of p-Laplace type, and
investigated the connections between low order regularity properties of the solutions and nonlinear
potential of the data. Jacques–Louis Lions [21] studied the existence of solutions to the parabolic
obstacle problems via variational inequalities. H. El Hammar et al. in [16,17] proved the existence of
a weak solution to the quasilinear elliptic system under regularity, growth and coercivity conditions
for σ by using Galerkin’s approximation and the theory of Young measures. A large number of papers
were devoted to the study of the existence and uniqueness of a weak solution for the obstacle problem
(1.1) under classical monotone methods developed by [1, 2, 29].

In [28], the author investigated the scalar version of problem (1.1) and demonstrated the existence
of a weak solution with variable growth (for related topics, see [11, 15]). For the utilisation of Young
measures in elliptic systems, we refer the reader to see [6, 16,17].

E. Azroul and F. Balaadich in [8] treated the following obstacle problem:∫
Ω

σ(x,Du) : D(v − u) dx ≥ 0, v ∈ Kψ,θ,

where
Kψ,θ =

{
v ∈W 1,p(Ω;Rm) : v − θ ∈W 1,p

0 (Ω;Rm), v ≥ ψ a.e. in Ω
}
,

and proved the existence of weak solutions under some conditions on σ : Ω×Mm×n → Mm×n.
In this paper, we obtain the existence and uniqueness of weak solutions for the obstacle problem

(1.1), inspired by the works mentioned above, and we extend the result established in [8] by considering
a general source term under growth condition, constant growth and under weak monotonicity with
the use of the concept of Young measure combined with the Kinderlehrer and Stampacchia theorem.

We denote by Mm×n the set of real m×n matrices equipped with the usual inner product S : K =
SijKij . The obstacle function ψ : Ω → Rm is defined in (1.2) and θ ∈ W 1,p(x)(Ω;Rm) is a function
which provides the boundary values. We study the solution u ∈ Kψ,θ for (1.1) under the following
hypotheses:

(f0) σ : Ω×Mm×n → Mm×n is a Carathéodory function, i.e., the mapping x 7→ σ(x, S) is measurable
for all S ∈ Mm×n, S 7→ σ(x, S) is continuous for a.e. x ∈ Ω.

(f1) There exist N1(x) ∈ Lp
′(x)(Ω), N2(x) ∈ L1(Ω) and c1, c2 > 0 such that

|σ(x, S)| ≤ N1(x) + c1|S|p(x)−1,

σ(x, S) : S ≥ −N2(x) + c2|S|p(x).
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(f2) σ satisfies one of the following conditions:

(a) The mapS 7→ σ(x, S) is strictly quasimonotone, i.e., there exists a constant c3 > 0 such
that ∫

Ω

(σ(x, S)− σ(x,K)) : (S −K) dx ≥ c3

∫
Ω

|S −K|p(x) dx

for all x ∈ Ω and S,K ∈ Mm×n.
(b) There exists a function Z : Ω×Mm×n → R such that σ(x, S) = ∂Z

∂S (x, S), and S → σ(x, S)
is convex and belongs to C1.

(c) For all x ∈ Ω, the mapS 7→ σ(x, S) is a C1-function and is monotone, i.e.,

(σ(x, S)− σ(x,K)) : (S −K) ≥ 0

for all x ∈ Ω and S,K ∈ Mm×n.

Let us rapidly summarize the paper’s contents. In Section 2, we lay out the fundamentals of Sobolev
spaces with varying exponents along with the Kinderlehrer and Stampacchia theorem and a brief
explanation of Young measures. We then move on to the proof of the existence of solutions to
obstacle problems in Section 3. The proof of uniqueness of solutions to obstacle problems is given in
Section 4.

2 Preliminaries
We recall some necessary notations, definitions and properties for our function spaces (see [12,23,25,
26,28]) and an overview about Young measures (see [10, 14,22]). For each open bounded subset Ω of
Rn (n ≥ 2), we denote C+(Ω) = {p ∈ C(Ω), p(x) > 1 for any x ∈ Ω}. For every p ∈ C+(Ω), define

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

The Sobolev space W 1,p(x)(Ω;Rm) consists of all functions u in the Lebesgue space

Lp(x)(Ω;Rm) =

{
u : Ω → Rm measurable :

∫
Ω

|u(x)|p(x) dx <∞
}

such that Du ∈ Lp(x)(Ω;Mm×n). The space Lp(x)(Ω;Rm) is endowed with the norm

‖u‖p(x) = inf
{
β > 0,

∫
Ω

∣∣∣u(x)
β

∣∣∣p(x) dx ≤ 1

}
,

being a Banach space. Moreover, it is reflexive if and only if 1 < p− ≤ p+ < ∞. Its dual is defined
by Lp

′(x)(Ω;Rm), where 1
p(x) + 1

p′(x) = 1. For any u ∈ Lp(x)(Ω;Rm) and v ∈ Lp
′(x)(Ω;Rm), the

generalized Hölder inequality ∣∣∣∣ ∫
Ω

uv dx
∣∣∣∣ ≤ ( 1

p−
+

1

p+

)
‖u‖p(x)‖v‖p′(x)

holds true. The space W 1,p(x)(Ω;Rm) is endowed with the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖Du‖p(x).

Proposition 2.1 ([18,24]). We denote

ρ(u) =

∫
Ω

|u|p(x) dx ∀u ∈ Lp(x)(Ω;Rm).

If uk, u ∈ Lp(x)(Ω;Rm) and p+ <∞, then:
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(i) ‖u‖p(x) < 1(= 1;> 1) ⇐⇒ ρ(u) < 1(= 1;> 1);

(ii) ‖u‖p(x) > 1 =⇒ ‖u‖p
−

p(x) ≤ ρ(u) ≤ ‖u‖p
+

p(x); ‖u‖p(x) < 1 =⇒ ‖u‖p
+

p(x) ≤ ρ(u) ≤ ‖u‖p
−

p(x);

(iii) ‖uk‖p(x) → 0 ⇐⇒ ρ(uk) → 0; ‖uk‖p(x) → +∞ ⇐⇒ ρ(uk) → +∞.

We denote by W 1,p(x)
0 (Ω;Rm) the closure of C∞

0 (Ω;Rm) in W 1,p(x)(Ω;Rm) and W−1,p′(x)(Ω;Rm)

is its dual space. We denote p∗(x) = np(x)
n−p(x) for p(x) < n; = ∞ for p(x) > n.

Theorem 2.1 (see [13,28]). If p(x) satisfies (1.3), then the inequality∫
Ω

〈u(x), v(x)〉 dx ≤ C‖u(x)‖Lp(x)(Ω,Rm)‖v(x)‖Lp′(x)(Ω,Rm)

holds for every u(x) ∈ Lp(x)(Ω,Rm), v(x) ∈ Lp
′(x)(Ω,Rm) with constant C depending only on p(x).

Theorem 2.2 (see [13,28]). If p(x) satisfies (1.3), then the spaces Lp(x)(Ω,Rm) and W 1,p(x)(Ω,Rm)
are reflexive Banach spaces.

To establish the existence and uniqueness of a weak solution for the obstacle problem with variable
growth, we first introduce a Kinderlehrer–Stampacchia theorem.

Theorem 2.3 (Kinderlehrer and Stampacchia [20]). Let K be a nonempty closed convex subset of X
and let L : K → X ′ be monotone, coercive and strong-weakly continuous on K. Then there exists an
element u such that

〈L(u), v − u〉 ≥ 0 for all v ∈ K.

A Young measure is a device to understand and to control the difficulties that arise when a weak
convergence does not behave as one would desire with respect to nonlinear functional and operators.

Definition 2.1. Assume that the sequence {fj}j≥1 is bounded in L∞(Ω;Rm). Then there exist a
subsequence {fk}k≥1 ⊂ {fj}j≥1 and a Borel probability measure vx on Rm for a.e. x ∈ Ω such that
for each φ ∈ C(Rm), we have

φ(fk) →∗ φ weakly∗ in L∞(Ω),

where
φ(x) :=

∫
Rm

φ(λ) dvx(λ) for a.e. x ∈ Ω.

We call {vx}x∈Ω a family of Young measure associated with {fk}k≥1.

Lemma 2.1 ([14]). Let Ω ⊂ Rn be Lebesgue measurable (not necessarily bounded) and wj : Ω → Rm,
j = 1, 2, . . . , be a sequence of Lebesgue measurable functions. Then there exist a subsequence wk and
a family {vx} of nonnegative Radon measures on Rn such that

(i) ‖vx‖M :=
∫
Rm

dvx(λ) ≤ 1 for almost every x ∈ Ω.

(ii) φ(wk) →∗ φ weakly ∗ in L∞(Ω) for any φ ∈ C0(Rm), where φ = 〈vx, φ〉 and

C0(Rm) =
{
φ ∈ C(Rm) : lim

|w|→∞
|φ(w)| = 0

}
.

(iii) If for any R > 0,
lim
L→∞

sup
k∈N

∣∣∣{x ∈ Ω ∩BR(0) : |wk(x)| ≥ L
}∣∣∣ = 0,

then ‖vx‖M = 1 for almost every x ∈ Ω, and for any measurable Ω′ ⊂ Ω, we have φ(wk) →
φ = 〈vx, φ〉 weakly in L1(Ω′) for continuous φ provided the sequence φ(wk) is weakly precompact
in L1(Ω′).
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Lemma 2.1 is the fundamental theorem for the Young measure, and the following Fatou-type
lemma can be seen as its application, useful for us.

Lemma 2.2 ([14]). Let a : Ω × Mm×n → R be a Carathéodory function and uk : Ω → Rm be a
sequence of measurable functions such that Duk generates the Young measure vx. Then

lim inf
k→∞

∫
Ω

a(x,Duk(x)) dx ≥
∫
Ω

∫
Mm×n

a(x, λ) dvx(λ) dx,

provided that the negative part a−(x,Duk(x)) is equiintegrable.

3 Main results
In this section, we obtain the existence and uniqueness of the solution for the obstacle problem
(1.1), (1.2).

3.1 Weak solution of obstacle problem
Through the above definitions, we utilize the concept of Young measure to demonstrate the existence
of weak solutions for the obstacle problem stated in (1.1), (1.2), by defining a mapping L : Kψ,θ →
W−1,p′(x)(Ω;Rm) by

〈L(u), v〉 =
∫
Ω

σ(x,Du) : Dv +
〈
u|u|p(x)−2, v

〉
dx

satisfying the hypothesis of Theorem 2.3.

Theorem 3.1. Suppose Kψ,θ 6= ∅ and σ satisfies conditions (f0)–(f2). Then there exists a weak
solution u ∈ Kψ,θ to the obstacle problem (1.1), (1.2). In other words, there exists a function u ∈ Kψ,θ
satisfying ∫

Ω

σ(x,Du) : D(v − u) +
〈
u|u|p(x)−2, v − u

〉
dx ≥ 0

for each v ∈ Kψ,θ.

3.2 Proof of of the existence of a weak solution
Now, we solve problem (1.1). Towards this end, first we show the following Lemmas.

Lemma 3.1. Suppose σ satisfies (f0)–(f2) and Kψ,θ 6= ∅, set in (1.2), is given for arbitrary u ∈ Kψ,θ,
then:

(i) Kψ,θ is a closed convex set.

(ii) For each v ∈ Kψ,θ, Lu ∈W−1,p′(x)(Ω;Rm).

Proof. (i) is immediate that Kψ,θ is a closed convex set.
(ii) By the Hölder growth condition in (f1), we have

|〈Lu, v〉| =
∣∣∣∣ ∫
Ω

σ(x,Du) : Dv +
〈
u|u|p(x)−2, v

〉
dx

∣∣∣∣
≤

∣∣∣∣ ∫
Ω

σ(x,Du) : Dv dx
∣∣∣∣+ ∣∣∣∣ ∫

Ω

〈u|u|p(x)−2, v〉 dx
∣∣∣∣

≤
(
‖N1‖p′(x) + C1‖Du‖p(x)−1

p(x)

)
‖Dv‖p(x) + C2‖u‖p(x)‖v‖p(x)

≤
(
‖N1‖p′(x) + C1‖Du‖p(x)−1

p(x)

)
‖v‖1,p(x) +C2‖u‖p(x)‖v‖1,p(x)



The Existence and Uniqueness of Weak Solutions to Obstacle Problems 7

≤
(
‖N1‖p′(x) + C1‖Du‖p(x)−1

p(x) + C2‖u‖p(x)
)
‖v‖1,p(x)

≤ C‖v‖1,p(x) .

So, we get Lu ∈W−1,p′(x)(Ω;Rm).

Lemma 3.2. Suppose Kψ,θ 6= ∅ and σ satisfies conditions (f0)–(f2). Then the mapping L is monotone
and coercive on Kψ,θ.

Proof. For fixed v ∈ Kψ,θ, by the strict quasimonotonicity, we have

〈Lu−Lv, u− v〉

=

∫
Ω

(σ(x,Du)− σ(x,Dv)) : (Du−Dv) dx+

∫
Ω

〈
u|u|p(x)−2 − v|v|p(x)−2, u− v

〉
dx

≥ C2

∫
Ω

|Du−Dv|p(x) dx+

∫
Ω

|u|p(x) + |v|p(x) dx−
∫
Ω

p(x)− 1

p(x)
|u|p(x) dx

−
∫
Ω

1

p(x)
|v|p(x) dx−

∫
Ω

1

p(x)
|u|p(x) dx−

∫
Ω

p(x)− 1

p(x)
|v|p(x) dx

≥ C2

∫
Ω

|Du−Dv|p(x) dx+

∫
Ω

|u|p(x)dx+

∫
Ω

|v|p(x) dx−
∫
Ω

|u|p(x)dx+

∫
Ω

1

p(x)
|u|p(x) dx

−
∫
Ω

1

p(x)
|v|p(x) dx−

∫
Ω

1

p(x)
|u|p(x) dx−

∫
Ω

|v|p(x) dx+

∫
Ω

1

p(x)
|v|p(x) dx

≥ C2

∫
Ω

|Du−Dv|p(x) dx.

Then L is monotone on Kψ,θ .
Next, we show that L is coercive. Indeed, for the fixed element v ∈ Kψ,θ, in view of condition (f1),

we have

〈Lu−Lv, u− v〉

=

∫
Ω

(σ(x,Du)− σ(x,Dv)) : (Du−Dv) dx+

∫
Ω

〈
u|u|p(x)−2 − v|v|p(x)−2, u− v

〉
dx

≥
∫
Ω

σ(x,Du) : Du dx+

∫
Ω

σ(x,Dv) : Dv dx−
∫
Ω

σ(x,Du) : Dv dx

−
∫
Ω

σ(x,Dv) : Du dx+

∫
Ω

|u|p(x) + |v|p(x) dx−
∫
Ω

|u|p(x)−1|v|+ |u| |v|p(x)−1 dx

≥
∫
Ω

(
−N2(x) + C2|Du|p(x)

)
dx−

∫
Ω

N2(x) + C2|Dv|p(x) dx−
∫
Ω

|N1(x)| |Dv| dx

− C1

∫
Ω

|Du|p(x)−1|Dv| dx−
∫
Ω

|N1(x)| |Du| dx− C1

∫
Ω

|Dv|p(x)−1|Du| dx

+

∫
Ω

|u|p(x) + |v|p(x) dx−
∫
Ω

|u|p(x)−1|v|+ |u| |v|p(x)−1 dx

≥ C2

∫
Ω

|Du|p(x) + |Dv|p(x) dx− 2

∫
Ω

|N2(x)| dx−
∫
Ω

|Du| |N1(x)| dx−
∫
Ω

|Dv| |N1(x)| dx

− C1

∫
Ω

|Du|p(x)−1|Dv| − |Dv|p(x)−1|Du| dx
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+

∫
Ω

|u|p(x) + |v|p(x) dx−
∫
Ω

|u|p(x)−1|v|+ |u| |v|p(x)−1 dx

≥ min{C2, 1}
∫
Ω

|Du|p(x) + |u|p(x) + |Dv|p(x) + |v|p(x) dx− 2

∫
Ω

|N2(x)| dx

−
∫
Ω

|Dv| |N1(x)| dx−
∫
Ω

ε

p(x)

(
|Du|p(x) + |u|p(x)

)
+
ε

1
1−p(x)

p′(x)

(
|N1(x)|p

′(x)
)

dx

− (C1 + 1)

∫
Ω

ε

p′(x)

(
|Du|p(x) + |u|p(x)

)
+
ε

1
1−p′(x)

p(x)

(
|Dv|p(x) + |v|p(x)

)
dx

1 + 1)

∫
Ω

ε

p(x)

(
|Du|p(x) + |u|p(x)

)
+
ε

1
1−p(x)

p′(x)

(
|Dv|p(x) + |v|p(x)

)
dx

≥
(

min{C2, 1} −
( 1

p∗
+ C1 + 1

)
ε
)∫

Ω

(
|Du|p(x) + |u|p(x)

)
dx− C(N1, N2, ε, v, p(x)).

Taking
ε =

min{C2, 1}p∗
2(1 + (C1 + 1)p∗)

,

we obtain

〈Lu− Lv, u− v〉 ≥ C

∫
Ω

|Du|p(x) + |u|p(x) dx− C(N1, N2, ε, v, p(x))

≥ C

∫
Ω

2−p
∗(
|Du−Dv|p(x) + |u− v|p(x)

)
− |Dv|p(x) − |v|p(x) dx

− C(N1, N2, ε, v, p(x))

≥ 2−p
∗
C

∫
Ω

|Du−Dv|p(x) + |u− v|p(x) dx− C(N1, N2, ε, v, p(x)).

For a sufficiently small constant δ, we have∫
Ω

|Du−Dv|p(x) dx

‖Du−Dv‖Lp(x)(Ω,Rm)

=

∫
Ω

( |Du−Dv|
‖Du−Dv‖Lp(x)(Ω,Rm) − δ

)p(x) (‖Du−Dv‖Lp(x)(Ω,Rm) − δ)p(x)

‖Du−Dv‖Lp(x)(Ω,Rm)

dx

≥
(‖Du−Dv‖Lp(x)(Ω,Rm) − δ)p(x)

‖Du−Dv‖Lp(x)(Ω,Rm)

.

Taking δ = 1
2‖Du−Dv‖Lp(x)(Ω,Rm), we arrive at∫

Ω

|Du−Dv|p(x) dx

‖Du−Dv‖Lp(x)(Ω,Rm)

→ ∞ as ‖Du−Dv‖Lp(x)(Ω,Rm) → ∞.

Similarly, we also obtain ∫
Ω

|u− v|p(x) dx

‖u− v‖Lp(x)(Ω,Rm)

→ ∞ as ‖u− v‖Lp(x)(Ω,Rm) → ∞.

Then it is immediate to obtain
(Lu− Lv, u− v)

‖u− v‖W 1,p(x)(Ω,Rm)

→ ∞ as ‖u− v‖W 1,p(x)(Ω,Rm) → ∞.

That is to say, L is coercive on Kψ,θ.
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Lemma 3.3. Suppose Kψ,θ 6= ∅ and σ satisfies conditions (f0)–(f2). Then the mapping L is strongly-
weakly continuous.

Proof. We choose a sequence uk ∈ Kψ,θ such that uk → u ∈ Kψ,θ in W 1,p(x)(Ω;Rm). Then
‖uk‖1,p(x) ≤ C for some constant C. In view of Lemma 2.1, there exists a Young measure vx generated
by {Duk} such that ‖vx‖M(Mm×n) = 1 and

Duk → 〈vx, id〉 =
∫

Mm×n

λ dvx(λ) in L1(Ω). (3.1)

Since Lp(x)(Ω;Mm×n) is reflexive, Duk → Du in Lp(x)(Ω;Mm×n) ⊂ L1(Ω;Mm×n), thus Du(x) =
〈vx, id〉 for a.e. x ∈ Ω (for the uniqueness of limit, see also [3, Lemma 4.1]).

The following lemmas allow us to prove Lemma 3.3.

Lemma 3.4 (div-curl inequality). Suppose σ satisfies (f0)–(f2) and {Duk} generates the Young
measure vx, then ∫

Ω

∫
Mm×n

(σ(x, λ)− σ(x,Du)) : (λ−Du) dvx(λ) dx ≤ 0.

Proof. Let us consider the sequence

Ik := (σ(x,Duk)− σ(x,Du)) : (Duk −Du) = σ(x,Duk) : (Duk −Du)− σ(x,Du) : (Duk −Du).

By the growth condition in (f1), we have∫
Ω

|σ(x,Du)|p
′(x) dx ≤

∫
Ω

(
|N1(x)|p

′(x) + c1|Du|p(x)
)

dx

≤
∫
Ω

|N1(x)|p
′(x) + c1‖Du‖p(x)p(x) dx

≤
∫
Ω

|N1(x)|p
′(x) + c1M

p(x) dx (where M is the upper bound of ‖Du‖p(x))

<∞.

Since u ∈ W 1,p(x)(Ω;Rm), we get σ ∈ Lp
′(x)(Ω,Mm×n). According to the weak convergence in (3.1),

we obtain

lim inf
k→∞

∫
Ω

σ(x,Du) : (Duk −Du) dx

=

∫
Ω

∫
Mm×n

σ(x,Du) : (λ−Du) dvx(λ) dx =

∫
Ω

σ(x,Du) :

∫
Mm×n

λ dvx(λ)

︸ ︷︷ ︸
=:Du(x)

−Du) dx = 0.

Therefore,
I := lim inf

k→∞

∫
Ω

Ik dx = lim inf
k→∞

∫
Ω

σ(x,Duk) : (Duk −Du) dx.

Let Ω′ ⊂ Ω be an arbitrary measurable subset. By the growth condition in (f1) together with Hölder’s
inequality, we have∫

Ω′

|σ(x,Duk) : Du| dx ≤
(
‖N1(x)‖p′(x) + c1 ‖Duk‖p(x)−1

p(x)︸ ︷︷ ︸
≤C

)(∫
Ω′

|Du|p(x) dx
) 1

p(x)

.
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Since
∫
Ω′

|Du|p(x) dx is arbitrarily small, if we choose the measure of Ω′ small enough, it follows that

the negative part (σ(x,Duk) : Du)− is equiintegrable. On the other hand, by the coercivity condition
in (f1), we have

σ(x,Duk) : Duk ≥ −N2(x) + c2|Duk|p(x) ≥ −N2(x).

Thus ∫
Ω′

(
σ(x,Duk) : Duk

)− dx ≤
∫
Ω′

|N2(x)| dx.

Hence (σ(x,Duk) : Duk)
−is equiintegrable. We infer from Lemma 2.2 that

I = lim inf
k→∞

∫
Ω

σ(x,Duk) : (Duk −Du) dx ≥
∫
Ω

∫
Mm×n

σ(x, λ) : (λ−Du) dvx(λ) dx.

We prove that I ≤ 0. In fact, according to Mazur’s theorem (see, e.g., [29, Theorem 2, p. 120]), there
exists (vk) ∈ W 1,p(x)(Ω;Rm), where each vk is a convex linear combination of {u1, . . . , uk} such that
vk → u in W 1,p(x)(Ω;Rm). This implies that vk belongs to the same space as uk. It follows that

I = lim inf
k→∞

∫
Ω

σ(x,Duk) : (Duk −Du) dx

= lim inf
k→∞

(∫
Ω

σ(x,Duk) : (Duk −Dvk) dx+

∫
Ω

σ(x,Duk) : (Dvk −Du) dx
)

≤ lim inf
k→∞

‖σ(x,Duk)‖p′(x)‖Duk −Dvk‖p(x) + ‖σ(x,Duk)‖p′(x)‖Dvk −Du‖p(x) = 0,

by the boundedness of σ(x,Duk) in Lp
′(x)(Ω;Mm×n), the construction of the sequence vk and the

following fact
‖uk − vk‖1,p(x) ≤ ‖uk − u‖1,p(x) + ‖vk − u‖1,p(x) → 0 as k → ∞.

Since ∫
Ω

∫
Mm×n

σ(x,Du) : (λ−Du) dvx(λ) dx =

∫
Ω

σ(x,Du) :

( ∫
Mm×n

λ dvx(λ)−Du

)
dx = 0

together with I ≤ 0, the inequality of Lemma 3.4 follows.

Remark 3.1. An intermidiary result is the following inequality:

lim inf
k→∞

∫
Ω

(σ(x,Duk)− σ(x,Du)) : (Duk −Du) dx ≤ 0.

To see this, it suffices to repeat the proof of Lemma 3.4.

Lemma 3.5. For almost every x ∈ Ω, we have

(σ(x, λ)− σ(x,Du)) : (λ−Du) = 0 on supp vx.

Proof. By Lemma 3.4, we have∫
Ω

∫
Mm×n

(σ(x, λ)− σ(x,Du)) : (λ−Du) dvx(λ) dx ≤ 0.

By the monotonicity of σ, the above integrand is nonnegative, thus must vanish with respect to the
product measure dvx(λ)⊗ dx. Therefore,

(σ(x, λ)− σ(x,Du)) : (λ−Du) = 0 on supp vx.
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Now, we prove Lemma 3.3 for each case listed in (f2).

Step 1. Suppose that σ satisfies condition (f2)(a). We have∫
Ω

|Duk −Du|p(x) dx ≤ c

∫
Ω

(σ(x,Duk)− σ(x,Du)) : (Duk −Du) dx.

We remark that the inferior limit of the right-hand side of the above inequality is less than or equal
to zero by Remark 3.1. It follows that

lim inf
k→∞

∫
Ω

|Duk −Du|p(x) dx = 0.

Let Ek,ϵ = {x : |Duk −Du| ≥ ϵ}. We have∫
Ω

|Duk −Du|p(x) dx ≥
∫
Ek,e

|Duk −Du|p(x) dx ≥ ϵp(x)|Ek,ϵ|

which yields
|Ek,ϵ| ≤

1

ϵp(x)

∫
Ω

|Duk −Du|p(x) dx→ 0 as k → ∞.

Since by the Fatou Lemma,∫
Ω

( |Duk −Du|
ϵ

)p(x)
dx ⩽ lim

k′→∞
sup

(∫
Ω

|Duk′ −Duk|
ϵ

)p(x)
dx,

we have
‖Duk −Du‖Lp(x)(Ω,Rm) ⩽ sup

k′

{
‖Duk′ −Duk‖Lp(x)(Ω,Rm)

}
< ε′,

that is to say, Duk → Du in Lp(x)(Ω,Rm). Hence

Duk → Du in measure on Ω (for a subsequence).

After extracting a suitable subsequence, if necessary, we can infer that Duk → Du for almost every x ∈
Ω. Then σ(x,Duk) → σ(x,Du) for almost every x ∈ Ω, and in the measure. By the equiintegrability
of σ(x,Duk) : Dv, the Vitali theorem implies∫

Ω

σ(x,Duk) : Dv dx→
∫
Ω

σ(x,Du) : Dv dx as k → ∞.

Step 2. For the case (f2)(b), we argue as follows: We start by proving that for almost every x ∈ Ω,

supp vx ⊂ Ex =
{
λ ∈ Mm×n : Z(x, λ) = Z(x,Du) + σ(x,Du) : (λ−Du)

}
.

Let λ ∈ supp vx, then by Lemma 3.5, we get

(1− τ)(σ(x, λ)− σ(x,Du)) : (λ−Du) = 0 ∀ τ ∈ [0, 1]. (3.2)

On the other hand, by the monotonicity, for τ ∈ [0, 1] we have

(1− τ)
(
σ(x,Du+ τ(λ−Du))− σ(x, λ)

)
: (Du− λ) ≥ 0. (3.3)

Subtracting (3.2) from (3.3), we get

(1− τ)
(
σ(x,Du+ τ(λ−Du))− σ(x,Du)

)
: (Du− λ) ≥ 0 for τ ∈ [0, 1]. (3.4)
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By the monotonicity, (
σ(x,Du+ τ(λ−Du))− σ(x,Du)

)
: τ(λ−Du) ≥ 0,

and since τ ∈ [0, 1], we have(
σ(x,Du+ τ(λ−Du))− σ(x,Du)

)
: (1− τ)(λ−Du) ≥ 0.

The above inequality together with (3.4) implies(
σ(x,Du+ τ(λ−Du))− σ(x,Du)

)
: (λ−Du) = 0 ∀ τ ∈ [0, 1].

Integrating this equality over [0, 1] and using the fact that

σ(x,Du+ τ(λ−Du)) : (λ−Du) =
∂Z

∂τ
(x,Du+ τ(λ−Du)) : (λ−Du),

we conclude that

Z(x, λ) = Z(x,Du) +

1∫
0

σ(x,Du+ τ(λ−Du)) : (λ−Du) dτ

= Z(x,Du) + σ(x,Du) : (λ−Du).

Hence λ ∈ Ex, i.e., supp vx ⊂ Ex. In view of the convexity of Z, we have

Z(x, λ) ≥ Z(x,Du) + σ(x,Du) : (λ−Du).

For all λ ∈ Ex, put A(λ) = Z(x, λ) and B(λ) = Z(x,Du) + σ(x,Du) : (λ −Du). Since λ 7→ A(λ) is
continuous and differentiable, for all S ∈ Mm×n and τ ∈ R we obtain

A(λ+ τS)−A(λ)

τ
≥ B(λ+ τF )−B(λ)

τ
if τ > 0,

A(λ+ τS)−A(λ)

τ
≤ B(λ+ τS)−B(λ)

τ
if τ < 0.

Thus DA = DB and therefore

σ(x, λ) = σ(x,Du) ∀λ ∈ Ex ⊃ supp vx. (3.5)

The equiintegrability of σ(x,Duk) implies that its weak L1-limit is given by

σ(x) :=

∫
Mm×n

σ(x, λ) dvx(λ) =
∫

supp vx

σ(x, λ) dvx(λ) =
∫

supp vx

σ(x,Du) dvx(λ) = σ(x,Du), (3.6)

where we have used (3.5) and ‖vx‖M = 1. Now, consider the Carathéodory function

ω(x, λ) = |σ(x, λ)− σ(x)|, λ ∈ Mm×n.

The sequence ωk(x) := ω(x,Duk(x)) is equiintegrable by that of σ(x,Duk(x)), hence its weak L1-limit
is given by

ωk → ω in L1(Ω),

where

ω(x) =

∫
Mm×n

|σ(x, λ)− σ(x)| dvx(λ)

=

∫
supp vx

|σ(x, λ)− σ(x)| dvx(λ) = 0 (by (3.6) and (3.5)).
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Since ωk ≥ 0, we deduce that ωk → 0 in L1(Ω) as k → ∞. Hence∫
Ω

σ(x,Duk) : Dv dx→
∫
Ω

σ(x,Du) : Dv dx as k → ∞.

Step 3. For the last case (f2)(c), we claim that for a.e. x ∈ Ω and every S ∈ Mm×n,

σ(x, λ) : S = σ(x,Du) : S + (∇σ(x,Du)) : (Du− S)

holds on supp vx, where ∇ is the derivative with respect to the second variable of σ. The monotonicity
of σ implies that for τ ∈ R,

(σ(x, λ)− σ(x,Du+ τS)) : (λ−Du− τS) ≥ 0,

which implies

−σ(x, λ) : τS ≥ −σ(x, λ) : (λ−Du) + σ(x,Du+ τS) : (λ−Du− τS).

By virtue of Lemma 3.5, we get

−σ(x, λ) : τS ≥ −σ(x,Du) : (λ−Du) + σ(x,Du+ τS) : (λ−Du− τS).

Note that
σ(x,Du+ τS) = σ(x,Du) +∇σ(x,Du)τS + o(τ),

thus

σ(x,Du+ τS) : (λ−Du− τS) = σ(x,Du+ τS) : (λ−Du)− σ(x,Du+ τS) : τS

= σ(x,Du) : (λ−Du) +∇σ(x,Du)τS : (λ−Du)− σ(x,Du) : τS −∇σ(x,Du)τS : τS + o(τ)

= σ(x,Du) : (λ−Du) + τ [∇σ(x,Du)S : (λ−Du)− σ(x,Du)] + o(τ).

Therefore,
−σ(x, λ) : τS ≥ τ

[
(∇σ(x,Du)S) : (λ−Du)− σ(x,Du) : S

]
+ o(τ).

Since τ is arbitrary in R, our claim follows. By the equiintegrability of σ(x,Duk), its weak L1-limit
is then given by

σ(x) =

∫
supp vx

σ(x, λ) dvx(λ)

=

∫
supp vx

σ(x,Du) dvx(λ) + (∇σ(x,Du))t
∫

supp vx

(Du− λ) dvx(λ) = σ(x,Du),

where we have used our claim and the fact that Du(x) = 〈vx, id〉. On the other hand, since
Lp

′(x)(Ω;Mm×n) is reflexive, the sequence {σ(x,Duk)} converges weakly in Lp
′(x)(Ω;Mm×n) and

its weak Lp′(x)-limit is also σ(x,Du). Thus we conclude that∫
Ω

σ(x,Duk) : Dv dx→
∫
Ω

σ(x,Du) : Dv dx as k → ∞.

Hence
∫
Ω

σ(x,Duk) : Dv dx→
∫
Ω

σ(x,Du) : Dv dx as k → ∞ in the cases (a), (b) and (c).

Now we show that 〈
uk|uk|p(x)−2, v

〉
→

〈
u|u|p(x)−2, v

〉
as k → ∞.

Since uk → u in W 1,p(x)(Ω;Rm), the continuity of the inner product implies

〈uk, v〉 → 〈u, v〉 as k → ∞.
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Therefore, by Theorem 2.1, we have that 〈uk|uk|p(x)−2, v〉 is bounded for all uk ≥ ψ a.e in Ω, p(x) ≥ 1.
Hence, by using uk → u, we get〈

uk|uk|p(x)−2, v
〉
→

〈
u|u|p(x)−2, v

〉
as k → ∞.

Next, passing to the limit, we get

(Luk, v) =

∫
Ω

σ(x,Duk) : Dv + 〈uk|uk|p(x)−2, v〉 dx

→
∫
Ω

σ(x,Du) : Dv + 〈u|u|p(x)−2, v〉 dx = (Lu, v).

This is the strong-weakly continuity of L on Kψ,θ. Thus the proof of Lemma 3.3 is complete.

Now, we can apply Theorem 2.3 and the above lemmas to obtain the existence. In sum, we
conclude the existence of an element u ∈ Kψ,θ such that 〈L(u), v − u〉 ≥ 0, i.e.,∫

Ω

σ(x,Du) : (Dv −Du) +
〈
u|u|p(x)−2, v − u

〉
dx ≥ 0 for all v ∈ Kψ,θ.

4 Uniqueness of weak solutions to problem
In order to obtain the uniqueness of the solution, we need to prove the following theorem.
Theorem 4.1. Suppose Kψ,θ 6= ϕ and p(x) satisfies (1.3). Under conditions (f1)–(f2)(c), there exists
a unique solution u ∈ Kψ,θ to the obstacle problem (1.1). That is to say, there exists a unique u ∈ Kψ,θ
such that ∫

Ω

σ(x,Du) : (Dv −Du) +
〈
u|u|p(x)−2, v − u

〉
dx ≥ 0 for all v ∈ Kψ,θ.

Proof. It is immediate to obtain the existence from the above lemmas. If there are two weak solutions
u1, u2 ∈ Kψ,θ to the obstacle problem (1.1), then∫

Ω

σ(x,Du1) : (Du2 −Du1) dx+
〈
u1|u1|p(x)−2, u2 − u1

〉
dx ≥ 0 for all v ∈ Kψ,θ

and

−
∫
Ω

σ(x,Du2) : (Du2 −Du1) dx+
〈
u2|u2|p(x)−2, u2 − u1

〉
dx

=

∫
Ω

σ(x,Du2) : (Du1 −Du2) dx+
〈
u2|u2|p(x)−2, u1 − u2

〉
dx ≥ 0.

Furthermore,∫
Ω

σ(x,Du1)− σ(x,Du2) : (Du1 −Du2) +
〈
u1|u1|p(x)−2 − u2|u2|p(x)−2, u1 − u2

〉
dx ≤ 0.

In view of (f2)(c), we can further infer that∫
Ω

σ(x,Du1)− σ(x,Du2) : (Du1 −Du2) dx = 0 on Ω

and ∫
Ω

〈
u1|u1|p(x)−2 − u2|u2|p(x)−2, u1 − u2

〉
dx = 0,

that is to say, u1 = u2 a.e. on Ω, and now the proof is completed.
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