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Abstract. In this paper, we develop a framework for obtaining com-
pleteness results for extensions of modal logics. A modal language is
extended by fresh modalities, which are then specified using definitions
formulated in the original logic. When adding the modal definitions to
the axiom system, completeness of the extended logic is guaranteed by
the main result of the paper. We demonstrate the technique by applying
it to extensions of the modal logic S5.

1 Introduction

We show how to obtain Kripke completeness for certain extensions of modal
logics. We consider extensions of a modal logic L with modal definitions of the
form

�p ↔ ϕ(p),

where ‘�’ is a fresh box-modality, and p is a proposition occurring in ϕ. That
is, the modality � is defined in terms of ϕ in which � does not occur. We state
the conditions on ϕ under which we obtain Kripke completeness of the extended
logic. We pose as an interesting open problem to find a syntactic characterisation
of modal definitions that give rise to what we call relational semantics. The
related problem of characterising elementary formulas (i.e., modal formulas that
define a first-order frame property) has been studied extensively; see, e.g., [5,8,
14,18]. However, elementarity is neither a necessary nor sufficient criterion for a
modal formula to be used in relational modal definitions.

The idea to add modal definitions to existing normal modal logics is quite
common, e.g., for (dynamic) epistemic logics. The following formulas are exam-
ples of modal definitions: EAp ↔ ∧

a∈A �ap is the axiom for ‘everyone knows’ in
epistemic logic, i.e., every agent in the group A knows p [13]; [!ϕ]p ↔ (ϕ → p)
is the reduction axiom for the announcement operator [!ϕ] in Public Announce-
ment Logic [4,17]; �S4p ↔ �K4p ∧ p is a definition of an S4-box modality in
terms of a K4-box modality [11]; [ϕ]Kp ↔ [�]Kp ∨ (ϕ ∧ [�]K(ϕ → p)) was used
as the definition of the modal operator ‘Modest Enrichment (Type B)’ in [12];
and [ϕ]p ↔ �p ∨ (ϕ ∧ �(ϕ → p)) is the reduction axiom used for the epistemic
logic S5r for reasoning about knowledge under hypotheses in [19].

We show that we can obtain a finite axiomatisation of normal modal logics
extended with relational modal definitions in a straightforward way. We illustrate
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this technique with one extensions of the modal logic S5. In Sect. 4, we recall the
logic S5r, which extends S5 with a modal operator ‘[·]’ that can be parameterised
with a hypothesis. The modality [ϕ] represents the knowledge state under the
hypothesis ϕ. The formula [ϕ]ψ states that ‘under the hypothesis ϕ, the agent
knows ψ’. If ϕ happens to be true at the current world and the agent knows that
ϕ implies ψ, then the agent knows ψ; otherwise, i.e., if ϕ is false, the agent knows
only what it would know anyway, i.e. without any assumptions. We give a new
completeness proof for the logic S5r based on techniques developed in Sect. 3.

The paper is organised as follows. In the following section, we review standard
definitions of modal logic and modal definability. In Sect. 3 we introduce the
notion of relational modal definitions and pose the problem of finding a syntactic
characterisation for it. Additionally, we show how to obtain completeness for
modal logics extended with a relational modal definition as new axiom schema.
We illustrate this technique with extensions of the modal logic S5 in Sect. 4.
Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section, we briefly review some standard definitions for modal logic and
modal definability, cf. [7]. First, we fix a signature 〈Π,M〉 consisting of countable
sets Π and M of symbols for propositions and modalities, respectively. The
propositional modal language L for this signature consists of formulas ϕ that are
built up inductively according to the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �mϕ,

where p ranges over proposition symbols in Π and m over modality symbols in
M . The logical symbols ‘�’ and ‘⊥’, and the additional connectives such as ‘∨’,
‘→’ and ‘↔’ and the dual modalities ‘♦m’ with m ∈ M are defined as usual,
i.e.: � := p ∨ ¬p for some atomic proposition p; ⊥ := ¬�; ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ);
ϕ → ψ := ¬ϕ ∨ ψ; ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ); and ♦mϕ := ¬�m¬ϕ.

A subset L of the propositional modal language L is a modal logic iff it
contains all propositional tautologies, is closed under substitution, modus ponens
and modal replacement (mrep) p ↔ q

�mp ↔ �mq , for m ∈ M . The modal logic L is
called monotonic iff it contains the formulas (c) �m(p ∧ q) → �mq, for m ∈ M ,
and L is normal iff it additionally contains the formulas (s) �mp ∧ �mq →
�m(p ∧ q) and (�) �m�. Alternatively, it is also sufficient to state normal
modal logics contain the formulas (k) �m(p → q) → (�mp → �mq) and are
closed under (nec) p

�mp (i.e., instead of stating (c), (s), (�) and (mrep)). The
smallest normal modal logic is commonly denoted with K.

The relational semantics for the propositional modal language L is based on
labelled graphs (Kripke structures) for the signature of L. That is, the points
are labelled by propositions from Π and the edges are binary relations, one for
every modality in M . Formally, an M -frame is a tuple F = (W, {Rm}m∈M ),
where W is a non-empty set of worlds and each Rm ⊆ W 2 is a binary relation
over W labeled with a symbol m, for every m ∈ M . Formally Rm is a shorthand
for (Rm,m). A Kripke structure for 〈Π,M〉 is a pair M = (F, V ) consisting
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of an M -frame F = (W, {Rm}m∈M ) together with a valuation function V :
Π → 2W assigning to every proposition p in Π a set V (p) of worlds. A Kripke
structure M = (F, V ) is said to be based on the frame F. We also refer to a
Kripke structure as a ‘model’. We denote the class of all Kripke structures for
〈Π,M〉 as K〈Π,M〉, or simply K if the signature is understood. Later we will use
C to denote a class of models.

An interpretation of formulas from L is given by means of a satisfaction
relation ‘|=’, which is a binary relation between pointed models and formulas.
A pointed model is a pair 〈M, w〉, where M = (W, {Rm}m∈M , V ) is a model
from the class C of all models and w a world from W . The satisfaction relation
is defined inductively on the structure of formulas ϕ as:

– 〈M, w〉 |= p iff w ∈ V (p);
– 〈M, w〉 |= ¬ψ iff 〈M, w〉 �|= ψ;
– 〈M, w〉 |= ψ ∧ χ iff 〈M, w〉 |= ψ and 〈M, w〉 |= χ;
– 〈M, w〉 |= �mψ iff for all v ∈ W with (w, v) ∈ Rm, 〈M, v〉 |= ψ.

A formula ϕ is said to be true at w in M iff 〈M, w〉 |= ϕ; ϕ is satisfiable iff there
is a pointed model 〈M, w〉 at which it is true; ϕ is valid in M (written ‘M |= ϕ’)
iff 〈M, w〉 |= ϕ for all w in M; ϕ is valid on F (written ‘F |= ϕ’) iff ϕ is valid in
all models based on F; and ϕ is valid in the class C of models (written ‘|=C ϕ’)
iff it is valid in every model from C.

The set of L-formulas that are valid in all models from a class C of models is
called the L-theory ThL(C) of C, i.e.:

ThL(C) := {ϕ ∈ L | for every M from C, ϕ is valid in M}.

A modal logic L is said to be Kripke complete w.r.t. C iff L = ThL(C). In what
follows, we will also just say ‘complete’. For instance, K is complete w.r.t. the
class of all models, and S4 is complete w.r.t. the class of models which are based
on frames that are pre-orders (i.e., frames with reflexive and transitive relations).
A modal logic L is complete w.r.t. a class F of frames iff L is complete w.r.t. the
class of models that are each based on a frame from F . Not all normal modal
logics are complete w.r.t. a class of frames.

The relationship to first-order logic is made precise by the so-called standard
translation st(·), which assigns to a modal formula ϕ a corresponding first-order
formula stx(ϕ) with one free variable x. The signature of the first-order language
contains unary predicate symbols P and binary predicate symbols Rm, one P
for every p ∈ Π and one Rm for every m ∈ M . The translation function st(·) is
inductively defined as follows:

stx(p) := P (x)
stx(¬ϕ) := ¬stx(ϕ)

stx(ϕ ∧ ψ) := stx(ϕ) ∧ stx(ψ)
stx(�mϕ) := ∀y(Rm(x, y) → sty(ϕ))

where y is a fresh variable for every occurrence of a box-modality.
A Kripke structure M = (W, {Rm}m∈M , V ) for 〈Π,M〉 can be seen as a first-

order structure interpreting the formulas stx(ϕ). While a predicate symbol Rm
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is interpreted as the same called binary relation over W that is interpreting the
modality m in M , a predicate symbol P is interpreted as the subset V (p) of
W , where p is the proposition symbol from Π that corresponds to P . Neither
constants nor function symbols are introduced by the standard translation. In the
first-order structure M, however, we introduce a dedicated constant cw for every
world w ∈ W and we interpret cw as w. At the level of pointed models 〈M, w〉,
the relationship between ϕ and stx(ϕ) is such that:

〈M, w〉 |= ϕ iff M |= stx(ϕ)[x �→ cw],

where [x �→ cw] substitutes every occurrence of the free variable x in stx(ϕ)
with the constant cw. Note that stx(ϕ)[x �→ cw] is a sentence, i.e. a first-order
formula without free variables.

When considering the notion of validity on frames F, we have that ϕ corre-
sponds to the monadic second-order formula ∀P ∀x stx(ϕ) as follows:

F |= ϕ(p) iff F |= ∀P ∀x stx(ϕ),

where p are the propositions from Π that occur in ϕ and P the corresponding
unary predicates.

For modal formulas ϕ that are commonly considered as axioms, such as the
formulas of the axioms (k), (t), (4), etc., there exists a first-order equivalent of
the second-order formula ∀P ∀x stx(ϕ). A modal formula that defines a first-
order frame property is also said to be elementary. For instance, (4) is elemen-
tary as it is valid on all frames with transitive relations and the class of transi-
tive frames can be defined with first-order formulas ∀xyz(R(x, y) ∧ R(y, z) →
R(x, z)), one for every relation R in the frame. However, there are modal formu-
las that are non-elementary, among them are the Löb formula �(�p → p) → �p
and the McKinsey formula �♦p → ♦�p. The Sahlqvist formulas define a set
of elementary modal formulas [18], but it does not cover all elementary formu-
las. The problem of determining whether or not a modal formula is elementary
is undecidable [8]. Conversely, there are elementary frame classes that are not
modally definable, e.g. the class of irreflexive and the class of antisymmetric
frames.

3 Modal Definitions

In this section, we show for certain extensions of modal logics how to obtain
Kripke completeness w.r.t. a specific class of models. Later, in the next section,
we apply this technique to extensions of the modal logic S5.

By extending a modal logic L with a formula ϕ we mean obtaining a modal
logic L′ as a set of formulas that is minimal w.r.t. ⊆, that contains all tautologies
over the symbols for propositions occuring in L∪{ϕ}, that contains all formulas
from L ∪ {ϕ} and that is closed under substitution, modus ponens and modal
replacement. It can readily be seen that L∪{ϕ} is not necessarily a modal logic.
Moreover, an extension of a modal logic that is Kripke complete w.r.t. a class C of
models is not necessarily complete w.r.t. C itself nor any other class of models.
We are interested in studying formulas of a specific form (modal definitions)
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that, when used to extend a modal logic, yield a modal logic that is complete
w.r.t. a specific class of models.

Before formulating the completeness result, we introduce the notion of modal
definitions.

Definition 1. Let L be a propositional modal language over the signa-
ture 〈Π,M〉. Let ϕ(p) be a formula in L, where p are the propositions occurring
in ϕ. Let ‘+’ be a fresh symbol for a unary modality not in M , and � the box-
version of this modality. A modal definition in L is a formula of the form

�p ↔ ϕ(p),

where p contains p.

The box-modality � is defined in terms of a modal formula in which � does
not occur. Notice that the modal definition �p ↔ ϕ(p) itself is a formula in the
propositional modal language over the extended signature 〈Π,M ∪ {+}〉. For
the sake of simplicity, we consider + to be a unary modality symbol. We leave
generalising Definition 1 and the results below to polyadic modality symbols for
future work. Moreover, we will only consider the modal definitions for the box-
version of +. The results for the dual modality can be obtained in a similar
way.

In this paper, we only consider modal definitions �p ↔ ϕ(p), where the box-
modality � does not occur in ϕ(p). It is interesting, however, to also consider
the more general setting, where this restriction may be weakened. For instance,
the axiom for common knowledge and the axiom for the star-programme of pdl
are not covered by Definition 1. We leave this for future work as well.

A modal definition is interpreted in models M = (F, V ) that are based on
M ∪{+}-frames F = (W, {Rm}m∈M ∪{R+}), i.e., frames that are extended with
a binary relation R+ to interpret the new box-modality �. The semantics of �
can be defined in the usual way as for any other box-modality:

– 〈M, w〉 |= �ψ iff for all v ∈ W with (w, v) ∈ R+, it holds that 〈M, v〉 |= ψ.

We want to interpret � as specified in the modal logic L′ obtained from the modal
logic L extended with a modal definition of �. To this end, we have to confine
outselves to the models from C(L′), i.e., all models from K〈Π,M∪{+}〉 in which
all formulas of L′ are valid. It is now interesting to investigate the relationship
between the modal definition of � and the properties of the relation R+ in the
models from C(L′).

Example 1. Let L be a propositional modal language over 〈Π,M〉. Additionally,
let ‘+’ be a fresh symbol for a modality not in M . Finally, let L ⊆ L be a modal
logic.

The modal definition α1 = �p ↔ p yields that R+ is the identity relation.

Another simple example of a modal definition is �p ↔ �mp, for some m ∈ M .
Here we have that R+ equals Rm in every model. Consider two more examples:
�p ↔ p ∨ ¬p and �p ↔ p ∧ ¬p. In the former case, R+ is the empty relation,
whereas in the latter the modal definition does not yield any relation.
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As the examples show, not all modal definitions yield a relational semantics
for the logic extended with the newly defined modality. Taking the standard
translation of a formula ϕ that is used in a definition �p ↔ ϕ(p) results in the
second-order formula ∀P ∀x stx(ϕ), where the predicates in P correspond to
the propositional variables in p. We are interested in elementary formulas, i.e.,
those formulas ϕ for which there exists a first-order formula that is equivalent
to the second-order formula ∀P ∀x stx(ϕ), that additionally yield a relational
semantics for the new modality +. It is a non-trivial problem to give a syntactic
characterisation of such formulas ϕ that are suitable for defining fresh modalities.

In this paper, we will not solve this problem, but we will show how such
modal definitions can be used to obtain an axiomatisation of the extended logic.
To this end, we introduce the notion of ‘relational modal definition’.

Definition 2. Let L be a propositional modal language over the signature
〈Π,M〉. Let ϕ(p, p1, . . . , pn) with n ≥ 0 be a formula in L, where p, p1, . . . , pn are
the propositions occurring in ϕ. Let ‘+’ be a fresh symbol for a unary modality
not in M , and � the box-version of this modality.

A modal definition �p ↔ ϕ(p, p1, . . . , pn) is called a relational modal defini-
tion if there exists a first-order formula Ψ+(x, y) with two free variables x and
y using only predicates that occur in stx(ϕ(p, p1, . . . , pn)) such that for every
ψ ∈ L, it holds that for all pointed models 〈M, w〉,

〈M, w〉 |= (∀y)(Ψ+(x, y) ⇒ sty(ψ)) iff M |= stx(ϕ(ψ, p1, . . . , pn))[x �→ cw].

We note that elementarity is not a sufficient condition for modal formulas
being suitable for a relational modal definition. For instance, the modal formula
♦m� is elementary as it is valid on all frames in which the relation Rm is
serial and the class of serial frames can be defined with first-order formulas
∀x∃y(R(x, y)), one for every relation R in the frame. However, it can readily
be seen that there is no first-order formula corresponding to �p ↔ ♦m� in the
sense of Definition 2. Another example is the formula ♦m�m⊥ which together
with Axiom (4) states the reachability of a world without successors from any
world. Furthermore, elementarity is not a necessary condition either; see, e.g.,
the reduction axiom for S5r in the following section which yields a relational
modal definition despite it being non-elementary.

Let Ψ+(x, y) be the first-order formula with two free variables x and y cor-
responding to a relational modal definition. Given a model M = (F, V ) with
F = (W, {Rm}m∈M ), we uniquely construct the model M+ = (F+, V ), where
the underlying frame F+ is obtained from F by adding the binary relation
R+ ⊆ W × W defined as:

(v, w) ∈ R+ iff M |= Ψ+(x, y)[x �→ cv, y �→ cw].

For a class C of models, we denote with C+ the class consisting of the models M+,
where M ranges over the models in C.

Formulas from the extended language L+ can be translated to formulas in L
in a straightforward way.
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Definition 3. Let L and L+ be propositional modal languages over the signa-
tures 〈Π,M〉 and 〈Π,M ∪ {+}〉, respectively, where + is a fresh unary modality
not in M . The translation function ∗ : L+ → L for the relational modal definition
�p ↔ ϕ+(p, p1, . . . , pn) is inductively defined as follows:

– p∗ = p;
– (ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗;
– (¬ϕ)∗ = ¬ϕ∗;
– (�mϕ)∗ = �mϕ∗, for m ∈ M ;
– (�ψ)∗ = ϕ+(ψ∗, p1, . . . , pn).

Lemma 1. Let L and L+ be propositional modal languages over the signatures
〈Π,M〉 and 〈Π,M ∪{+}〉, respectively, where + is a fresh unary modality not in
M . Let L ⊆ L be a normal modal logic, and obtain L+ ⊆ L+ from L by adding
a relational modal definition �p ↔ ϕ(p, p1, . . . , pn) as an only axiom schema for
�.

Then for every ψ, χ ∈ L+, it holds that:

(i) if ψ ↔ χ ∈ L+ , then �ψ ↔ �χ ∈ L+ ; and
(ii) ψ ∈ L+ iff ψ∗ ∈ L.

Proof. We first show Item (i). Due to the reduction axiom it suffices to show
that if ψ ↔ χ ∈ L+ , then ϕ(ψ, p1, . . . , pn) ↔ ϕ(χ, p1, . . . , pn) ∈ L+ . We show
this by induction on the structure of ϕ. Recall that ϕ(p, p1, .., pn) is a formula
of the language L, i.e., not containing �. We use the following as induction
hypothesis. For every ϕ(p, p1, .., pn) ∈ L and every two formulas ψ, χ ∈ L+ with
ψ ↔ χ ∈ L+ , it holds that ϕ(ψ, p1, . . . , pn) ↔ ϕ(χ, p1, . . . , pn) ∈ L+ . For the
base case, we distinguish two cases. Case 1 ϕ(p, p1, ..pn) = q where q is a proposi-
tional letter distinct from p. For this case ϕ(ψ, p1, . . . , pn) = q = ϕ(χ, p1, . . . , pn)
and indeed q ↔ q ∈ L+ . Case 2 ϕ(p, p1, ..pn) = p. For this case after substi-
tution we get ϕ(ψ, p1, . . . , pn) = ψ and ϕ(χ, p1, . . . , pn) = χ and by assump-
tion ϕ ↔ χ ∈ L+. Now assume for every formula before some construc-
tive step k the inductive claim holds. Let ϕ(p, p1, .., pn) be the formula con-
structed on step k. Then either ϕ(p, p1, .., pn) = ϕ1(p, p1, .., pn) ∧ ϕ2(p, p1, .., pn)
or ϕ(p, p1, .., pn) = ¬ϕ1(p, p1, .., pn) or ϕ(p, p1, .., pn) = �m ϕ1(p, p1, .., pn) for
some formulas ϕ1(p, p1, .., pn), ϕ2(p, p1, .., pn) constructed on previous steps. For
each case by inductive assumption we have that substitution keeps the equiv-
alence. Let us check this only for the last case other cases are similar. So
assume that ϕ(p, p1, .., pn) = �mϕ1(p, p1, .., pn). By inductive assumption we
know that ϕ1(ψ, p1, .., pn) ↔ ϕ1(χ, p1,.., pn) ∈ L+ . Hence �m(ϕ1(ψ, p1, .., pn) ↔
ϕ1(χ, p1, .., pn)) ∈ L+ since L+ ⊇ L. By properties of box modality we obtain
�mϕ1(ψ, p1, .., pn) ↔ �mϕ1(χ, p1, .., pn) ∈ L+ .

Consider Item (ii). We show by induction on the structure of ϕ ∈ L that
�L+

ϕ ↔ ϕ∗. The only non-trivial case is when ϕ = �β. We omit the other cases.
Suppose that ϕ = �β. Then by the induction hypothesis it holds that �L+

β ↔
β∗. By Item (i) we obtain that �L+

�β ↔ �β∗. Due to the reduction axiom,
we have that �L+

�β∗ ↔ ϕ(β∗, p1, . . . , pn). Hence �L+
�β ↔ ϕ(β∗, p1, . . . , pn).

By Definition 3 we obtain �β ↔ (�β)∗.
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As a result we obtain that ϕ ∈ L+ iff ϕ∗ ∈ L+, and since ϕ∗ ∈ L and the
logic L+ is defined without further axioms or rules involving the symbol +, it
follows that ϕ∗ ∈ L. The other direction of (ii) is immediate since the logic L+

extends L.

Lemma 2. Let L+ be a propositional modal language over the signature 〈Π,M∪
{+}〉, where + is a fresh unary modality not in M . Let L+ be the logic in the
language L+ obtained from L by adding a modal definition � �p ↔ ϕ(p, p1, .., pn)
as an only axiom schemata involving �.

Then for every ψ ∈ L+, it holds that 〈M+, w〉 |= ψ iff 〈M, w〉 |= ψ∗.

Proof. The proof proceeds by induction on the structure of the formula ψ. For
ψ being a proposition in Π, the lemma is immediate since both models have the
same valuation function. The Boolean cases and the case for the box-modalities
�m with m ∈ M are standard. Let ψ = �α. Assume that 〈M+, w〉 |= �α.
This is equivalent to the implication (∀v)((w, v) ∈ R+ ⇒ 〈M+, v〉 |= α). By the
induction hypothesis this is equivalent to (∀v)(M |= Ψ(w, v) ⇒ 〈M, v〉 |= α∗).
By Definition 2, this is equivalent to M |= stx(ϕ(α∗, p1, . . . , pn))[x �→ cw], and
by Definition 3 to 〈M, w〉 |= (�α)∗.

Theorem 1. Let L and L+ be propositional modal languages over the signa-
tures 〈Π,M〉 and 〈Π,M ∪ {+}〉, respectively, where + is a fresh unary modality
not in M . Let L ⊆ L be a normal modal logic that is sound and complete w.r.t. a
class F of Kripke frames. Obtain L+ ⊆ L+ from L by adding a relational modal
definition �p ↔ ϕ(p, p1, . . . , pn) as an only axiom schema for �.

Then the logic L+ is sound and complete w.r.t. the class F+.

Proof. Completeness. Assume � ϕ in the logic L+. By Lemma 1, we have that
� ϕ∗ in the logic L. As L is complete w.r.t. F , there is a model M based on a
frame in F and a world w in M such that 〈M, w〉 �|= ϕ∗. By Lemma 2, it follows
that 〈M+, w〉 �|= ϕ. Hence, C+ �|= ϕ.

4 The Modal Logic S5r

In this section, we recall the multi-modal logic S5r from [19] together with the
completeness result w.r.t. a particular class of models called basic structures.
The language of S5r is the language of propositional logic extended with modal
operators parameterised with S5r-formulas. Formally, this is done as follows.

Definition 4 (Syntax of S5r). Let Π be a countable set of propositions. For-
mulas ϕ of the language L are defined inductively over Π by the following gram-
mar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ ψ | [ϕ]Kψ,

where p ranges over propositions in Π and K is a part of modality symbol indi-
cating that we deal with knowledge modality.
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The logical symbols ‘�’ and ‘⊥’, and additional operators such as ‘∧’, ‘→’, ‘↔’,
and the dual modalities ‘〈ϕ〉K ’ are defined as usual.

Modal formulas are commonly evaluated in models containing a binary rela-
tion over the domain, one for each modality in the modal language. In this case,
however, every binary relation is determined by the valuation of the atomic
propositions in the domain. Therefore, it is sufficient to consider models without
relations, which we call basic structures. Formally, a basic structure M is a tuple
M = (W,V ), where W is a non-empty set of worlds and V : Π → 2W a valuation
function mapping every atomic proposition p to a set of worlds V (p) at which
it is true. The relations that are required to evaluate the modalities are defined
alongside the satisfaction relation. But first we introduce an auxiliary notion, a
binary operation ‘⊗’ on sets yielding a binary relation. Let X and Y be two sets.
Let X ⊗ Y be a binary relation over X ∪ Y such that

X ⊗ Y = X2 ∪ (X × Y ) ∪ Y 2. (1)

We illustrate this notion with an example.

Example 2. Let X = {x1, x2} and Y = {y1, y2, y3} be two sets. Then, according
to (1), X ⊗ Y is a binary relation over X ∪ Y that is composed of the relations
X2, X×Y and Y 2 by taking their union. It holds that X2 = {(x1, x2), (x2, x1)}∪
id(X), X × Y = {(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3)} and Y 2 =
{(y1, y2), (y2, y1), (y1, y3), (y3, y1), (y2, y3), (y3, y2)} ∪ id(Y ). Then the relation
X ⊗ Y = X2 ∪ (X × Y ) ∪ Y 2 contains two fully connected clusters X2 and
Y 2, and directed edges between every point in X to every point in Y . Figure 1
below gives a graphical representation of X ⊗ Y (leaving out the reflexive and
symmetric edges).

We are now ready to introduce the semantics of S5r. It differs from the
semantics of Public Announcement Logic [10,17] in that the model does not
change during the evaluation of formulas.

Definition 5 (Semantics of S5r). Let M = (W,V ) be a basic structure. The
logical satisfaction relation ‘|=’ is defined by induction on the structure of S5r-
formulas as follows: For all p ∈ Π and all ϕ,ψ ∈ L,

– 〈M, w〉 |= p iff w ∈ V (p);
– 〈M, w〉 |= ϕ ∨ ψ iff 〈M, w〉 |= ϕ or 〈M, w〉 |= ψ;
– 〈M, w〉 |= [ϕ]Kψ iff for all v ∈ W with (w, v) ∈ Rϕ, it holds that 〈M, v〉 |=

ψ;

where Rϕ = (W \ [[ϕ]]M) ⊗ [[ϕ]]M as defined in Eq. (1) and [[ϕ]]M = {x ∈ W |
〈M, w〉 |= ϕ } is the extension of ϕ in M.

We say that a S5r-formula ϕ is satisfiable if there is a model M and a world w
in M such that 〈M, w〉 |= ϕ; ϕ is valid in M if 〈M, w〉 |= ϕ for all w in M; and
ϕ is valid if ϕ is valid in all models. We will refer to the relation Rϕ as being
determined by ϕ and a model.

According to the semantics, a formula determines a binary relation in a
model. The following proposition states the properties of such relations.
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Proposition 1. Let ϕ be an S5r-formula and let M = (W,V ) be a basic struc-
ture. Then, the relation Rϕ determined by ϕ and M (cf. Definition 5) is a one-
step total preorder, i.e., Rϕ satisfies the following conditions:

– Rϕ is transitive: ∀xyz(Rϕ(x, y) ∧ Rϕ(y, z) → Rϕ(x, z));
– Rϕ is total: ∀xy(Rϕ(x, y) ∨ Rϕ(y, x)); and
– Rϕ is one-step: ∀xyz(Rϕ(x, y) ∧ ¬Rϕ(y, x) ∧ Rϕ(x, z) → (zRϕy)).

Instead of ‘preorder’ also the term ‘quasiorder’ is often used in the literature.
Note that totality implies reflexivity and that a symmetric total preorder is an
equivalence relation. The proposition is readily checked as any relation Rϕ in a
model determined by ϕ is defined using the operation ‘⊗’, which always yields
a so-called ‘one-step total preorder’. As the domain of a model is non-empty, it
contains at least one point and, thus, the smallest relation Rϕ is the edge of a
single reflexive point.

Proposition 2. The relation Rϕ for every formula ϕ ∈ S5r is characterised by
the following condition: Rϕ(w, v) iff w ∈ [[ϕ]] implies that v ∈ [[ϕ]].

Figure 1 illustrates the relation Rϕ in a model M. The domain of M is parti-
tioned into two clusters, the worlds in each of which are fully connected (reflexive
and symmetric edges within the clusters are not shown). Between the clusters
there are outgoing directed edges from worlds in the cluster on the left- to worlds
in the cluster on the right-hand side, but not vice versa. Revisit Example 2 to
see in detail how Rϕ is computed (where X = W \ [[ϕ]]M and Y = [[ϕ]]M).

Fig. 1. Model M with relation Rϕ

Consider the following example, which illustrates the effect that hypotheses
can have on an agent’s knowledge.

Example 3. Let M = (W,V ) be a basic structure with W = {x, y}, V (ph) =
V (pc) = {x} and V (pu) = {x, y}. Intuitively, the three propositions ph, pc

and pu stand for hypothesis, conclusion and universal or already established
knowledge, respectively. Then, [ph]Kpu is true at x and y in M. In fact, we have
that 〈M, x〉 |= [ϕ]Kpu for every S5r-formula ϕ, because pu holds everywhere
in M. But [ph]Kpc holds only at x and not at y, because 〈M, x〉 |= ph and ph

implies pc everywhere in M.
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We conclude this section with a discussion on how S5r could possibly be used
to reason about the knowledge of multiple agents; see, e.g., [13,16] for standard
references. Syntactically, S5r is a single-agent logic. That is, it does not provide
us with syntactic markers to distinguish agents such as a different modality
for each agent as in the modal epistemic logic S5n. Consequently, there is no
way to distinguish different agents other than by what they know. In S5r we
can represent the individuality of agents in the hypothesis itself. For instance, in
order to represent what the agents a and b know, we can use different hypotheses
pa and pb, which are atomic propositions labelling the states which the agents a
and b, respectively, consider possible. Thus [pa]Kϕ states ‘a knows ϕ’ and [pb]Kψ
states that ‘b knows ψ’.

4.1 Axiomatisation

We now present a sound and complete axiomatisation of S5r from [19]. The
axiom system consists of all propositional tautologies and the following axioms:

(K) [ϕ]K(p → q) → ([ϕ]Kp → [ϕ]Kq)
(T) [�]Kp → p
(4) [�]Kp → [�]K [�]Kp
(B) p → [�]K¬[�]K¬p
(R) [ϕ]Kp ↔ [�]Kp ∨ (ϕ ∧ [�]K(ϕ → p)).

The first four axioms are similar to the axioms known from the modal epistemic
logic S5 characterising any modality [ϕ]K in our logic S5r as epistemic operator
that can be used to represent what is known under the hypothesis ϕ.

The axioms (T), (4), and (B) are for the modality [�]K only, whereas we
need additional instances of the axioms (K) and (R), namely the ones for each
modal parameter ϕ (cf. Definition 4). The reduction axiom (R) states that every
modality [ϕ]K is definable in terms of the basic modal operator [�]K , which cor-
responds to the S5-box or the universal modality. As it was already mentioned in
the introduction, Axiom (R) corresponds to the definition of the modal operator
‘Modest Enrichment (Type B)’ in [12].

Theorem 2 ([19]). The system S5r is sound and complete w.r.t. the class of
basic structures.

We note that the completeness proof that we present here is different from
the canonical model proof envisioned in [19].

Proof. We first show soundness. The axioms (K), (T), (4), and (B) are sound
w.r.t. basic structures. We show that the reduction axiom is also valid. Let
M = (W,V ) be a basic structure and let w be a world in it. Suppose that
w |= [ϕ]Kψ. For every v ∈ W , it holds that if Rϕ(w, v), then 〈M, v〉 |= ψ. By
Proposition 2 we obtain that for every v ∈ W , if w ∈ [[ϕ]] ⇒ v ∈ [[ϕ]], then
〈M, v〉 |= ψ. We now show that 〈M, w〉 |= [�]Kψ ∨ (ϕ ∧ [�]K(ϕ → ψ)). We
distinguish two cases. In the first case, it holds that w �∈ [[ϕ]]. The implication
w ∈ [[ϕ]] ⇒ v ∈ [[ϕ]] holds for every v ∈ W . Hence, for every v ∈ W , we have that
〈M, v〉 |= ψ. This implies that 〈M, w〉 |= [�]Kψ. In the second case, it holds
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that w ∈ [[ϕ]]. Then 〈M, w〉 |= ϕ and also 〈M, w〉 |= [�]K(ϕ → ψ)). This is
because only Rϕ-successors of w satisfy ϕ and every Rϕ-successor of w satisfies
ψ. Therefore, every world where ϕ is true also satisfies ψ. The converse direction
can be shown similarly.

For showing completeness, it suffices to show that the reduction axiom
[ϕ]Kψ ↔ [�]Kψ ∨ (ϕ∧ [�]K(ϕ → ψ)) is a relational modal definition defining the
relation Rϕ (cf. Theorem 1). Let Ψϕ(x, y) = stx(ϕ) ⇒ sty(ϕ) be a formula with
the two free variables x and y. We want to show that (∀y)(Ψϕ(x, y) ⇒ sty(ψ))
is equivalent to stx([�]Kψ ∨ (ϕ ∧ [�]K(ϕ → ψ))). The standard translation
stx([�]Kψ ∨ (ϕ ∧ [�]K(ϕ → ψ))) is a disjunction of the formulas (∀y)(sty(ψ))
and (stx(ϕ) ∧ (∀y)(sty(ϕ) ⇒ sty(ψ)). We show that for a model M and
a world w, it holds that (∀y)(stx(ϕ) ⇒ sty(ϕ)) ⇒ sty(ψ)[x ← cw] iff
(∀y)(sty(ψ)) ∨ (stx(ϕ) ∧ (∀y)(sty(ϕ) ⇒ sty(ψ))[x ← cw].

5 Conclusions

In this paper we present a method for obtaining Kripke completeness of Kripke
complete modal logics extended with a special kind of axioms which we call
relational modal definitions. The notion of relational modal definition ensures
that the newly defined modality has a relational semantics. The method applies
to several existing modal logics, e.g., variants of dynamic epistemic logic. As an
illustration we show completeness of the multi-modal logic S5r. The logic S5r

was introduced as a logic of hypotheses [19]. We think that it is an interesting
non-trivial problem to give an explicit syntactic characterisation of the class of
all relational modal definitions. Similar questions have been addressed in [20]
and [9], although to the best of our knowledge no such characterisation has been
given yet. Here we have considered some instances of relational modal definitions,
e.g., classes of formulas constructed in a manner similar to Sahlqvist formulas.
The first author was partially supported by Shota Rustaveli National Science
Foundation of Georgia (SRNSFG) grant number YS17-71.
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