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Abstract We study a modal logic K4C
2 of common belief for normal agents. We

discuss Kripke completeness and show that the logic has tree model property. A
main result is to prove that K4C

2 is the modal logic of all TD-intersection closed,
bi-topological spaces with derived set interpretation of modalities. Based on the
splitting translation we also discuss connections with S4C

2 , the logic of common
knowledge.
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1 Introduction

In logics for knowledge representation and reasoning, the study of epistemic and
doxastic properties of agents with certain, intuitively acceptable, restrictions on their
knowledge and belief is a well-developed area. Smullyan (1986) discusses various
types of agents based on properties of belief. In his terminology, an agent whose
belief satisfies the modal axiom .4/ W �p ! ��p, translated as ‘If the agent believes
p, then he believes that he believes p’, is called a normal agent. K4 is the modal logic
which formalizes the belief behavior of normal agents. This generalizes the classical
doxastic system KD45 in the same way as S4 generalizes the epistemic logic S5, by
dropping some restrictions on the properties of an agent.

The study of group attitudes is already well-established in several fields where
collective opinion and reasoning are important. Also in newly emerging areas such
as agreement technologies, and ‘social intelligence’, iterative concepts of agent
belief and knowledge are of special interest. To achieve successful communication
and agreement it is important for agents to reason about themselves and what others

D. Pearce (�)
Universidad Politécnica de Madrid, Madrid, Spain
e-mail: pearcedav@gmail.com

L. Uridia
TSU Razmadze Mathematical Institute, Tbilisi, Georgia

© Springer International Publishing Switzerland 2015
A. Herzig, E. Lorini (eds.), The Cognitive Foundations of Group
Attitudes and Social Interaction, Studies in the Philosophy of Sociality 5,
DOI 10.1007/978-3-319-21732-1_7

133

mailto:pearcedav@gmail.com


134 D. Pearce and L. Uridia

know or believe. Among the more fundamental concepts are the notions of common
knowledge and common belief. We denote the operators for common knowledge
and common belief by CK and CB respectively. We have: CK' iff ' is common
knowledge in the group K and CB' iff ' is a common belief in the group B.

Following the analysis of common knowledge as originally defined by Lewis
(1969), this concept has been extensively studied from various perspectives in
philosophy (Barwise 1988; Aumann 1976), game theory (van Benthem 2007),
artificial intelligence (Herzig et al. 2009), modal logic (Baltag et al. 1998; Baltag and
Smets 2009; Bezhanishvili and van der Hoek 2014) etc. Theories of common belief
are less well-developed though some approaches can be found in Stalnaker (2001),
Herzig et al. (2009), and Lismont and Mongin (1994). The present chapter is devoted
to a study of the common belief of ‘normal’ agents in the sense mentioned above.
We want to extend and bring together two previous lines of work. One direction is
our own study of several extensions of the modal logic wK4 that form interesting
doxastic logics different from KD45; see in particular Pearce and Uridia (2010,
2011a,b). wK4 is the normal modal logic based on the axioms

.K/: �.p ! q/ ! �p ! �q

.w4/: �p ^ p ! ��p

In previous work we showed that different extensions of wK4 may be useful in
certain doxastic contexts, for instance in modeling a notion of minimal belief,
and more generally for non-monotonic reasoning about beliefs. They provide
alternatives to the more familiar system KD45 and its non-monotonic extension,
autoepistemic logic. We also considered topological interpretations and embedding
relations between epistemic and doxastic logics, i.e. translations between knowledge
and belief operators. However in our earlier studies only single agent systems are
treated. In our view, these different extensions of wK4 can all be considered types of
doxastic logics, even if they omit or weaken some of the stronger epistemic axioms.1

Our second point of departure is provided by the work of van Benthem and
Sarenac (2004), who showed how a topological semantics for logics of common
knowledge may be useful for modeling and distinguishing different concepts. A
key idea here is that the knowledge of different agents is represented by different
topologies over a set X. Various ways to merge that knowledge can be obtained
via different modes of combining logics and topological models. van Benthem and
Sarenac (2004) considers for example the fusion logic S4ıS4 and product topologies
that are complete for the common knowledge logic S4C

2 of Fagin et al. (1995).
In light of Fagin et al. (1995) and van Benthem and Sarenac (2004) and our

previous work several natural questions emerge that we want to address. In summary
the main tasks of this chapter are:

1Lismont and Mongin (1994), treating common belief, and Steinsvold (2008), treating topological
models for belief, are related works that also study weaker extensions of K4.
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1. Define a logic K4C
2 of common belief for normal agents and prove its complete-

ness for a Kripke, relational semantics. Show it has the finite model property and
the tree model property.

2. Study a topological semantics for K4C
2 and prove completeness for intersection

topologies. Specifically show that K4C
2 is the modal logic of all TD-intersection

closed, bi-topological spaces with a derived set interpretation of modalities.
3. Belief under the topological interpretation of K4C

2 is understood via colimits and
common belief in terms of colimits in the intersection topology. From 2 we aim to
derive a topological condition for common belief in terms of colimits that is very
similar to the corresponding condition that defines common knowledge in the
modal �-calculus and is discussed at some length in van Benthem and Sarenac
(2004).

4. Show how the common knowledge logic S4C
2 can be embedded in K4C

2 via the
splitting translation that maps CK p into p ^ CB p.

1.1 Common Belief and the Topological Interpretation

As stated, we focus on the common belief of normal agents, and for ease of
exposition we restrict ourselves to the two agent case. We thus consider two agents
whose individual beliefs satisfy the axioms of K4. In other respects we adopt the
main principles of the logic of common knowledge, S4C

2 . This can be seen as
a formalization of the idea that common knowledge is equivalent to an infinite
conjunction of iterated individual knowledge: ' ^ �1' ^ �2' ^ �1�1'^ �1�2'^�2�1' ^ �2�2' ^ �1�1�1' ^ �1�1�2' : : :. Later we shall see that a variation
of this formula is ‘true’ for common belief under the relational semantics. We
shall also show that the topological semantics for K4C

2 is compatible with the idea
of common belief as a fixpoint equilibrium, a notion used by Barwise (1988) to
describe common knowledge that can be captured by an expression of the modal
�-calculus.

Our approach to providing a topological semantics follows the work of Esakia
(2001). Notice that under the topological interpretation of � as a knowledge
operator, e.g. in van Benthem and Sarenac (2004), �' refers to the topological
interior of the points assigned to '. In the case of a doxastic logic like K4
our topological interpretation is different. It is perhaps simpler to state it for the� operator. Following McKinsey and Tarski (1944), the idea is to treat �' as
the derivative of the set ' in the topological space. Esakia showed that under
this interpretation wK4 is the modal logic of all topological spaces. K4 is an
extension of wK4 and is characterized in this semantics by the class of all TD-
spaces (Bezhanishvil et al. 2005). Steinsvold was one of the first to look at
derived set semantics from a doxastic point of view (Steinsvold 2008, 2009). By
combining the ideas and results from van Benthem and Sarenac (2004), Steinsvold
(2009) and Esakia (2001), we can obtain a derived set semantics for the logic of
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common belief based on bi-topological spaces, where the modality for common
belief operates on the intersection of the two topologies. As a main result, we can
prove that K4C

2 is sound and complete with respect to the special subclass of all
bi-topological TD-spaces.

2 Logic of Common Belief

We turn to the syntax and Kripke semantics of the logic K4C
2 . The interpretation

of common belief operator CB on bi-relational Kripke frames is similar to the
interpretation of the common knowledge operator CK ; and is based on the notion
of transitive closure of a relation. In this section we show that the logic K4C

2 is
sound and complete with respect to the class of all bi-relational transitive Kripke
structures. The proof is a slight modification of the completeness proof for the logic
S4C

2 given in Fagin et al. (1995) therefore we only sketch the essential parts where
the difference shows up. Additionally we show that every non-theorem of K4C

2 can
be falsified on an infinite, irreflexive, bi-transitive tree.

2.1 Iterative Common Belief

There are different notions of common belief (Barwise 1988). Let us mention
common belief as an infinite conjunction of nested beliefs and common belief as
an equilibrium. Under the former idea, a proposition p is a common belief of two
agents if: agent-1 believes that p and agent-2 believes that p and agent-1 believes that
agent-2 believes that p and agent-2 believes that agent-1 believes that p etc., where
all possible finite mixtures occur. If we formalize this idea in a modal language
with belief operators �1 and �2 for each agent respectively, then we arrive at the
following concept of a common belief operator C!

B
.

C0
B
p D �1p ^ �2pI

CnC1
B

p D �1C
n
B
p ^ �2C

n
B
pI

C!
B

p D
^

n2! Cn
B
p:

C!
B

exactly formalizes the intuition behind the former idea of common belief.
However, since C!

B
is an infinite intersection, it cannot be expressed as an ordinary

formula of modal logic and hence studied in the usual approaches to standard modal
logic. Nevertheless it turns out that we can capture the infinitary behavior of C!

B
in

a finitary sense. This idea is made more precise via the modal logic K4C
2 .
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2.2 Syntax

Throughout we work in the modal language LC with an infinite set Prop of
propositional letters and symbols ^;:;�1;�2;CB . The set of formulas Form is
constructed in a standard way: Prop � Form. If ˛; ˇ 2 Form then :˛; ˛ ^
ˇ;�1˛;�2˛;CB˛ 2 Form. We will use standard abbreviations for disjunction and
implication, ˛ _ ˇ 	 :.:˛ ^ :ˇ/ and ˛ ! ˇ 	 :˛ _ ˇ.

• The axioms of the logic K4C
2 are all classical tautologies, each box satisfies all

K4 axioms, i.e. we have:

.K/ W �i.p ! q/ ! .�ip ! �iq/

.4/ W �ip ! �i�ip

for each i 2 f1; 2g and in addition we have the equilibrium axiom for the common
belief operator:

.equi/ W CB p $ �1p ^ �2p ^ �1CB p ^ �2CB p:

• The rules of inference are: Modus-Ponens, Substitution, Necessitation for �1 and�2 and the induction rule for the common belief operator:

.ind/ W ` ' ! �1.' ^  / ^ �2.' ^  /
` ' ! CB 

where ' and  are arbitrary formulas of the language.

2.3 Kripke Semantics

The Kripke semantics for the modal logic K4C
2 is provided by transitive, bi-

relational Kripke frames. The triple .W;R1;R2/, with W an arbitrary set and Ri �
W � W where i 2 f1; 2g, is a bi-transitive Kripke frame if both R1 and R2 are
transitive relations. A quadruple .W;R1;R2;V/ is a bi-transitive Kripke model if
.W;R1;R2/ is a bi-transitive Kripke frame and V W Prop ! P.W/ is a valuation
function. Observe that we only have two relations, which give a semantics for �1

and �2. To interpret the common belief operator, CB , we construct a new relation,
which is a transitive closure of the union of R1 and R2.

Definition 1. The transitive closure RC of a relation R is defined as the least
transitive relation containing the relation R.

Two points x and y are related by the transitive closure of the relation if there exists
a finite path hx1; : : : ; xni starting at x and ending at y.
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Definition 2. For a given bi-relational Kripke model M D .W;R1;R2;V/ the
satisfaction of a formula at a point w 2 W is defined inductively as follows:

w � p iff w 2 V.p/,
w � ˛ ^ ˇ iff w � ˛ and w � ˇ,
w � :˛ iff w � ˛,
w � �i' iff .8v/.wRiv ) v � '/,
w � CB' iff .8v/.w.R1 [ R2/Cv ) v � '/.

A formula ˛ is valid in a model M, in symbols M � ˛, if for every point w 2 W
we have w � ˛. ˛ is valid in a bi-relational frame F D .W;R1;R2/, in symbols
F � ˛, iff ˛ is valid in every model M D .F ;V/ based on the frame. ˛ is valid in
a class of bi-relational frames K if for every frame F 2 K we have F � ˛.

2.4 Soundness and Completeness

Proposition 1 (Soundness). Modal logic K4C
2 is sound with respect to the class of

all bi-transitive Kripke frames.

Proof. The only non-trivial cases are to show that the equilibrium axiom and the
induction rule hold in the class of all bi-transitive models. Let M D .W;R1;R2;V/
be an arbitrary bi-transitive Kripke model. And let w 2 W: Assume w � CB'. Let us
first show that w � �1'. Take an arbitrary v 2 W such that wR1v. This implies that
w.R1 [ R2/Cv hence v � '. Let us show that w � �1CB'. Take an arbitrary v and
v0 such that wR1v and v.R1 [ R2/Cv0. By Definition 1 this means that there exists a
finite path hv1; : : : ; vni such that each vi.R1[R2/viC1 and v1 D v and vn D v0. Then
the new path hw; v1; : : : ; vni is also finite going from w to v0. Hence w.R1 [ R2/Cv
which implies that v � '. In the same way we prove that w � �2' ^ �2CB'.

For the other direction assume w � CB': By Definition 2 this means that there
is a finite path hv1; : : : ; vni such that each vi.R1 [ R2/viC1 and v1 D w and vn � '.
Without loss of generality we can assume that v1R1v2. In case n D 2 we have that
w � �1'. In case n > 2 we have that v2 � CB', hence w � �1CB'.

Now let us show that the induction rule preserves the validity of formulas in
a model. We show this by contraposition. Assume for some M D .W;R1;R2;V/
we have M � p ! CB q. This means that there is a point w 2 W with w � p
and w � CB q. This implies that there is a finite path hw; v1; : : : ; vni starting from
w with vn � q. Now we look at vn�1. As far as vn�1.R1 [ R2/vn we have that
vn�1 � �1.p ^ q/ ^ �2.p ^ q/. Now in case vn�1 � p we get that vn�1 � p !�1.p ^ q/^�2.p ^ q/ hence M � p ! �1.p ^ q/^�2.p ^ q/. In case vn�1 � p we
repeat the procedure and move to vn�2. By repeating this n � 1 times at most, either
we find the point which falsifies p ! �1.p ^ q/ ^ �2.p ^ q/ or obtain that v1 � p.
The latter implies that w � p ! �1.p ^ q/ ^ �2.p ^ q/:
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Before starting the completeness proof we introduce the special closure of a set
of subformulas of a given formula. This set will serve as the carrier set for the
Kripke model we construct to falsify a formula which is not a theorem of K4C

2 .
Assume ' is an arbitrary formula. Let Sub.'/ be the set of all sub-formulas of '.
Let SubC.'/ denote the closure of Sub.'/ in the following way: if CB˛ 2 SubC.'/
then the formulas �1˛, �2˛, �1CB˛ and �2CB˛ are also in SubC.'/. Let 
SubC.'/
denote the closure of SubC.'/ under a single negation. For readability reasons let
us denote this set by FL.'/ (another motivation for FL.'/ is that this construction
is very much alike to the Fisher-Ladner closure used in completeness proofs for
propositional dynamic logic PDL (Fischer and Ladner 1979)).

Proposition 2 (Completeness). Modal logic K4C
2 is complete with respect to the

class of all finite, bi-transitive Kripke frames.

Proof. Assume K4C
2 � '. Let W be the set of all maximally consistent subsets

of FL.'/. Let us define the relations R1 and R2 on W in the following way: For
every 	; 	 0 2 W we define 	 Rx	

0 iff .8˛/.�x˛ 2 	 ) 	 0 ` ˛ ^ �x˛/, where
x 2 f1; 2g.

Claim. Each Rx is transitive.

Proof. Assume 	 Rx	
0 ^ 	 0Rx	

00 and �x˛ 2 	 . This implies that both �x˛ and
˛ are in FL.'/. By the definition of 	 Rx	

0 we have 	 0 ` ˛ ^ �x˛, which implies
	 0 ` �x˛. As �x˛ 2 FL.'/ and 	 0 is maximally consistent set, we get �x˛ 2 	 0.
Now we use again the definition of 	 0Rx	

00 and we get that 	 00 ` ˛ ^ �x˛. Hence
	 Rx	

00

So far we have defined a finite set W with two transitive relations R1;R2 on
it. Let R1_2 denote the transitive closure of the union of relations R1 and R2 i.e.,
R1_2 D .R1 [ R2/C. At this point we are able to prove the truth lemma with respect
to the model M D .W;R1;R2;R1_2;V/, where 	 � p iff p 2 	 . The proof goes
by analogy to the proof for the common knowledge operator given in Fagin et al.
(1995).

Lemma 1 (Truth). For every formula ˛ 2 FL.'/ and every point 	 2 W of the
model M, the following equivalence holds: 	 � ˛ iff ˛ 2 	:

The proof is by induction on the length of formula. The base case follows
immediately from the definition of valuation. Assume for all ˛ 2 FL.'/ with length
less then k that: 	 � ˛ iff ˛ 2 	:

Let us prove the claim for ˛ 2 FL.'/ with length equal to k. If ˛ is a conjunction
or negation of two formulas then the result easily follows from the definition of the
satisfaction relation and the properties of maximal consistent sets, so we can skip
the proofs. Assume ˛ D �1ˇ and assume 	 � ˛. Take a set B D f� W �1� 2
	 g [ f�1� W �1� 2 	 g [ f:ˇg. The sub-claim is that B is inconsistent. Assume
not, then there exists 	 0 2 W such that 	 0 � B. This by definition of the relation
Ra means that 	 R1	 0. This is because for every ˛ if �1˛ 2 	 then 	 0 ` ˛ and
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	 0 ` �1˛ and hence 	 0 ` ˛ ^ �1˛. Now as :ˇ 2 	 0, by inductive assumption we
get 	 0 � :ˇ. Hence we get a contradiction with our assumption that 	 � �1ˇ. So
B is inconsistent. This means that there exists �i1 ; �i2 ; : : : �in ;�1�j1 ; : : :�1�jm 2 B
such that ` �i1 ^ �i2 ^ : : :^ �in ^ �1�j1 ^ : : :^ �1�jm ! ˇ. Now we take the bigger
conjunct, in particular we add ��i for every �i occurring in the conjunction, so we
get: ` .�i1 ^ �1�i1 /^ .�i2 ^ �1�i2 /^ : : :^ .�in ^ �1�in/^ �1�j1 ^ : : :^ �1�jm ! ˇ.
Applying the necessitation rule for �1 and using axiom 4 we get ` �1�i1 ^ : : : ^�1�in ^ �1�j1 ^ : : : ^ �1�jm ! �1ˇ so 	 ` �1ˇ, hence as �1ˇ 2 FL.'/ we
conclude that �1ˇ 2 	 .

We just showed the left-to-right direction of our claim for ˛ D �1ˇ. For the
right-to-left implication assume �1ˇ 2 	 . By the definition of R1 for every 	 0 with
	 R1	 0 we have 	 0 ` ˇ ^ �1ˇ. From this it follows that 	 0 ` ˇ. As ˇ 2 FL.'/ it
follows that ˇ 2 	 0 so by the inductive assumption 	 0 � ˇ.

The most important case is when ˛ is of the form CBˇ. Assume 	 � ˛. Let
D D f	 2 W W 	 � CBˇg and let ı D W

	 2D
O	 , where O	 is the conjunction of all

formulas inside 	 . Observe that as W is finite O	 is a formula in our language. We
want to show that ` ı ! �1.ı ^ ˇ/ ^ �2.ı ^ ˇ/. We do it piece by piece.

First we show ` ı ! �1ˇ. This follows by an analogous argument to the
previous claim. So let us take B D f� W �1� 2 	 g [ f�1� W �1� 2 	 g [ f:ˇg.
This set is inconsistent, otherwise there would exist 	 0 2 W with 	 R1 Gamma0
and 	 0

� ˇ, which contradicts 	 � CBˇ. From the inconsistency of B by the
same argument as in the first claim it follows that ` O	 ! �1ˇ. As 	 was chosen
arbitrarily we have ` ı ! �1ˇ: Analogously we obtain ` ı ! �2ˇ.

Now let us show that ı ! �1ı. For this we take an arbitrary 	 2 D and arbitrary
	 0 … D and show ` O	 ! �1: O	 0. As 	 2 D, we have that 	 � CBˇ, while for 	 0
we have 	 0

� CBˇ. This implies that not 	 R1	 0, so by the definition of R1, there
is a formula , such that �1 2 	 , while 	 0

� �1 ^ . From 	 0
� �1 ^ we

conclude that �1 … 	 0 or  … 	 0. Now as both  and �1 are in FL.'/ we have
:�1 2 	 0 or : 2 	 0. This means that O	 0 has the form either :�1 ^ ^V �i

or :�1 ^ : ^V �i or �1 ^ : ^V �i. Then : O	 0 is of the form �1 _ : _W:�i or �1 _ _W:�i or :�1 _ _W:�i. In each case ` �1 ^ ! : O	 0.
By applying the necessitation rule we get: ` �1�1 ^ �1 ! �1: O	 0 and by
axiom 4 for �1 we conclude ` �1 ! �1: O	 0. Now as �1 2 	 , we have
` O	 ! �1: O	 0 and as 	 and 	 0 were taken arbitrarily we get ` W

	 2D
O	 !V

	 0…D �1: O	 0. It is not difficult to prove that ` V
	 0 62D �1: O	 $ �1

W
	 2D

O	 , so
we obtain the desired result ` ı ! �1ı. Analogously we can prove ` ı ! �2ı.

Now combining ` ı ! �1ˇ and ` ı ! �1ı yields ` ı ! �1.ı ^ ˇ/ and
analogously ` ı ! �2.ı^ˇ/. So we have ` ı ! �1.ı^ˇ/^ �2.ı^ˇ/. Now we
apply the induction rule to obtain ` ı ! CBˇ. In particular we have ` O	 ! CBˇ.
The last validity implies that CBˇ 2 	 . So we have proved the left-to-right direction
of the truth lemma for the case ˛ D CBˇ.

For the other direction assume CBˇ 2 	 . Let us show by induction on k that if
	 0 is reachable from 	 in k steps then both CBˇ and ˇ are in 	 0.
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Case for k D 1: Without loss of generality we can assume that 	 R1	 0. By
the axiom .Equi/ we have ` CBˇ ! �1ˇ ^ �1CBˇ. Now by construction both�1ˇ;�1CBˇ 2 FL.'/. This implies that �1CBˇ 2 	 and �1ˇ 2 	 . By the
definition of R1 we get 	 0 ` �1ˇ ^ ˇ and 	 0 ` �1CBˇ ^ CBˇ. This implies
that 	 0 ` ˇ and 	 0 ` CBˇ and as ˇ and CBˇ are in FL.'/ we derive ˇ 2 	 0 and
CBˇ 2 	 0.

Assume the induction hypothesis holds for k � n and let us verify the case
k D n. So we have 	 Rx	1Rx : : :Rx	n�1Rx	

0, where x 2 f1; 2g. By the induction
hypothesis both CBˇ and ˇ are in 	n�1, so by the same argument as in the case of
k D 1 we obtain ˇ 2 	 0, hence 	 � CBˇ. This finishes the truth lemma.

Now if we take 	:' to be a maximally consistent set containing :', by the truth
lemma we it follows that M; 	:' � '. This finishes the completeness proof.

We have seen that every non-theorem of K4C
2 is falsified on a finite, bi-transitive

frame. The following theorem shows that every non-theorem of K4C
2 can be falsified

on a frame .Wt;Rt
1;R

t
2;V

t/, where for each k 2 f1; 2g the pair .Wt;Rt
k/ is a transitive

tree. Let us first recall the definition of tree.

Definition 3. A frame .W;R/ is called a tree if:

(1) it is rooted i.e., there is a unique point (the root) r 2 W such that for every
v 2 W holds v ¤ r ) rRCv,

(2) every element distinct from r has a unique immediate predecessor; that is, for
every v ¤ r there is a unique v0 such that v0Rv and for every v00 we have that
v00Rv ) v00Rv0,

(3) R is acyclic; that is, for every v 2 W we have :vRCv.

If in addition R is transitive i.e., R D RC, then .W;R/ is called a transitive tree.

Theorem 1. The modal logic K4C
2 has the tree model property.

Proof. Suppose � '. From Theorem 2 we know that ' can be falsified in a finite,
transitive, bi-relational Kripke model. Moreover, we can assume that this model
is rooted. Let M D .W;R1;R2;V/ be the model and w be the root where ' is
falsified. Let us unravel the frame .W;R1;R2/ around w. As a result we get a frame
.Wt;R0

1;R
0
2/ where both .Wt;R0

1/ and .Wt;R0
2/ are trees. This is a standard technique

in modal logic (Blackburn et al. 2006). The underlying set Wt consists of all finite
strings of the form hw;w1; : : : ;wni, where each wi 2 W and w.R1[R2/w1^wi.R1[
R2/wiC1 for every i � n � 1. The relation R0

k (k 2 f1; 2g) is defined in the following
way: hw;w1; : : : ;wniR0

khw;w0
1; : : : ;w

0
mi iff m D n C 1, wi D w0

i for every i � n
and wnRkwm. To spell this out, one sequence is in the R0

k relation with another if the
second sequence takes the first sequence and adds as a tail an element which is an
Rk-successor of the tail of the first sequence. The relation Rt

k is defined as a transitive
closures of R0

k i.e., Rt
k D .R0

k/
C for each k 2 f1; 2g. We define the model Mt D

.Wt;Rt
1;R

t
2;V

t/, where the valuation Vt is defined by reflecting the valuation V , so
hw1; : : : ;wni � p iff wn � p. It is easy to see that the function f W Wt ! W which
sends each element hw1; : : : ;wni of Wt to its tail wn, is a bounded morphism from
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the model Mt D .Wt;Rt
1;R

t
2;V

t/ to the model M D .W;R1;R2;V/: At this point
we can say that if ' does not contain the common belief operator CB then Mt;w �

'. This is because the bounded morphism preserves the satisfaction of formulas.
But we can not yet say that the defined bounded morphism f preserves formulas
containing CB . In fact it does. We can easily show that the function f defined above
is a bounded morphism between the extended models Mt D .Wt;Rt

1;R
t
2; .R

t
1 [

Rt
2/

C;Vt/ and M D .W;R1;R2; .R1 [ R2/C;V/.

Note 1. Observe that the relation .Rt
1[Rt

2/
C does not contain cycles and in particu-

lar it is irreflexive. This is because if hw;w1; : : : ;wni.Rt
1[Rt

2/
Chw; v1; : : : ; vmi then

m is strictly greater than n.

The main reason for introducing K4C
2 was to mimic the infinitary operator C!

B
by

finitary CB . Though we cannot claim that on a logical level CB and C!
B

are equivalent,
we can establish a semantical equivalence, in particular on Kripke structures.

Theorem 2. For any transitive bi-relational Kripke model M D .W;R1;R2;V/
and point w: M;w � CB' iff M;w � C!

B
':

Proof. The proof follows easily from Definitions 1 and 2 inasmuch as both operators
exactly depend on .R1 [ R2/ – paths of finite length starting at w.

2.5 Common Belief as Equilibrium

We mentioned that common belief can also be understood as an equilibrium
concept.2 On Kripke structures the equilibrium concept coincides with common
belief by infinite iteration, while in general the equilibrium concept has a much
closer connection to the logic K4C

2 . It can be formalized in the modal �-calculus in
the following way:

C
' D 
:p.�1' ^ �2' ^ �1p ^ �2p/:

The greatest fixpoint 
 is defined as the fixpoint of a descending approximation
sequence defined over the ordinals. Denote by j'j the truth set of ' in the appropriate
model M where evaluation occurs:

jC0

'j D j�1' ^ �2'jI

jCkC1

 'j D j�1' ^ �2' ^ �1C

k

' ^ �2C

k

'jI

2For the remainder of this section and later on for Theorem 9 we assume some familiarity with the
modal �-calculus. Lack of space hinders a fuller treatment, however for more details on the modal
�-calculus we refer to Blackburn et al. (2006, Part 3, Chapter 4); see also the discussion in van
Benthem and Sarenac (2004).
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jC�

 'j D j

\

k<�

Ck

'j; for œ a limit ordinal:

We obtain jC
'j D jC�

 'j, where � is a least ordinal for which the approximation

procedure halts: i.e. jC�

 'j D jC�C1


 'j. Halting is guaranteed because the occurrence
of the propositional variable p in operator F.p/, where F.p/ D �1' ^ �2' ^ �1p ^�2p, is positive. Hence by the Knaster-Tarski theorem the sequence will always
reach a greatest fixpoint. Then the semantics of the operator C
 is defined in the
following way:

M;w � C
' iff w 2 jC�

 'j

In general this procedure may take more than ! steps, but in the case of Kripke
structures the situation is simpler. The following property relates the different
operators on Kripke models.

Theorem 3. For every bi-relational Kripke model M D .W;R1;R2;V/ and a point
w 2 W the following condition holds: M;w � C!

B
' iff M;w � C
'.

Proof. Observe that we can rewrite C!
B
' D �1' ^ �2' ^ �1�1' ^ �1�2' ^�2�1' ^ �2�2' ^ �1�1�1' ^ �1�1�2' : : : in the following way: �1' ^ �2' ^�1.�1' ^ �2'/ ^ �2.�1' ^ �2'/ ^ : : :. Hence jC!

B
'j D jC!


 'j. It is known that
on Kripke structures the stabilization process does not need more than ! steps (van
Benthem and Sarenac 2004) i.e. jC
'j D jC!


 'j. Hence w � C
' iff w � C!
B
'.

It follows that on transitive bi-relational Kripke structures the three operators
CB ;C

!
B

and C
 coincide.

2.6 A Note on the Semantics of Lismont and Mongin

In their paper (Lismont and Mongin 1994), Lismont and Mongin develop a
neighborhood semantics for logics extended with a common belief operator. As
a basis for the semantics they consider the class of augmented neighbourhood
structures, i.e. the neighborhood function Ni W W ! PP.W/ for each agent i 2 f1; 2g
has the following properties: for an arbitrary world w 2 W, Ni.w/ contains the
set W, it is closed under supersets and arbitrary intersections (the original work
is presented for the finite set of agents we just simplify it here for the case of
two agents). It is well known that there is a satisfaction preserving correspondence
between augmented neighbourhood structures and Kripke structures and therefore
one can reduce the completeness problem of a logic in neighborhood semantics to
Kripke completeness (Chellas 1980; Hansen et al. 2009), although the main point is
the definition of the semantics for the common belief operator in these terms. In the
paper it is given by the following clause:

NC
 D NE ı .NC
 \ B/
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where NE stands for the semantics of the collective belief operator. In the case of
two agents, NE.w/ D N1.w/ \ N2.w/ for every w 2 W. The composition ı of
neighborhood functions is defined in the following way U 2 .N ıM/.w/ iff fv j U 2
M.v/g 2 N.w/ for each U � W and w 2 W. Additionally B is the neighborhood
function defined by U 2 B.w/ iff w 2 U.

On the one hand we can see that NC
 is defined as a fixpoint, although it is not
claimed to be the greatest fixpoint. On the other hand the definition of composition
of neighborhood functions suggests the operator is treated as the infinite intersection
of iterated modalities, exactly as in definition of the operator C!

B
. Therefore the

definition of NC
 embraces both the fixpoint definition and the iteration of individual
modalities at once and indeed on the class of augmented neighborhood structures
these two definitions collapse to the two definitions of common belief operator on
Kripke frames which we know to coincide. In general, however, the situation may
be different. For example this is the case on the class of topological structures from
van Benthem and Sarenac (2004).

In the next section we turn to the topological semantics for our common belief
logic. It is natural to ask whether and how this is related to the neighbourhood
semantics of Lismont and Mongin (1994). At present we do not have a precise
answer to this question. One might look at topologies as special cases of neigh-
borhood structures, where indeed neighborhoods are simply open neighborhoods
of points in a topological sense. But this does not provide us with our derived
set topological semantics, i.e. given a neighborhood model .W;N;V/ the truth set
fw j fv 2 W j v � pg 2 N.w/g of the modality �p taken in the neighborhood
semantics is not the same as the set of all colimits of the set fw j w � pg in
the topology obtained from the neighborhood function N. In fact the problem is
that the class of neigbourhood structures that correspond to topological structures
preserving the satisfaction of modal formulas has not yet been studied. Observe that
here we deal with the derived set topological semantics, and we are supposing that
neighborhood structures should preserve the satisfaction of formulas with respect to
this d-semantics, and not with respect to the standard topological semantics.

3 Topological Semantics

The idea of a derived set topological semantics originates with the McKinsey-Tarski
paper (McKinsey and Tarski 1944). This idea was taken further in Esakia (2001).
The following works contain some important results in this direction: Bezhanishvil
et al. (2005), Shehtman (1990), Lucero-Bryan (2011), and Gabelaia (2004). The
derived set topological semantics for K4C

2 is provided by the class of all bi-
topological spaces. In the same way, as it is done in van Benthem and Sarenac (2004)
for the common knowledge operator, we interpret the common belief operator on the
intersection topology. On the other hand, different from CK , for which the semantics
is given using the interior of the intersection of the two topologies, we provide the
semantics of CB' as a set of all colimits of j'j in the intersection topology. As a
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main result we prove the soundness and completeness of the logic K4C
2 with respect

to the class of all TD-intersection closed, bi-topological spaces where each topology
satisfies the TD separation axiom. We start with the basic definitions.

Definition 4. A pair .X;˝/ is called a topological space if X is a set and ˝ is a
collection of subsets of X with the following properties:

(1) X;∅ 2 ˝ ,
(2) A;B 2 ˝ implies A \ B 2 ˝ ,
(3) Ai 2 ˝ implies

S
Ai 2 ˝ .

Elements of˝ are called opens or open sets of the topological space.

Definition 5. A topological space .X;˝/ is called an Alexandroff space if an
arbitrary intersection of opens is open, that is Ai 2 ˝ implies

T
Ai 2 ˝ . .X;˝/ is

called a TD-space if every point x 2 X can be represented as an intersection of some
open set A and some closed set B.

We now define the colimit operator (or the set of all colimit points Engelking
1977) of a set in a topological space. This is needed to give the semantics of modal
formulas in an arbitrary topological space.

Definition 6. Given a topological space .X;˝/ and a set A � X we will say that
x 2 X is a colimit point of A if there exists an open neighborhood Ux of x such that
Ux � fxg � A. The set of all colimit points of A will be denoted by �.A/ and will be
called the colimit set of A.

In words, a point x belongs to the colimit points of a set A iff some open set B around
x is contained in A [ fxg. The colimit set provides a semantics for the box modality,
consequently the semantics for diamond is provided by the dual of the colimit set,
which is called the derived set. The derived set of A is denoted by der.A/. So we
have �.A/ D X � der.X � A/. Again a point x belongs to the set of limit points of
a set A iff every open set B around x intersects with A � fxg. Below we list some
examples and properties of the colimit and derivative operators.

Example 1. Let R be a set of all reals and A � R be as follows: A D f 1m j m � 1g.
Then der.A/ D f0g.

Example 2. Let X be an arbitrary set and let ˝ D fU j U � Xg, i.e. ˝ is a discrete
topology on X. Then for an arbitrary set A � X we have the set of all colimit points
�.A/ of a set A is equal to X.

Example 3. Let X be an arbitrary set and let˝ D f;;Xg, i.e.˝ is a trivial topology
on X. Then for an arbitrary set A � X the set of all colimit points �.A/ of A is
calculated as follows: If X � A is a singleton or if A D X then �.A/ D A otherwise
�.A/ D ;.

Fact 4 (Engelking 1977; Esakia 2004). For a given topological space .X;˝/ the
following properties hold:
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(1) Int.A/ D �.A/ \ A � ��.A/, where Int denotes the interior operator,
(2) �.X/ D X and �.A \ B/ D �.A/\ �.B/,
(3) If ˝ is a Td-space then �.A/ � ��.A/,
(4) If ˝1 � ˝2 then �1.A/ � �2.A/ where �i, i 2 f1; 2g is a colimit operator of the

corresponding topology˝i.

The following links TD-spaces and irreflexive transitive relational structures. This
result is a special case of a more general correspondence between weakly-transitive
and irreflexive relational structures and all Alexandroff spaces (Esakia 2001).

Fact 5 (Esakia 2004). There is a one-to-one correspondence between Alexandroff,
TD-spaces and transitive, irreflexive relational structures.

Let us briefly describe the correspondence. We first introduce the downset
operator. Let .X;R/ be a Kripke frame. The downset operator R�1 is defined in the
following way: for any A � X we set R�1.A/ WD fxj.9y/.y 2 A ^ xRy/g. Now if we
are given an irreflexive, transitive order .X;R/ it is possible to prove that the downset
operator R�1 satisfies all the properties of the topological derivative operator for TD-
spaces. Hence we get a TD-space .X;˝R/, where ˝R is the topology obtained from
the derivative operator R�1. Conversely with every Alexandroff TD-space .X;˝/,
one can associate an irreflexive and transitive relational structure .X;R˝/, where
xR˝y iff x 2 der.fyg/. Moreover we have that .X;˝R˝/ is homeomorphic to .X;˝/
and .X;R˝R/ is order isomorphic to .X;R/.

Fact 6 (Esakia 2004). The set A is open in .X;˝R/ iff x 2 A implies that the
implication .xRy ) y 2 A/ holds for every y 2 X.

This correspondence can be directly generalized to Kripke frames with more than
one transitive and irreflexive relation. Of course then we will have one Alexandroff
TD-space for each irreflexive and transitive order. Below we prove the proposition
which builds a bridge between Kripke and topological semantics for K4C

2 .

Proposition 3. If R1 and R2 are two irreflexive and transitive orders on X and .R1[
R2/C is also irreflexive and transitive, then˝.R1[R2/C Š ˝R1 \˝R2 .

Before starting the proof, observe that .R1 [ R2/C may not be irreflexive even if
both R1 and R2 are. For example: let X D fx; yg and R1 D f.x; y/g and R2 D f.y; x/g
then .R1[ R2/C D f.x; y/; .y; x/; .x; x/; .y; y/g. On the topological side this example
shows that TD-spaces do not form a lattice. That is why in Proposition 3 we require
.R1 [ R2/C to be irreflexive and transitive.

Proof. Assume that A 2 ˝.R1[R2/C . By Fact 6 this means that if x 2 A then for
every y such that x.R1 [ R2/Cy it holds that y 2 A. Since Ri � .R1 [ R2/C for each
i 2 f1; 2g, it holds that xR1y ) y 2 A and xR2y ) y 2 A for every y 2 X. Hence
A 2 ˝1 \˝2 according to Fact 6.

Conversely assume A 2 ˝1 \ ˝2. This means that x 2 A ) .x.R1 [ R2/y )
y 2 A/. Now take an arbitrary y such that x.R1 [ R2/Cy. By definition this means
that there is a .R1 [ R2/-path hx1; x2; : : : xni starting at x going to y. But this means
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that each member of this path is in A because A is open in the intersection of the two
topologies. Hence y 2 A and hence A 2 ˝.R1[R2/C

Next we give a definition of the satisfaction relation of modal formulas in the
derived set topological semantics. Observe that this definition is given in a standard
modal language i.e., without the common belief operator. Recall that a topological
model is a tuple M D .W;˝;V/ where V W Prop ! P.W/ is a valuation function.

Definition 7. The satisfaction of a modal formula in a topological model M D
.W;˝;V/ at a point w 2 W is defined in the following way:

– M;w � p iff w 2 V.p/,
– Boolean cases are standard,
– M;w � �' iff w 2 �.V.'//, where � is a colimit operator of ˝ .

Fact 7 (Esakia 2004). The correspondence mentioned in Fact 5 preserves the truth
of modal formulas, i.e. .W;R;V/; x � ˛ iff .W;˝R;V/; x � ˛.

Note that in Fact 7, the symbol � on the left hand side denotes the satisfaction
relation on Kripke models, while on the right hand side it denotes the satisfaction
relation on topological frames in the derived set semantics. Now we extend the
satisfaction relation to the language with the common belief operator.

Definition 8. The satisfaction of a modal formula on a bi-topological model M D
.W;˝1;˝2;V/ at a point w 2 W is defined in the following way:

M;w � p iff w 2 V.p/,
M;w � ˛ ^ ˇ iff M;w � ˛ and M;w � ˇ,
M;w � :˛ iff M;w � ˛,
M;w � �i' iff w 2 �i.V.'//, where �i is a colimit operator of ˝i, i 2 f1; 2g,
M;w � CB' iff w 2 �1^2.V.'//, where �1^2 is a colimit operator in ˝1 \˝2:

As an immediate corollary of Proposition 3 and a many-modal version of Fact 7,
we get the following proposition.

Proposition 4. If R1 and R2 are two irreflexive and transitive orders and .R1[R2/C
is also topological then for every formula ˛ in K4C

2 the following holds:

.W;R1;R2;V/; x � ˛ iff .W;˝R1 ; ˝R2 ;V/; x � ˛:

Now it is clear that we can reduce the topological completeness problem to
Kripke completeness if for every non-theorem K4C

2 6` ' we can find a bi-relational
topological counter-model .W;R1;R2;V/ with .R1 [ R2/C being also a topological
relation.

Definition 9. The triple .X;˝1;˝2/ is a TD-intersection closed bi-topological
space if each of the topologies ˝1, ˝2 and ˝1 \ ˝2, satisfies the TD-separation
axiom.
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Theorem 8. K4C
2 is sound and complete with respect to the class of all TD-

intersection closed, bi-topological, Alexandroff spaces.

Proof. (Soundness) Take an arbitrary TD-intersection closed, bi-topological model
M D .X;˝1;˝2;V/. From (2) and (3) of Fact 4 it follows that K4-axioms are
valid for each box. Let us show that at each point x 2 X, the equilibrium axiom is
satisfied. Assume that M; x � CB p. Hence by Definition 8 we have x 2 �1^2jpj. By
(4) of Fact 4 we get x 2 �1jpj and x 2 �2jpj. By (3) we have �1^2jpj � �1^2�1^2jpj �
�1�1^2jpj. Analogously �1^2jpj � �2�1^2jpj. Hence we have x � �1p ^ �2p ^�1CB p ^ �2CB p.

For the other direction assume that x 2 �1�1^2jpj \ �1jpj \ �2�1^2jpj \ �2jpj. By
(2) of Fact 4 we get x 2 �1.�1^2jpj \ jpj/ \ �2.�1^2jpj \ jpj/. By (1) of Fact 4 we
conclude x 2 �1.Int1^2jpj/\�2.Int1^2jpj/, where Int1^2 denotes the interior operator
in the intersection topology. By the definition of colimit there exists U1

x 2 ˝1 such
that x 2 U1

x and U1
x � fxg � Int1^2jpj and there exists U2

x 2 ˝2 such that x 2 U2
x

and U2
x � fxg � Int1^2jpj. Hence .U1

x [ U2
x / � fxg � Int1^2jpj. Let us show that

Int1^2jpj [ fxg is open in ˝1 \ ˝2. Since U1
x 2 ˝1 and Int1^2jpj 2 ˝1 we have

U1
x [ Int1^2jpj D Int1^2jpj [ fxg 2 ˝1. Analogously we show that Int1^2jpj [ fxg 2

˝2. Hence x 2 �1^2jpj.
Let us show that the induction rule is valid in the class of all TD-intersection

closed bi-topological spaces. The proof goes by contraposition. Assume not ` p !
CB q. This means that for some TD-intersection closed, bi-topological model M D
.X;˝1;˝2;V/ and a point x 2 X it holds that: x � p while x � CB q. We want to
show that not ` p ! �1.p ^ q/ ^ �2.p ^ q/. It suffices to find a TD-intersection
closed bi-topological model which falsifies the formula. For such a model one could
take M0 D .X;˝1 \˝2;˝1 \˝2;V/. Indeed as .X;˝1;˝2;V/ is TD-intersection
closed, the topology ˝1 \ ˝2 satisfies the TD-separation axiom. Besides since in
M0 both topologies are the same, their intersection is also˝1\˝2 and hence again
is a TD-space. Now it is immediate that M0; x � p ! �1.p ^ q/ ^ �2.p ^ q/. This
is because by construction of M0 we have M0; x � �iq iff M; x � CB q for every
x 2 X and i 2 f1; 2g.

(Completeness) Assume K4C
2 6` '. According to Theorem 1 there exist a

tree model Mt D .Wt;Rt
1;R

t
2;V/ which falsifies '. We know that .R1 [ R2/C

is an irreflexive and transitive order (see Note 1). By applying Proposition 4 it
follows that the formula ' is falsified in the corresponding bi-topological model
.Wt;˝Rt

1
; ˝Rt

2
;V/, which is TD-intersection closed because of Fact 5, Proposition 3

and Note 1.

We can now show how the semantical definition of common belief CB' as a
colimit of the intersection topology meshes with the general equilibrium concept:
on topological models the two operators CB and C
 coincide.

Theorem 9. For every bi-topological model M D .X;˝1;˝2;V/ and an arbitrary
formula ' the following equality holds: 
:p.�1.j'j/ \ �2.j'j/ \ �1.p/ \ �2.p// D
�1^2.j'j/:
Proof. That �1^2.j'j/ is a fixpoint of the operator F.p/ D �1.j'j/\�2.j'j/\�1.p/\
�2.p/ follows from the soundness proof of the equilibrium axiom, see Theorem 8.
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Now let us show that �1^2.j'j/ is the greatest fixpoint of F.p/. Take an arbitrary
fixpoint B of the operator F.p/. That B is a fixpoint immediately implies that B �
�1.j'j/\ �2.j'j/\ �1.B/\ �2.B/. By (1) of Fact 4 we have B � Inti.B/ D �i.B/\ B
for each i 2 f1; 2g. Hence B D Int1^2.B/ where Int1^2 is the interior operator in the
intersection topology of the two topologies. Now let us show that for every x 2 B the
set fxg[ .B\j'j/ is open in the intersection of the two topologies. Take an arbitrary
point y 2 fxg [ .B \ j'j/. Since y 2 B � �1.j'j/ we know that there exists an open
neighborhood U1

y 2 ˝1 of y such that U1
y � fyg � j'j. This means that B \ U1

y 2 ˝1

and B\U1
y � fxg[.B\j'j/. This means that for every point y 2 fxg[.B\j'j/ there

is an open neighborhood B\U1
y 2 ˝1 of y such that B\U1

y � fxg[ .B\j'j/ hence
fxg [ .B \ j'j/ 2 ˝1: In exactly the same way we show that fxg [ .B \ j'j/ 2 ˝2.
Hence fxg [ .B \ j'j/ 2 ˝1 \˝2. This means that x 2 �1^2.j'j/ since there exists
an open neighborhood U1^2 D fxg [ .B \ j'j/ 2 ˝1 \˝2 with U1^2 � fxg 2 j'j.

4 From Belief to Knowledge

Let us now look briefly at the connection between the logics of common knowledge
S4C

2 and common belief K4C
2 . This connection generalizes the existing splitting

translation between S4-logics and K4-logics.3 As a result we obtain a validity
preserving translation from S4C

2 formulas to K4C
2 formulas in which common

knowledge is expressed in terms of common belief.

Definition 10. The normal modal logic S4C
2 is defined in a modal language with

infinite set of propositional letters p; q; r : : : and connectives _;^;:;�1;�2;CK ,
where the formulas are constructed in a standard way.

• The axioms are all classical tautologies, each box satisfies all S4 axioms and in
addition we have the equilibrium axiom for the common knowledge operator:

.equi/ W CK p $ p ^ �1CK p ^ �2CK p

• The rules of inference are: Modus-ponens, Substitution, Necessitation for �1 and�2 and the induction rule:

.ind/ W ` ' ! �1.' ^  / ^ �2.' ^  /
` ' ! CK 

for arbitrary formulas ' and  of the language.

The Kripke semantics for the modal logic S4C
2 is provided by reflexive and

transitive, bi-relational Kripke frames. To interpret the common knowledge operator
CK , the reflexive, transitive closure of a union relation is used.

3For a discussion of the splitting translation and its application in non-monotonic modal logics, see
the authors’ (Pearce and Uridia 2011a).
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Definition 11. The reflexive, transitive closure R? of a relation R � W � W is
defined in the following way: R? D RC [ f.w;w/jw 2 Wg:

The satisfaction of formulas is defined as follows.

Definition 12. For a given bi-relational Kripke model M D .W;R1;R2;V/ the
satisfaction of a formula at a point w 2 W is defined inductively as follows:

w � p iff w 2 V.p/,
w � ˛ ^ ˇ iff w � ˛ and w � ˇ,
w � :˛ iff w � ˛,
w � �i' iff .8v/.wRiv ) v � '/,
w � CK' iff .8v/.w.R1 [ R2/?v ) v � '/.

Fact 10 (Fagin et al. 1995). The modal logic S4C
2 is sound and complete with

respect to the class of all finite, reflexive, bi-transitive Kripke frames.

Definition 13. Consider the following function from the set of formulas in S4C
2 to

the set of formulas in K4C
2 .

Sp.p/ D p for every propositional letter p,
Sp.:˛ _ ˇ/ D :Sp.˛/ _ Sp.ˇ/,
Sp.�i˛/ D �iSp.˛/ ^ Sp.˛/,
Sp.CK˛/ D CB Sp.˛/ ^ Sp.˛/.

Theorem 11. `S4C
2
' iff `K4C

2
Sp.'/.

Proof. We prove the theorem by a semantical argument using the Kripke complete-
ness results, see Proposition 2 and Fact 10. Let us first show by induction on the
length of a formula that for every bi-relational Kripke model M D .W;R1;R2;V/
and every w 2 W the following holds:

.a/ M? D .W;R?1 ;R
?
2 ;V/;w � ' iff MC D .W;RC

1 ;R
C
2 ;V/;w � Sp.'/:

The only nonstandard case is when ' D CK . Assume M?;w � CK . By the
definition of .R1 [ R2/? this means that M?;w �  and for every w0 such that
w.R1 [ R2/?w0, we have M?;w0 �  . Now by the induction hypothesis we have
that MC;w �  and MC;w0 �  . Since w0 was an arbitrary .R1 [ R2/? successor
of w we have MC;w � CB . This is because .R1 [ R2/? � .R1 [ R2/C. Hence we
obtain MC;w � CB ^  . The converse direction follows by the same argument.

Now assume `S4C
2
'. By Fact 10 this means that ' is valid in every reflexive and

transitive, bi-relational model. Take an arbitrary transitive, bi-relational model M.
Then by assumption we have M? � '. Hence by .a/ we have that M � Sp.'/.
As M was an arbitrary transitive, bi-relational model, from Proposition 2 we infer
that `K4C

2
Sp.'/. Conversely, suppose `K4C

2
Sp.'/. Then by Proposition 2, Sp.'/ is

valid in the class of all transitive, bi-relational models. Take an arbitrary reflexive
and transitive, bi-relational model N . Then N � Sp.'/ because N D NC. So by
.a/ we have that N ? � '. Now as N was reflexive and transitive, N ? D N , hence
N � '. And since N was an arbitrary reflexive and transitive, bi-relational model,
by Fact 10 we have `S4C

2
'.
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5 Conclusions

Our main aim in this chapter has been to extend the work of van Benthem and
Sarenac (2004) on the topological semantics for common knowledge by interpreting
a common belief operator on the intersection of two topologies in a bi-topological
model. In particular we considered a logic K4C

2 of common belief for normal
agents, first under a Kripke, relational semantics, showing it to have the finite model
property and the tree model property. We then showed that K4C

2 is the modal logic
of all TD-intersection closed, bi-topological spaces with a derived set interpretation
of modalities and we saw how the common knowledge logic S4C

2 can be embedded
in K4C

2 via the splitting translation that maps CK p into p ^ CB p.
A worthwhile exercise for the future would be to undertake a more detailed

comparison of our topological approach with the neighborhood systems of Lismont
and Mongin (1994) that we became aware of after finishing the first version of this
chapter. Another direction for the future would be to look for concrete topological
structures which would fully capture the behavior of the logic K4C

2 or some of its
extensions.
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