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ABSTRACT. In the category of complete distributive lattices the isomorphism
of functional Kolmogorov type groups of homology with projective type groups of
homology is proved.
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Let S(L)={e=(L"f")f":L—L"} (an epimorphic v-homomorphism) be a complete lat-
tice of all subspaces of'a complete distributive lattice L (S(£.) is the same as the complete
lattice Q(L) of all v-congruences on L). Subspaces of the type u=(C(x).i}), where
Clx)={ziz<x, x,ze L} and #(z)=xaz are open; subspaces of the type F=(L/C(x),h) are closed,
where L/C(x) is the factor-lattice of L with respect to v-congruences: y=zpva=zvi;

v,ze L; h is the natural v-homomorphism h:L—£/C(x) [1,2]). We shall consider only those

subspaces which have complements in S$(£). The closure e and the interior Inte of the

subspace e are defined by the equalitics 2= A{F |Fe S(L), e<F} and Inte=1—-1—¢,
respectively (by I-e is denoted the complement of the subspace ). The subspaces ¢ and
¢’ are said to be nonintersecting, if” ere’=0.

Definition 1. An open subspace we 5(1) is said to be canonical, if v =Inti . A closed
subspace FeS(L) is said to be canonical, if F=IntF

Proposition 1. The complement in S(L) of the canonical open (closed) subspace is
canonically closed fopen) subspace.

Proposition 2. i F and F' are canonically closed subspaces, then VI is canoni-
cally closed, as well. Consequently, if u and " are canonically open subspaces, then
the same is ua’,

Proposition 3. If F(u) is a closed (open) subspace then IntF(ir) is a canonical
open (closed) subspace.

Proposition 4. [f u and u’ are canonically open subspaces, then usu' &0 <u’,

Proposition 5. ff a={F....F } is a finite closed covering of L (i.e. vE=l FESE)
are closed subspaces) and u=1mf, B={u}, then E:{}Ff} is refinement of o (B 2 o),

and [ is the covering of L.

Definition 2. A family of nonintersecting canonical open subspaces ¢={1.} for which
@ ={u,} 1s the covering of L, we call Kurosh type covering of the lattice L.

Similar definitions and constructions in the case of topological spaces can be found
n [3].

Proposition 6. /f o={u.} and B = {u;-} are Kurosh type coverings of the lattice L,

then the same is 0AB={u; At}

Let {¢} be a family of all Kurosh type coverings of L and K be nerve of the covering
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e e say that § is refincment of o, 0<f, if @={y, }, f = {ug } if every element ug,
i i !
' is contained in some element 1, of @. Correspondence up, = ug, defines uniquely
cction (simplicial map) pg:]q;—)Ku. By Proposition 6, the system {&} tumns into a
ected set. Thus 4= {KQ,PO’?} 18 the simplicial spectrum with uniquely defined projec-
“s. therefore it may be helpful for determination of spectral and projective homologi-
theories.
- Let G be topological Abelian group .The spectral homology groups of L which arc
of

szsed on spectrum 4= {Kmp;f} and on a simplicial spectrum A4 of all finite closed

erings of L over the group of coefficients G, we denote by Hg(L; () and H}f(L;G] ;
- =spectively.

ie Theorem 1. Spectral homology groups H,f(L; G) and H,‘::(L; G) are isomorphic.
1: Proof. Since A is a subspectrum of A’, the theorem follows from the fact that the
o -‘osed Kurosh type covering can be inscribed into every finite closed covering.
X
se Since A = {K,X,P,f } is the simplicial single-valued spectrum, the projections ,O[‘,Ei
e “ossess the property of transitivity pr‘f opg = pl , when a<f<ynot only with respect to
. “i¢ homology classes, but also with respect to the chain. This fact makes it possible to
d troduce the following projective groups of chains, cycles, bounding cycles:
) Cp(L:G)=Im{Cp(K,:G).pL} .
:
Zp(L;G) =lim{Zp(K,:G), pf)} .
Bp(L;G)=1lim{Bp(K,,: G), k)
- respectively.
20 If group of coefficients G is compact then Bp(L;G) = Bp(L;G).
l Definition 3. Denote H p(L;G)=Zp(L;G)/ Bp(L;G) and call as projective homol-
F sy group of L.,
3 X PP ; s i
! Let Cp ={Cpg}e Cp(L;G), iec. Cep =gétﬁ . where gé . gé € G'1s the chain coef-
L) ficient; (Cpp = pr?CPﬁ for a<f and rg- € K. If o<f3 and the simplex rg,- is encountered
), in K, . then we can easily see that the chain coefficients Cpg and Cp; coincide on ;g. :
In other words, the coefficient depends only on the simplex rgf, and thercfore we can
I o ' P ; j o
ch write it as the function gfg =fpp(t@-] of one oriented simplex I‘E} or, likewise,as the
function wp(f?@-“,.....ﬁﬁp) of the ordered set 5&[],..‘,1*5‘73”; of vertices of the simplex fff;f;
nd i i 5 = R ;
' 1o get rid of that ordering, we detine gop(t?ﬁj[,,,..,ﬁmp) n terms of a skew-symmetric
! function of all its arguments.
{ Let K, be a nerve of all canonical closed subspaces of L. Then the subcomplex K of
the complex X, consisting of all simplices, whose vertices have nonintersecting interiors,
b form a closed subcomplex. If :(f‘i—o,.__,gp) is the simplex from K and

Upy =Int(l—v) | then (Ej,,..,ﬁ?ﬂpn) is a Kurosh type covering of L, and its nerve has
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S wE simmees. Denote this special covering and its nerve by rx{rP) and K(r ),
mupeciwsly. To e projective chain Cps €p€ Cp(L:G) there corresponds the chain of the

=mpses £ pven by the relation ‘¢, = zgop(f‘n)zp or by summation with respect to all sets

e v e e i
W sumspeces 8, ¢, ) with nonintersecting interiors: ‘ep= e

The mriamee ¢ —'c_defines the isomorphism 7 : Cﬂ(L;G)—)’C},(K:G)CCI_,(K;G'} of groups.
¥ 2 s am open set in G and u(f"’)={cp,’qop{fpje t c,& C(L;G)}, then {u(")} and { qu(#"))}
e subtass for both groups of chains, Consequently 7 is the isomorphism.

¥ c.=c._ | s the projective chain, then such is de,={de

poe
» — g b P ) B e
Nog = L-c-: hﬂ = gai—fw,fq'

}; for ¢, we have

'] . Since the coefficient for fl%_l in ch does not depend

% cx we can replace K by any other nerve containing t; - Let the notation be chosen in
-1 iy a
rf :(’[90,,..,19'04) 1(1:—‘-{1'_9‘[},....19 ﬁﬂp""iﬂw} 4 Then

that =1
al:®)= -;5_,...‘.1?‘0_;,5}, where 9=Int(1-p8.) ., and therefore oft")<e. The projection

L g a way

oK _—K(1 ™'} is defined by the cqualities ,O(_ig,-] = 5;, p(gm-) =1). This and the fact that

paC,=3pC,,

imply that the cocfficient for ' in BCM is pr_i(gﬂ,...,gJ,_.):

=0,Z'thl3.!3¢—,,-...‘@_l), Therefore E}CP can be defined as a chain

1 S 8 e .
;2 050,00, 0p1) | By, B,y o the boundary operator 9 over (¢, can be defined by

the equality 09, =@, (Ini(1-¥'9,), 5., B,).

Let {F} be a sct of all closed subspaces of 1.

Definition 3. For any integer p20 we call as p-dimensional Kolmogorov type chain
of the lattice L over the topological group of coefficients G the function tpp{F{],....ﬂ}). with
values in G which satisfies the following conditions: ]

I ®, remains unchanged under even permutation of arguments and changes its sign
for their odd permutation; #,0 1f two arguments coincide (skew-symmetry).

2. If F Int 7' A IntF'= 0, then
Pp (Fores N Fireess Fp ) =0, (Fyueens Fiees ) =@y Fyyes iy £ (additivity).

3. If AF=0, then ®,(F, ved? )0,

We introduce in the group C:,((L;G) of all Kolmogorov type chains of L over the
group of coefficients G the boundary operator 9 as follows: do =%_I{F{},...,Fp_l)ﬁ
=@ (I.F, .. FM}. where 1 is the largest element of the lattice L. Obviously, d9=0. Con-
sequently, we have obtained ordinary groups both of cycles Zf(L;G) and of bounding
cycles B, (L;G).

We see that in ®,(F,

and  F7 have nonintersceting interiors,

pef7,) all F can be replaced by canonical closed subspaces [ntF;
IntF . leaving the values of the function ¢, unchanged. The values of the function ¢, on the
all (F..F ) are known whenever they are known on ﬁ;,“.,ﬁp, where @ are pairwise
nomintersecting canonical open subspaces in L. Let K, be a nerve of all canonical closed
subspaces and K be a subcomplex of the complex K, consisting of all simplices whose
veriices have nonintersecting interiors. We can consider ¥, as a function on the set of p-
simplexes of the complex K. The value of the function ¢, on p-simplices of the complex

Z@P(El""’gp)l%s---s@-

ac, = .

|
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same function 'tpp(t%,...,gp) as above and, consequently, the projection of
c.= C,(L:G). The corrcspondence ©,—C, defines the isomorphism in the
2l sense T C; (L;G) = Cp(L;G). 1f {u} are open sets of the group C (L), we

sets the groups C,(LiG) of the set {7 (u)}, turing 7 into the isomorphisim;

=B (L:GY. .

“=ition 4. Denote the factor group Zp (L;G)/BX (L;G) by H} (L;G)and call as
onal group the Kolmogorov type homologies over the topological group of

s G

the following theorem is valid,
veorem 2. Projective homology groups and functional Kolmogorov type homol-
=5 of the lattice L over the topological group of coefficients G are isomorphic,ie.
H (LG =B (LG,

’ T orphism T in its turn provides isomorphisms ZﬂL;G):Zf(L;G) and
!

s=orgian Academy of Sciences
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