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by formulae of the 2nd order intuitionistic
propositional calculus on some linear
Heyting algebras

Dimitri Pataraia
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ABSTRACTEXplicit description of maps definable by formulee of the sdawrder intuitionistic
propositional calculus is given on two classes of linear tifeyalgebras—the dense ones and
the ones which possess successors. As a consequencepivistblat over these classes every
formula is equivalent to a quantifier free formula in the demsse, and to a formula with
quantifiers confined to the applications of the successdrérsecond case.

KEYWORDSlinear Heyting algebra, second order intuitionistic pragitional logic.

1. Introduction

In this paper we deal with second order intuitionistic preiponal logic. We will
exhibit two classes of linearly ordered Heyting algebrascivladmit explicitly de-
scribable interpretation of formulae of that logic. The madativation for doing this
lies in approaching quantifier elimination for the logic wlitnearity and some addi-
tional axioms added.

Quantifier elimination in broad sense has been considerednealy important
(although rare) ever since the seminal paper [TAR 48], aarktis a lot of work done
on quantifier elimination in classical logic, starting fraextbooks and monographs
(see [GAB 06] for a recent example) and ending with computémsre ([DOL 99,
WOL 06]). A modern day evidence for this can be produced jusyping “quantifier
elimination” in a Google search window.

Of course it is quite natural to ask about quantifier elimoratn non-classical
logic. In modal logic, we are aware of [SZA 02]. In the contekthe second order
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intuitionistic logic (in the sense of [GAB 74]), we know of wks [BAA 96, BAA 00a,
BAA 00b, BAA 06] of Baaz and collaborators.

In the present paper we want to give some indication of pdigibf quantifier
elimination in presence of linearity axiom in two separeasas—one corresponding
to dense linearly ordered Heyting algebras and anotheesponding to Heyting al-
gebras which possess successors for all elements (exeefph Namely, we will
show that over such algebras semantical interpretationesf/dormula is the same as
for some other formula which does not contain quantifier$infirst case, and only
contains quantifiers involved in expressing the succegserator in the second case.
We will do this by giving explicit description of all maps witi occur as a semantical
interpretation of some formula.

2. Setup
2.1. Basic notions and notation

The language of the second order intuitionistic proposéldogic consists of the
logical connectives\, v, T, L, —, V, 3 and a denumerable set of propositional vari-
ables.

The set of second order propositional formulee is definedatiekly as follows:
T, L, and any propositional variable is a formulaAfand B are formulee ang is a
propositional variable, thed A B, Av B, A — B, dpA, VpA are formulee.

The notions of free and bound variables and the notions ofi apel closed for-
mulee are the usual ones. Afis a formula, we will writeA(p1, ..., p,) to indicate
that all free variables oft are among@;, ..., p,,. MoreoverA(A; /p;, , ..., Ak /ps, ) de-
notes the simultaneous substitution of all the free ocowes ofp;, , ..., p;, in A with
formulae A, ..., Ay respectively.

We will use some abbreviations:

|V| :== number of elements in the finite St
[n] :={1,2,...,n},
n]y :=1{0,1,2,...,n},
—A=A— 1,
A« B:=(A— B)AN(B— A)
O(A) :=VplpVp— A),

wherep is any variable which is not free iA.

For any second order propositional formuldts quantifier degrega nonnegative
integerdeg(A), is defined inductively in the usual way:
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—if Ais T, L or avariable, thedeg(A) = 0;

—if Ais—B, thendeg(A) = deg(B);

—if Ais eitherofBAC,BVC,B— CorB « C
thendeg(A) = max {deg(B), deg(C)};

—if AisVpB or 3pB, thendeg(A) = deg(B) + 1.

The logic IpC has the axiomatic description consisting of:

— the usual axioms of the Heyting propositional calculus;
— axiom schematsipA — A(B/p) andA(B/p) — JpA;
— comprehension schemap(p < A), wherep does not occur freely idl,

with rules
A— B
A — VpB
and
B— A
IpB — A’

wherep does not occur freely inl.

We will use the followingcongruence property fos easily provable in Ip&. For
any formulaA(py, ..., p,) One has

IpC? -

(Cong) / / / /
(pr = PIA - Apn < D)) = (AP1s o pn) < APL/P1s D /Pn)) -

2.2. Semantics

Semantical content of this logic consists for us in the asaignt, for a given Heyt-
ing algebraf, to each formula(py, ..., p, ), Of a partially defined map

TA7: H" — H.
This assignment, where defined, is uniquely determined byfdhowing (here we
denote logical connectives and the Heyting algebra omeratiorresponding to them

by the same symbols):

FT(h1, .o, hp)
C1(hy,y e, hp)

)

T
1

)
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forx € {A,V,—},

TAx B7 (hl, cony hn) =TA7 (hl, veey hn) * T B7 (hl, ceey hn),

N\ AT (s b b g ),
heH

\/ rAT (h17 [ hi—la h7 hi+17 hn)

heH

'—VpiA—‘ (hl, “ery hi—17 hi+1, <eey hn) .

T3pi AT (R, oy him1, higy oy B

Here the symbol “:=” means that the left hand side is defindaktequal to the right
hand side provided the latter is already defined, and is umetbbtherwise.

2.3. Semantical equivalence of formulee

A modelof the second order intuitionistic propositional logic islayting algebra
H, such that the above interpretation gives totally definedsiar all formulae; such
Heyting algebras will be callefbrmula complete

If some class’#  of models is given, we say that two formuldeand B are % -
equivalentif their interpretations coincide in each model#f.

In Heyting algebras we use the notatienwith its usual meaning (i. eh; < ho
means that, < hs andh; # hs). For eachh € H thesuccessoof h is the least
k' € H suchthab’ > h (ifitexists), i. e. suck(h) € H thath < s(h), ands(h) < A’/
for everyh’ > h. Of course it is clear, that the top eleménin H can never have a
SUCCeSSOr.

In every Heyting algebra the interpretation of all logicahoectives except quan-
tifiers gives totally defined functions in a well-known wayn &ny linear Heyting
algebraH these are as follows:

hi A hy = min {hy, ha};
hiV hg = max{hy, ho};

1, ifh>_1
ﬁh:{,. > 1,

T, ifh=1;

hg, if hy > hz;

T, if by = ho,
hi < hy =< | .
mln{hl, hg}, if hi 7é ho

i <
hlﬂhg{—ﬂ |fh1\h2

foranyh, hy, hs € H.



Downloaded by [Linkopings universitetshibliotek] at 13:13 17 June 2013

Definable functions on Heyting algebras 461

Moreover, although interpretation of quantifiers givesémeral only partially de-
fined maps, interpretation @f is also totally defined in any linear Heyting algebra:

s(h), if this successor exists

)= M b LA = {h otherwise

2.4. The classe” and .

We consider two classes of linear Heyting algelsraand.& .
The class? consists of all dense linear Heyting algebras.

Note that anyH € Z is either trivial (i. e. consists of a single element), or is
infinite and in it the interpretations of the formuiaal and A coincide for any formula
A.

The class consists of all those linear Heyting algebras each of whizsaents
exceptT has a successor.

Note that in Heyting algebras from the clagsinterpretation of the formulal A
for each formulaA is as follows:

h) = {s(rm (hiseshn)), if TAT(Ry,.ohn) £ T,

FOA7 (B, oo hy) = _
(o T, if A7 (hy, ... hy) = T.

It will follow, among other things that both classes consisformula complete
algebras. In fact, it will turn out that

Every formula isZ-equivalent to a quantifier-free formula, i. e. to a for-
mula built from propositional variables and the connedivev, —, T,
L (not quantifiers).

and

Every formula is.”-equivalent to a formula in which quantifiers occur
only through application of1, i. e. to a formula built from propositional
variables, the connectives v, —, T, L (not quantifiers), and.

2.5. Characterization of functions

In order to describe functions associated to formulze of p@h at mostr. free
variables for classe® and.” we consider certain subdivisions of the prodétt
into subsets callestrata

First we consider more simple subdivision 8f* which is useful to describe in-
terpretation of formulae for the clagg (each function associated to a formula of
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IpC2 will be in a certain sense “linear” on every stratum). The moetis inspired
by [GER 00].

Then we consider a bit more complicated subdivisionH6t which is useful to
describe interpretation of formulee for the clags In this case also each function
associated to a formula of IFGvill be “linear” on every stratum.

2.6. Maps, labelings

Let us define some more auxiliary terminology and notation.
Consideramap : [n] — [k],,n > 0,0 <k <n+1.

We call a number € [k], labeled if ¢~ (r) # @. If p(i) = r, then we calk a
label ofr. The number- € [k], may have several labels.

The notion of smallest, largest, previous and next labeleahent are the obvious
ones.

Statement 2.6.1

REMARK. — If we consider some subséf of some ordered sét (e. g. X =
{z €Y | a(x)}) and if this subseX is empty, thenmax X will be equal tominY
andmin X will be equal tomax Y. a

Using this remark for each € [k],, define the numbef(r) = r — s, where
s =max{t € [k], | tislabeled and < r}.

Thus by this remark one ha$0) = 0.

3. Subdivision for &

Statement 3.1

For eachH € % and each naturat > 0 we will introduce a subdivision of
H™ taking into account the possible orders between comporahéachn-tuple
(h1y...,hy) € H™.

Consider the set

Co={p:[n]—[kly | ¢ '(r) # o foreach0 <r < kandp™'(k) =a}.

Statement 3.2

Eachy : [n] — [k], may be represented as a linearly orderedisetith & + 1
elements, some of which are labeled with elemen{sjoih such a way that for every
i € [n] there is one and only one point frovhwhich is labeled with. An element of
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V' may have several labels. Moreover sudh eepresents an element®©f, iff the top
of V' is not labeled and each elementioidifferent from the top and from the bottom
is labeled. In this paper we identify elements(gf with their correspondent labeled
linearly ordered sets.

Statement 3.3

EXAMPLE. —
3 1,4 2

o — O — O — O

(where “-" depicts the ordering) represents an elementCofwith £k = 3. The
corresponding functiop : [4] — [3], is given byp(1) = ¢(4) = 1, ¢(2) = 2,
¢(3) = 0. O
Statement 3.4

For everyy : [n] — [k], in C,, and a Heyting algebr&l define

f(O)=1, f(k)=Tandforall0 < s <r <k
flz{fz[k]o_)H _ }
eitherf(s) < f(r)or f(s) = f(r) =T
and
hi =L if (i) =0,
H? =4 (h1, hoy o ) € H” Z;}d: h; if (i) = ¢(j)

eitherh; < h;j orh; = h; =T if (i) < (j)

For everyH € & andy € C,, there is a naturally defined map
8y — H?,
fr=foe

This map is an order preserving isomorphism (with respettiegointwise order on
the set of functiong?,).

E. g., foranyH € 2 the subset ofi* corresponding to the labeled linear ordered
set from 3.3 is:

L =h3 <hy=hyg<hy, or
HY =< (hi,ha,hg,ha) | L=hs <hy=hyg=hy=T, or
1 =T
={(h,h,L,h) | L<h<horh=h=T}.
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Statement 3.5

For two elements; andys from C,, the setd{#* andH ¥2 for a nontrivialH € 2
are disjoint if and only ife;(0) # 5 1(0). If 71(0) = ¢;'(0), then H#* and
H?2 have nonempty intersection. For example take the eleifiant.., h,,) of H"
with h; = Lif p1(i) = 0 andh,; = T otherwise. This:-tuple belongs to both subsets
H*t andH*2.

Note that the union of allf ¥ is the wholeH ™. Indeed for eaclhy, ..., h,,) € H",
n > 1, consider the linearly ordered s€t= {hy, ..., h,} U {L}, with the induced
linear order. Label an elemehtin U with ¢ € [n] whenevelh; = h.

Let V' be a new labeled linearly ordered set, obtained ftdoy adding new non-
labeled top element.

It is then clear thathg, ..., h,) € H?, wherey is the map corresponding to the
labeled linearly ordered sét.
Statement 3.6
DEFINITION. — For two elements, : [n] — [k1], andes : [n] — [k2], Of C, the

nonnegative integep, |¢- is given by the equality

o1lpz = min {r € [ka]y N [ka]y | 07 (r) # @3 (r) }.

Itis clear, that if; |po = k;, i = 1,2, then for any0 < r < k; one hasp; ' (r) =
@5 ' (r). k; is not labeled irfk;], and for[k; — 1], are used all labels fap; from [n]
and therefore

{T € [k1]o N [k2]g | 991_1(7’) # ‘P;l(r)} =d,

hencek; = k; andy; = @o.

Statement 3.7

For eachy € C,, we construct a formula,, which we call thecharacteristic
formulafor the stratum ofp. The value of the functiony,, 7 on the tuple(h, ..., hy,)
will be equal toT if and only if (hy, ..., h,) € H?

Such a formula can be constructed using the following “cottaréstic formulae”
for the relations=, < and<. These we define as follows:
X=(p;q) =p+q,
x<(p,q) == (g —p) —q,
X<, q) :=p—q
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Using these formulae one can construct:

Statement 3.8

Xe(P1:D2, - Pn) = [\ {x=(pi, L) | ()

:0}

AN N\ Ax=(pip;) 19(i) = ()}
A\ x<(isps) | o) < 9(5)}-

465

PROPOSITION — ForanyH € 2, anyyq, @2 € C,, and anyf € §7' the following

equality holds

PROOF. — Letci} (f) = (h1, ha, ..

'_X4p27(h1, hg,

f | min

f | min

min < h;

v1(1)

)

"Xe» (¢ () = f(pale2).

there exists @

such that either

hi < hj & pa(i) = @2(j) ¢,
or

hi < hj & @a(i) > ¢2(j)

there exists @
such that either

P1(i) < p1(7) & p2(i) = p2(j)
or

P1(i) < p1(J) & p2(i) > p2(j)

there exists @

such that either

p1(i) < ¢1(J) & p2(i) = w2(J)
or

P1(i) = p1(J) & p2(i) # p2(j)

., hy). Then by definition ofy one has

if there exists ari
such that either

or

hi > L & pa(i) =0,

otherwise

if ©1(0) # 3 '(0),

otherwise

if ©71(0) # 31 (0),

otherwise.
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Let us denote

0, if ©77(0) # @5 1 (0),
there exists @
such that either

min § ©1(i) | p1(i) < @1(4) & p2(i) = p2(j) ¢ ,otherwise
or

e1(i) = p1(J) & 2(1) # ()
we will prove thatp; [ps = s.

First let us proves > ¢;|ps. It suffices to prove that there exists < s with
@1 (s') # 5 '(s'). Consider the cases:

e s = 0andy; '(0) # v, '(0), then fors’ we can choose.

e There exist, j € [n] such thats = ¢4 (i) < ¢1(j) andpa (i) = wa(4).

If ©1(i) = @2(i), we can choose’ = ¢ (j) < ¢2(i) = 5. Thenpy(j) < ¢2(i) =
e1(i) < p1(7)-

If ©1(2) # p2(i), we can choosg’ = s.

e There exist, j € [n] such thats = ¢4 (i) = ¢1(j) andya (i) # wa2(4).

We can choose’ = s. i, € o] !(s) and eithei ¢ ;' (s), orj ¢ w5 ' (s).

Now let us prove thap; |p2 > s. Consider the cases:

e There exists € [n] such thatp; (i) = ¢1]p2 < p2(i) (the caseps (i) < v1|v2
is not possible, because for all< |, one hasp;'(t) = @5 (). Letj €
2 ' (1lp2), thenwa(j) < a(i). Moreover one hags(j) < ¢2(i) ande: (i) <
v1(4), thereforep; | = 1(i) = s.

e There exists € [n] such thatps (i) = ¢1]p2 < ¢1(i) (the casep: (i) < v1]p2
is not possible, as in the previous case). L&t ¢ (p1|¢2), theny; (5) < v2(j).
We havep; (j) < ¢1(i) andpa(j) = pa2(i), thereforep: [pa = 1(j) = s.

Statement 3.9

DEFINITION. — Foranyy : [n] — [k], € C,,, itsr-th projection(0 < r < k) is the
mapny¥ : H¥ — H defined as follows:

w7 (fop) = f(r)foranyf e 37

In other words, one has
Wg(hl, ceey hn) = J_,
72 (hy, ..., hn) = h; foranyi € ¢~ *(r), and
ﬂ;ﬂa(hl, ,hn) =T.
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It is clear that for every- there exists a formulal? (which may be equal either
toTif r =k, orto L if » = 0, or to the variabley; if 7 is a label ofr), such that
'_Af—l|H¢ =7y

Statement 3.10

Forn > 1 and1 < i < n we will denote bypr; : H® — H"~! the projection
which omits thei-th component ofhy, ..., hy,), i. €.

pri(hla sty hn) = (h‘17 sty hi—la hi+17 seey hn)

PROPOSITION — Foranyn > 1, anyl < i < nand anyH € 2 the image of each
stratumH¥ C H™ with ¢ € C,, under the projectiompr, : H™ — H" ! is a stratum
H? c H" ! for somey’ € C,_;1. This element of’,,_; may be constructed from
the labeled linearly ordered set correspondingda C,, by deleting the label and,

if there exists an element without label different from ttye &nd from the bottom,
removing it.

Conversely, for any straturlf ¢ H" ! with ¢ € C,_1, one can construct
everyp € C, with pr,(H?) = H¥ either by adding new labelto one of the non-
top elements in the labeled linear order correspondingptoe C,,_4, or inserting
between two consecutive elements of this set a new elenterhaéls.

PROOF. — Trivial. ]

Statement 3.11
For the proof of the subsequent theorems the following lensmiaeful:

LEMMA. — Forany H € 2 and anyn > 0 if there are given two integers,, ro,
two elementsp, : [n] — [ki],, p2 : [n] — [k2], Of C;, such thatd < 71 < k1,0 <
r2 < ky and restrictions of the projections’! and = to H¥* N H¥2 coincide(i. e.

T ormmes = T2 | pros apges ) then eithery = ro, or 1|y < min {ry, ro}.

PROOF. — Letk := ¢;|p2 and letH be some nontrivial dense Heyting algebra.
Consider the order preserving inclusign: [k — 1], — H, with g(0) = L and
g(k—1) < T. Such an inclusion exists, becaudes dense and nontrivial. Using this
g let us construct elemenfs € §%' andf, € §57 by the rules

s), fO<s<kfori=1,2,
fils) = 9(s) _
T, otherwise

If k& = 0, then the claim of the lemma trivially holds, if not, then'(0) = ¢, *(0)
gnd two elementg; o ¢1 and f3 o ¢ coincidg. denotéA:: fio¢1 = fa0¢o. This
h belongs to both#* and H¥2. Hencer{! (h) = n{! (h). Therefore if for example
1 < k, thent£1(h) = g(r1) and ifry # ro one hasr#? (h) # ©£1 (h) contradiction.
The claim of lemma holds. ]
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Statement 3.12

THEOREM. — For any formulaA(ps, ..., pn), there exists a function : C,, — N

such that for eacttf € 2 and any[n] % [k], € C,, one has) < r(¢) < k and

FAT e = ﬂf(%")' That is, restriction of the functionA™ to the stratumi ¥ for any

v € Cy, is ther(p)-th projection ofip.
PROOF. — The proof proceeds by induction on the difficulty of thenfmla A:

e A=T,orA=1,o0rA=p, trivial. For these cases for afy] %> [k], € C,
one can choose(y) = k, r(v) = 0 or r(p) = (i) respectively.

e A=A NAsorA= A, VAyor A= A; — A,. By induction hypothesis
there exist functions', 72 : C,, — N, such that for anyn] % [k], € C,, one

has0 < rfa < kandmA;7,, = wfi for i = 1,2. In these cases we can define
@
r:Cp — Nbyr(¢) =min {r;,ri}, r(¢) = max {r}o,r?p} and
kE,  ifrl <r2,
AR T
T if To > T

respectively.

® A(p1, ..y Dim1,Pit1, s Pn) = VPiB(p1, ...y Pi—1, Pi> Pit1, -, Pn). By induc-

tion hypothesis there exists a functien: C,, — N such that for anyn] 2,

[k]l, € Cn, 0one hae) < s(v) < kand™B7|,, = n;”(w). By definition for any

h= (hl, ...,hi_1,hi+1, ,hn) € H" ! one has

rA(R) =\ {FB" (h) ‘ he H & pr,(h) = /3}
- A\ {rBﬂ (h) ] he pr;l(h)}.

We must prove, that such {FBj (h) ’ he pr;l(ﬁ)} always exists and that there

exists a function : C,,_; — N such that for anyjn — 1] 2, k], € C,—1 and
h € H¥ one ha9 < r(¢) < kandA {TB7(h) \ hepr(h) } =%, (h).

For every[n — 1] % [k], € Cn_1 consider the subset, c C, of all such
(] 2 [m], € C,, thatpr,(H*) = H?.

Then for eacth € H¥ one has

/\{F37 (h) ‘ﬁeprgl(ﬁ)}
= A A{B®|hen o =h}.

(] m],€C,
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We will find for eachjn] 2, [m], € C, a nonnegative integet, ,,, such that

A \ heHY &pr(h)=h} =¢ (h)

for everyh € H¥.

Eachy € C, using the Proposition in 3.10 can be represented either tinad
label i to one of the non-top elements in the labeled linear orderesponding to
¢ € Cp—1, Orinserting in this linear order a new element with labbketween two
consecutive points.

Consider the cases:

1)y € C, is represented by a labeling with laiedn one of the nonmaximal
points in the labeled linear ordered set corresponding4oC,,_;. Then for eachh €

HY one hasr! (h) = %, (pr;(h)). Hence{rBj (h) ‘ he HY &pr;(h) = B}

- {Wf(w)(iz)}, and A\ {"BT (h) | h e HY &pr,(h) = f}} = 7%, (h). So we may
putry 4 = s(¢).

2) ¢ € C,, is represented by inserting into the labeled linear ordeespond-
ing to ¢ a new element labeled withbetween two adjacent elements aitg) is not
the number of this new element. In this case defing; = s(v) if s(¢) is less than
number of this new element ang_,, = s(1/)—1 otherwise. Itis clear that for eaéhe

HY one hasr!, (h) = ¢, (pr;(h)). Hence{FBj (h) ‘ he H? &pr;(h) = E}
he HY &pr,(h) = ﬁ} =7¢ (h).

)
- {wfw(h)}, and\ {"B" (h)

3)¢y € C, is represented by inserting a new element labeled wikie-
tween two consecutive elements into the labeled linearrotderesponding tap
ands(v) is the number of this new element. Let the numbers of thessemorive
elements be;; andgs. Then™B7(hy,...h;—1, hi, hit1,...h,) = h; for all h =

(hlwnhi—hhiahi-&-la hn) € HY. Hence{"B“ (]Al) ‘ }Al € HY &prl(ﬁ) = ?l} =

(f(q1), f(q2)), wheref = C}g_l(ﬁ)- But A(f(q1), f(g2)) = f(q1), becaused is
dense. Therefore

A{rBG) [ e o &pr(h) = b} = \(F(@). f(@2)) = Flar)

So we can choose, ,; = ¢1.

Hencer A7 (hy, ..., hi—1,hiy1, ..., hy) IS a finite intersection of projections, thus is
itself a projection. Let us defingy) asmin {r, | ¢ € C, }.

e A = Jp;B. Similar to the previous case.

P

Statement 3.13

Now we will prove the converse theorem.
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THEOREM. — For H € 2 andn > 0, suppose given a function: C,, — N such
that for eachH € 2 and anyy; : [n] — [ki]y, @2 : [n] — [k2], from C,, one has
0 < r(p1) < k1, 0 < r(p2) < ko and restrictions of the projections?”’ ) and

(1
w2 to H¥* N H¥? coincide,
r(p2)

®1 — P2
(1) | gernmes "(@2) | grernmes

Then there exists a quantifier-free formuldp; , ..., p,,) with at mostn free variables
such that restriction of the functionA™ to every stratun ¥ coincides with the pro-
jectionwf(w) (.e.TAYy, = Wf(w))'

PROOF. — Let us construct the formuld using the function : C,, — N as follows:

A= N (=A%)

peCH
whereAf(w) is the formula mentioned in 3.9.

Let us prove that restriction of the functioml ™ to any stratun ¥ coincides with
the projectiomf((‘p) (i.e.rA|ge = ﬂ—f(ﬂﬂ))'

Supposef € § andf o p = h = (hy, ha, ..., h,) € H?, then

rA7 (ﬁ) = /\ "Xy (il) - FAITZ)W,)j (]:b)
$heCn

First we will prove, that for any) € C,, the inequality
(M (h) = TAL 7 (R)) < (Txy ™ (B) — T A%, 7 (7))

holds, then using this inequality we will havel™ (h) = ("x,, " (h) — TA%_ 7 (h)).

But by definition of “characteristic” formulee one hag,™ (h) = T becauser =

(h1,ha, ..., hy) € H?. Hence™ A7 (h) = T A? 7 (h) = n% . (h), which means, that
! r(¢) r(¢)

the claim of the theorem holds.

Really, becausex,, 7 (h) = T, we must prove, thatA?, 7 (h) < (Txy 7 (h) —
"Al,) " (h). Definek := ¢|. Then of course A% 7 (h) = f(r(y)) and using the
proposition 3.8, one hasy,,™ (h) = f(k), therefore we must prove, th#tr(p)) <

flk) =T AL (R).
There are two cases:

1) k < r(v), then of coursef (k) < FAﬁ’(w)ﬂ (h) and our claim holds trivially.

2)r(¢) < k, thenm A% 7 (h) = f(r(4)) and our claim is to prove (r(y)) <

f(k) — f(r(¥)) inequality. Using the lemma from 3.11 one has eitfiér(y))
f(r(®)), ork < min(f(r(¢)), f(r(¢))); in both cases the claim holds.
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4. Subdivision for .7

Statement 4.1

Now we define another subdivision &f", which is useful for describing func-
tions for H € .. This subdivision takes into account not only ordering lestw
components ofi-tuples fromH". If H € ., then for two element&,,hy € H
the casei; < hy may be divided into subcases: when = O(hy), he = 0O%(hy),
hy = \:\3(h1), e

First of all let us fix two natural numbers andm; with m < m;. Consider a
mapy : [n], — [k],, 0 < k, such that

1) p(0) = 0;

2) for anym; consecutive numbefs<i,i+ 1,1+ 2,...,i +m; — 1 < k at least
one belongs to the image ¢f

3) none of then consecutive numbeis—m + 1,k —m+1, ...,k — 1, k belongs
to the image ofp.

Let C;7»™ denote the set of all such mapsIf m = m4, we write C]* for short.

In terms of the functioni defined in 2.6.1 above, these conditions read, respec-
tively:

1) ¢(0) = 0;

2) for anyr € [k], one hasi(r) < my;

3) ¢ (k) =2;

4) d(k) = m.

Fory € C;»™ as above, a number € [k], will be calledy-peculiar if either

¢ Y(s) # @ andd(r) > m, or s = k. Note that each peculiar element excéps
labeled and: is not labeled.

Statement 4.2

As for the class7, we can represent elements@f*"* by finite, labeled linear
orders, where now it is not required anymore that all elemdifterent from top and
bottom are labeled. Now the set of label$i§, and the bottom element is necessarily
labeled at least witld. We impose the condition that there are mg consecutive
nonlabeled elements, except for the last elements. Moreover we demand that
distance from the largest labeled element to the top is xadt.

Itis easy to see that in these terms peculiarity of an elemeans that this element
is different from the bottom, is labeled, and the equality

(distance from it to the previous labeled element)n

is satisfied. Note that the top element is always peculiaremtrawing such ordered
sets, peculiar elements will be depicted by black circles.
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The set of all such finite, labeled linear ordered sets wiltdbeoted byR;* ™.
Here also ifm = my, we write R} for short instead of?]™.

There is a natural isomorphisaj]»™* betweenC;>"™ and R, which sends
everyy : [n], — [k], to the sefk], equipped with the corresponding labeling and
peculiarity.

Statement 4.3

EXAMPLES. — The picture

0 2,5 6 1 3,4

o —» o —» o — o0 — O — o — O — O — e

represents an elemenptof C¢. None of its elements except for the top are peculiar.

As another example, involving some more peculiar eleméaits,

2 3 1

o —» o0 —» o0 —» o0 — e — O —» O — O — O — O — e

This represents an element@f, and its element with labdlis peculiar. a

Statement 4.4

For everyp € C™ we consider the subsét® C H™, consisting of alh-tuples
(h1, ..., hn) € H™ such that for any, j € [n], andho = L one has:

o if ©(i) = (j), thenh; = hy;

o if ©(i) is the next labeled element aftg(j) in [k], andy (i) — ¢(j) < m, then
h; = Dw(i)ﬂp(j)hj;

o if ©(i) is the next labeled element aftg(j) in [k], andy (i) — ¢(j) > m, then
h; > Dw(i)ﬂp(j)hj

These conditions can be rewritten in the following equikaferm:
e if (i) — ¢(j) = d > 0, thenh; > O%h;

o if 0(7)—p(j) = d > 0 and there are no peculiar elements am@tg+1), (5 +
2), ..., (i), thenh; = O%h;.

Also we can define:

f(0)=_Land

f(k)=Tand

35 ={f:[kl,— H | foralli>j f(i)>0"7f(j)and
foralli > j with no peculiar elements

injg+1,...4, f(i)=077f()
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For everyH € . andy € C)", there is a naturally defined map
Sy — HY,
f I— f o <)0|[71]
( is defined orfn], and to determine the matj; we usey|,).
The mapc¥; is an order preserving isomorphism.

For simplicity we denote for each € R™™: the stratumH® (V) the set
1 -1
Sy ) and the map’y; M pyHY, 3V andcY; respectively.

E. g., the stratum i % corresponding to the first example in 4.3 is
{(hl, ...,h@) | ho = hy = D(J_), D(h5) = hﬁ, D(hﬁ) = h1, Dz(hl) = hg = h4}
={(2%(1),0(1), B°(1L), 0%(1), (L), B2(1L)) } -

The stratum in7?3 corresponding to the second example in 4.3 is

{(h1,ha,hs) € H* | hy = L, O%(hy) < hs, hy = O(hs) }
={(@h), L,h) |O" (L) <heH}.

Statement 4.5

For eachy : [n], — [k], € CJ*, the setsH¥ andF?, are nonempty, moreover we
can choose some so called “standard” elemetff{sin §%,. Define:

sty :[k]g — H

o7(L), ifo<r<k;
T .
T, if r ==k

The element of# corresponding tet?, under the mapping?, will be denoted
by "st% 7. This “standard” element is the least elemen§ .

Note that the union of alH?, ¢ € C)", is the wholeH". Indeed, given any
(hi,...,hn) € H™ puthg = L and consider the set

U= {0%h) |0<d<nand(h = h; for somei € [n]) } .

Label an element in V with ¢ € [n] wheneverh,; = h.

If h is the top element of/ andk = d(h) < m, then letV be a new labeled
linearly ordered set obtained frobhby addingm — k£ new nonlabeled elements which
are greater than each elementhfotherwise let/ = U. Clearly(hy, ..., h,) € H".
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Statement 4.6
DEFINITION. — For two elementsp; : [n], — [ki], and s : [n], — [k2], Of C}"

the nonnegative integer; |¢- is given by the equality

@1]2 = min {r € (k1] N [ka]y | 07 (r) # 031 (r) }.

Then arguing similarly to the case in 3.6 one can show that|ips = k;,i = 1, 2,
thenk; = ko andy; = @o.

Statement 4.7

For eachp € C;»™ we construct the formulg,, , which we callcharacteristic
formulafor the stratum ofp. The value of the functiony,, ™ on the tuple(h, ..., hy,)
will be equal toT if and only if (1, ..., hy,) € H¥.

Such a formula also can be constructed using the “charatiteiormulae” for the
relations=, < and <, as in 3.7. Free variables of the formulg will be among
{p1,p2, .-, Pn }- DENOtE byp, the constantl and put

Xo(P1,D2y e, Pn) =
N\ {x<(@ i), ;) | d= o)) — i) >0}

g | d=0) —e(i) =0
A/\{xg(pj,m (pi)) and none ofs(i) + 1, o(i) + 2, ..., p(j) are peculiaf

Statement 4.8

PROPOSITION — ForanyH € ., m > 0, ¢1,¢2 € CI" and anyf € §¥%' the
following equality holds:

"X (¢ () = flerlpa).

PrROOF. — Letc¥ (f) = (h1,ho, ..., hy), and lethy = L. Then by definition ofy
one has
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'—X@_,—'(hl, hg, veey hn)
=min {hL

Amin { O%h;) | and none ofp (i) + 1, 2 (i) + 2, ..., p2(j) are peculiar

and0?(h;) < h;
min {gpl(i)
d = @a(i) —2(j) = 0ande1 (i) < d+ ¢1(j)
there exists g € [n], such that
=f d=2(j) — ¢2(i) =2 0
Amin { d+ ¢1(7) | and none ofpa (i) + 1, ¢2(i) + 2, ..., p2(4)

there exists g € [n], such that
d = po(i) — (pg(j) > 0andh; < Dd(h]‘)
there exists g € [n], such thail = ¢2(j) — w2(i) = 0

there exists g € [n], such that }

are peculiar

andd + ¢1 (i) < ¢1(J)

Let us denote

$ :=min {cpl(i)

Amin < d+ ¢1(i) | and none ofpa (i) + 1, p2(4) + 2, ..., p2(j) are peculiarp ;
andd + ¢1(i) < ¢1(J)

there exists g € [n], such that
d = p2(i) — p2(j) = 0andep: (i) < d + ¢1(j)
there exists g € [n], such thail = ¢2(j) — p2(i) = 0

we will prove thatp; [po = s.

First let us proves > ¢1]ps. It suffices to prove that there exists < s with
@1 (8') # 5 (s"). Consider the cases:

e s = ¢1(i) and there existg € [n], such thatd = ¢,(i) — p2(j) > 0 and
01(1) < d+ 1(4). If o1(i) # ¢2(i), we can choose instead ofs’; if not, let
us chooses’ = s — d. Thenpy(j) = wo(i) — d, i. €. j € @y (s') andg(j) >
©1(i) —d = s', hencej ¢ o7 (s').

e s = ¢;(i) +d and there exists ac [n], such thatl = 5 (j) — ¢2(i) > 0, there
are no peculiar elements amopg(i)+1, p2(i)+2, ..., p2(j), andd+¢1 (i) < ¢1(4).

If ©1(4) # w2(i), we can choose (i) < s instead ofs’.

If ©1(i) = pa2(i), let us choose’ := s = (i) + d. Thenj € p,(s') and
s' = ¢1(i) +d > ¢1(j), hencej ¢ 1 ().
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Now let us prove thap; |p2 > s. Denoter = ¢1|¢2. Consider the cases:

1) There exists aih € [n] such thatp;(I) = r < ¢a(l) (the caseps(l) < ris
not possible, because for alk r one hasp; ' (t) = ¢, '(t)). Leti =1, j = 0 and
d = @2(i). Thend = p2(i) — p2(j) andp1 (i) < d+ ¢1(j) = d = @2(i). Hence
s< (i) =7

2) There exists ahe€ [n] such thatps(1) = r < ¢1(1) (p1(l) < ris not possible,
as in the previous case) ands peculiar forp,. Sincer is peculiar forps, r — m is
labeled withyp, and none of —m + 1,r —m+2,...,r — 1 are labeled withp,. But
for all t < r one hasp; *(t) = w5 (), hencer — m is labeled withy; and none of
r—m+1,r—m+2,...,r —1are labeled withp;. It means that is peculiar fory;.
Therefore it is labeled under;. Supposer;(I') = r.

If @2(I") > r, we getr > s as in the previous case.

If a(l') = r, thenr = pa(l) = wa(I') = ©1(I') < ¢1(l). Denotei :=1', j :=1
andd := 0. Thend+1(7) < ¢1(j) andpz(j)—p2(i) = d. Hences < d+¢4 (i) = 7.

3) There exists € [n] such thatps(I) = r < ¢1(I) andr = 0. Denotei = 0,
j =1landd = 0. Thend = p2(j) — v2(i), there are no elements peculiar fps
betweerl) = ¢,(j) andy,(i) = 0 andd + ¢1(i) = 0 < ¢1(j). Hences = 0.

4) There existd € [n] such thatps(l) = r < ¢i(I), andr > 0 andr is
not peculiar forp,. Let s’ bemax {t <r | p;'(t) # @}. Then sincer’ < r
one hasp; ') = @5 (r') # @. Letibeinp;'(r') = @5 ('), j := I and
d =r—7r'. Thend = p2(j) — p2(i), there are no elements peculiar for among
{o200) + 1, 02(0) + 2, ..y 02(j)} = {r'+ 1,7 +2,..,r} andd + p1(i) = r <
¢1(j)- Hences < r.

Statement 4.9

DEFINITION. — Foranyy : [n] — [k], € C;/»™1, its r-th projection(0 < r < k) is
the mapry : H¥ — H is defined as follows:

w7 (fop) = f(r)foranyf e 35

In other words, one has
7§ (hay .y hy) = L,
7 (hayeshy) =T,
7l (hyy .y hp) = DT*T/hl-, if ' is the greatest among labeled elements
not exceeding, and: is a label ofr’

As in the case of dense algebras, for everg [k], there exists a formulaly
(which may be equal either t® if » = k, orto L if » = 0, or to DT*T/pi if 7/ is
the greatest among labeled elements not exceedamyl: is a label ofr’), such that
rAsD—|| = 7%,

r |H¥ T
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Statement 4.10

Now for eachC;»™1, or equivalently forR™* we determine a map™ ™ :
Rm™™ — R™ such that, for everyy € R™™ the stratumH " will be a subset
of HA:""* (V) That is, the subdivisiof H" |V € R7™ } of H™ is finer than
{HY |V e R},

ForV € R let V; be the subset of obtained fromV by deleting all those
nonlabeled and nontop elements V' which satisfyd(s) > m, i. e.

s is not a top element an
V1=V \<(seV]|sisnotlabeled and
d(s) =m

The finite setl’; with the ordering and labeling induced frovis an element of
R™. Determings™ ™ (V) asV;. Of courseH" ¢ HY' = HA"™"™ (V).

Denote by~ or by v, (if ¢ is the element o)™ corresponding td”) the
inclusionV; C V.

For eachf € Y, the compositeyy, o f is an elemeny’ € )} such that),(f) =
Vit
Chy (f")-

If there is given0 < r < |V4], then restriction of the-th projection of H'* =
m,mq

HB" (V) to HY is thevyy (r)-th projection of Y . That is,

5771,7711 (V) Vv
7TT v Tr"/V (T) .

Statement 4.11
To prove subsequent theorems, the following lemma is useful

LEMMA. — If for some formulaA(p;, ..., p,) and some integem > 0 there exists
a functionr : C7* — N such that, for eactt € . andy € CJ7, one has) <
r(p) < kandr A7, = Wf(‘/’)’ then for anyp:, o € CJ* eitherr(p1) = r(p2), Or

p1le2 < min {r(p1),r(p2)}.
PROOF. — letk := ¢1|p2 and letH be some infinite Heyting algebra froor.
Consider the “standard” elememsts} = (hl,hi, ..., kL) andst$? = (h%,h3,...,h2)
in H™. By the congruence property (Cong) (see the end of 2.1) ose ha

N (b} o B2) < TAT(sER) o TAT(st57).

1€[n]

Let f! € §7' andf? € §7? correspond tat¥} andst?? respectively. Then one has
TAT(sty) = f1(r(#1)), TAT (st]) = f2(r(p2)) and

N\ (b < h7) = min {min{h}, b7} | b} #1B7} = [ (e1le2) = Flerle2)

i€[n]
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(becausef! and f2 are “standard” elements). Then
FHerle2) = fAeilp2) < 1)) < f2(r(g2))-
SinceH is infinite, the mapg! and f? are inclusions, hence the lemma. =

Statement 4.12

THEOREM. — For any formulaA(py,...,p,) andm = 294 (deg(A) means

quantifier degree ofd, see 2.] there exists a function : C* — N such that, for
eachH € .7 and[n], % [k], € C™, one had) < r(p) < kand "A7|,, = Ff(w),
i. e. restriction of the function A™ to the stratumi ¥ for anyy € C!"* is ther(y)-th

projection.
PROOF. — The proof proceeds by induction on the difficulty of thenfmla A.

e A=T,orA=1,0rA = p, trivial. For these cases for ary], = [k], €
C™ one can choose(y) = k, r(¢) = 0 or r(y) = (i) respectively.

e A=A NAsorA= A VAsorA=A; — Ay. Supposen; = deg(4;),
msy = deg(Az) andm = max(my,ms2), then by definition of quantifier degree, one
hasm = deg(A). By induction hypothesis there exist functions . : C;, — N,
such that fori = 1,2 andy; : [n], — [ki], in C}* one has®) < 74(y;) < k and
A go: = w;’;i(%) . EveryV € R can be considered as an element/jf:™
for eachi = 1,2 and the stratunf{V is a subset of the stratudi®= "' (V) (see
4.10); moreover ify; is the corresponding inclusion & = g™ (V') into V and if
5;(V) = 7:(ri(V3)), then it is clear that restriction ofA™; to H" is thes,(V)-th pro-
jection. In these cases we can defineC!™ — N by r(V) = min {s1(V), s2(V)},
(V) = max {s1(V), s2(V)}, and

(V) = the top element oV, if s1(V) < s2(V),
] s2(V), if s1(V) > s2(V)

respectively.

e A(p1,..c;pn—1) = Vp; B(p1, -, n—1, pn) (Of cOurse we can suppose that n,
i. e. the bound variable in the formulais p,,). By induction hypothesis there exists

a functions : C,T/Q — N (note, thatdeg(A) = deg(B) + 1) such that for any
W2 [n]y 2 [K], in C/? one hag) < s(¢b) < kand B[, = Ty
By definition for anyﬁ = (h1,..., hn—1) € H"! One has

FANV(R) = N\ {FB" (h) ] hoe prit(h) } .

We must prove that Such {FB1 (h) ‘ he pri_l(il)} always exists and that there

exists a functionr : C7"; — N such that, for anyn — 1], % [k], € C™, and
h € H? one had) < () < k and\ {FB7 (h) ‘ he prgl(i})} =%, ().
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m/2,m

For every[n — 1], % [k], € C™, we will construct a subsef’ ¢ Cj,
with H? = |J{H" |¢ € C}. Then for each) € C, the stratumH" will be a
subset of the straturff®""*" (%) and the restriction of the(3™/2™ (1)))-th projec-
tion of HA™"*"" () to H will be t,, = v, (s(3™/2™(4))))-th projection of H? (see
4.10). Then we will determine a numbey such that for every, € H¥ one has
A {ﬂ'f;(ﬁ) ’ h € pr; 1 (h) ﬁHw} = wa(ﬁ).

Then forr(p) = min{ry | € C'} we willhaver A7, = Wf(w)'

For[n — 1], % [k], € C, we will determine the subs€t C R taking
into account the possible orders between a new compdngand the components
hi,ha,...,h,—1 Of @any element oh = (hq,...,h,—1) € H?. All v € C will be of
the shapey : [n], — [k], (note, that ranges af andy coincide), moreover will be
extension ofp expect of one 11-th case. In this 11-th case elements wfe will find
the corresponding element of 10-th case such that the éutos of the elements of
the corresponding 10-th case will be less or equal to intéiseof elements of 11-th
case.

Now consider the cases:

m/2,m
n

1) h, = L. In this case extend the mapto [n], by ¥(n) = 0. Then we will
have{wf;) (h) ‘ h e pr; (k)N Hﬂ’} = {”;i(ﬁ)} and we can choose, = t,.

2) h, = T. Lety(n) = k —m/2. Then as in the 1-st case we can choose
Ty = tw.

3) hy = hi fori € [n—1],. Letey)(n) = ¢(i). Asin previous cases we can
choosery, = ty.

4) Leti; be such elementim — 1], thaty(i; ) is the largest labeled element
of [k], (i. e. i1 € ¢ '(k —m)) andh,, = O%h;,) with 0 < d < m/2. Let
¥(n) = k —m + d. This case is also similar to previous cases and let us choose
Ty = tw.

5)i, € o~ (k—m) andh,, > 0™/2(h;,). Lety)(n) = k—m/2. Thenift, <
k—m/2orty, = k, as in previous cases choasg= t,. If k —m/2 <t, < k, then
we will have the equality{w}jfb(fz) ‘ hepr; (h)yn HY } = (Otv=(=m)(p, ), T),
hence/\ {w;i (h) ‘ hepr;t(h)NHY } — Ote—(k=m)(p, ) and let us again choose
Ty = tlp.

6) Let o(i) and¢(j) be consecutive labeled elementsit, and 0% (h;) =
hn < hy with d < m/2. Leti(n) = (i) +d. Then{wﬁ’w(ﬁ) ‘ heprol(h)nHY }
= {71'2/;(?1)} and we can chooseg, = t,.

7) Lety(i) andy(j) be consecutive labeled elementsfiy, and0™/2(h;) <

hy, < hj with ¢y, < (i) + m/2 0orty > p(j). Lety(n) = ¢(i) + m/2. Asin the
cases 1-4 we can choosg = t.;.
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8) Lety(i) andy(j) be consecutive labeled elementsify, o(j)—p(i) < m,
0™/2(h;) < hy, and0?(h,,) = hj with m/2 + d = ¢(j) — ¢(i) andep(i) +m/2 <
ty < o(j). Letw(n) = @(i) + m/2. Then {ﬂ;/;(fz) ‘f}epr;l(ﬁ)mw} -
{O™/2(h;)} and we can choose, = t,.

9) Lety(i) andy(j) be consecutive labeled elements$i), ¢(j) —p(i) < m,
0™/2(h;) < hy, and0?(h,,) = hj with m/2 + d < ¢(j) — ¢(i) andp(i) +m/2 <
ty < @(j). In this case the codomain af is not [k],. To obtaini let us define
P(n) = (i) + m/2 and delete nonlabeled elements[n, which are greater or

equal top(i) +m/2 +d and less them(i). Then{wfw(i}) ‘ h e pr; (h)n HY } =
{Ot+=#@(h;)} and we choose,, = t,.

10) Lety(i) andy () be consecutive labeled element$khy, ¢(j)—¢ (i) = m,
0™/2(h;) < hy, and0™/2(h,,) < hy With (i) + m/2 < ty < @(j). Lety(n) =
(i) + m/2. Then

{mt, ()

h e pr;t(h) ﬂHw}
= {orvm2me O, | 02(h) < hy ando™2(h,) < by}

This set is not empty. For exampig» —¥() (h;) belongs to this set and in fact is its
smallest element. Therefore we can choagses= t,,.

11) Lety(i) andy(j) be consecutive labeled element$kiny, o (j) —¢ (i) = m,
0™/2(h;) < hy, and0%(h,,) = h; with d < m/2 andp(i) +m/2 < ty < @(j). In
this case codomain af is not[k],. To obtainy let us define)(n) = ¢(i) +m/2 and
delete nonlabeled elements|itj, which are greater or equal t9(i) + m/2 + d and
less thanp(i). Then

{ﬂ;l; (h) \ heprl(R)N Hw}
_ {th—m”—“’(i)(hn) ‘ 0™/2(h;) < hy, and0%(hy,) = h; } .

For someH < .¥ this set may be empty. But in any case, let us consider thesgiem
Y e Cm/2™ \ith the same andj from the previous case 10. Then by the lemma
from 4.11 one has, = ty-. Therefore

/\ {773;, h e pr; L (h) QHW} < /\ {ﬂ;i(il)
and we can chooseg, = k since the subset in the meet corresponding twill not

influence the meet at all.

Hence™ A7 (hq, ..., h,—1) is @ finite meet of projections, thus is itself a projectioet L
us definer(¢) asmin {ry, | € C'}.

e A(p1y .oy pn—1) = i B(p1, ..., Dn—1, Pn) (here too we suppose that the nonfree
variable ofA is p,,). By induction hypothesis there exists a function cm? N

h e pr; L (h) ﬂHw}
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(note, thatdeg(A) = deg(B) + 1) such that for any) : [n], — [k], in Ci*/? one has
0<s(¥) <kand™ B, =7l
By definition for anyﬁ = (h1,...,hn_1) € H""! one has

rA(h) = \/ {FB" (h) ] hoeprit(h) } .

We must prove that sudyi {FBj (h) ’ h e pr;t(h) } always exists and that there

exists a function- : C;* ; — N such that for anyn — 1], 2, [k], € C, and
h € H? one had) < () < k and\/ {F37 (h) ‘ he prgl(ﬁ)} =% (R).

Here also as in the previous case we construct elemerdsfC/>™ and for
everyy € C also denotet,, =, (s(3"/>™(¢))) and determine a numbey, such
that for everyh € H¥ one has/ {w;‘;(h) ’ h € pr,;1(h)N Hw} = ¢, (h).

Then puttingr(¢) = max{ry | ¢ € C'} we obtain™A7|,, =7

Now consider the cases:

]
r(e)

1) Either one ofh,, = 1, h, = T, or h, = h;. In all these cases the set
{ﬂfw (h) ‘ hepr; (h)yn HY } has a single element and we can chogge= t,.

2) hy, = O%hy,) with iy € ¢~k —m), h,, = O%h;,) and0 < d < m/2.
Here also the se{wt; (h) ‘ h e pr; Y (k)N Hw} is a singleton and we can choose
Ty = t¢.

3)iy € ¢ Yk —m) andh, > O™2(h;). If eithert, < k — m/2
ort, = k, then as in previous cases let us chooge= t,;. If £k — m/2 <
ty < k, then one ha{wé‘;(h) ’ h e pr;(h)N Hw} = {ote=(=m)(p,; ), T} and
\ {Wﬁ)(h) . hepr;t(h)nHY } =T, so let us choosey, = k.

4) Let (i) andp(j) be consecutive labeled elements{ify, and 0%(h;) =
h, < hj with d < m/2. Then puttingy(n) = ¢(i) + d one will have
{wﬁ’p(l}) ‘ hepr;t(h)N H¢} = {wzﬁ (iz)} and we can choose, = t,.

5) Let(i) andy(j) be consecutive labeled elementsfty, and0™/2(h;) <
hyp < hjwith ty, < @(i) + m/2 orty, > ¢(j). Lety(n) = ¢(i) + m/2. Here as in
the case 1 we can choosg = t,.

6) Let (i) and ¢(j) be consecutive labeled elements[ir,, 0™/2(h;) <
hy, < h;. Thenin any case let(n) = ¢(i) + m/2 and consider the elemetit € C

from the case 1 withh,, = h;. If we comparey with t,-th projection and)’ with
t,-th projection from the lemma in 4.11 one has > (i) + m/2. Butty-th

projection of H¥' is induced from some projection of an elemenGﬁ‘/Q, therefore
d(ty) < m/2, hencety > ¢(j). It means thay/ {TI'Z’[; ’ h € pr; 1 (h) me’} >
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\V {Trfw(l}) ’ hepr;t(h)nHY } So we can choose, = 0 since the subset in the

join corresponding t@ will not influence the join at all.
Hence A7 (hq, ..., h,—1) is equal to a finite join of projections, thus is itself a pmje
tion. Let us define'(p) asmax{ry, | € C}.

Statement 4.13
Now we will prove the converse theorem.

THEOREM. — For H € . andn, m > 0, suppose given a function: C)* — N
such that for eachH € . and anyy; : [n] — [ki]y, w2 : [n] — [k2], from
Cm one hasd < 7(p1) < ki1, 0 < 7(p2) < ko and eitherr(p;) = r(p2), Or
©v1|p2 < min{r(¢1),r(p2)} Then there exists a formuld(p,, ..., p,) with at most
n free variables in which quantifiers occur only through apption ofd, such that
restriction of the function A7 to every stratunil ¥ coincides with the projection?

. v ()
(i.e.TAT|,, = o)

PRoOOF. — Let us construct the formula using the function : C* — N as
follows:

A= N =47,
peCy
WhereAf(w is the formula mentioned in 4.9. Then restriction of the timtr A7 to
any stratumi ¥ coincides with the projectionfw) (i.e.TA | ge = wf(w)).
The proof of this fact coincides with the proof of the theorgm3, with the use of

the proposition from 3.8 and of the lemma from 3.11 replagethb proposition from
4.8 and the lemma from 4.11 respectively. ]
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