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Description of all functions definable
by formulæ of the 2nd order intuitionistic
propositional calculus on some linear
Heyting algebras

Dimitri Pataraia

Razmadze Mathematical Institute
Tbilisi 0193 (Georgia)

dito@rmi.acnet.ge

ABSTRACT.Explicit description of maps definable by formulæ of the second order intuitionistic
propositional calculus is given on two classes of linear Heyting algebras—the dense ones and
the ones which possess successors. As a consequence, it is shown that over these classes every
formula is equivalent to a quantifier free formula in the dense case, and to a formula with
quantifiers confined to the applications of the successor in the second case.

KEYWORDS:linear Heyting algebra, second order intuitionistic propositional logic.

1. Introduction

In this paper we deal with second order intuitionistic propositional logic. We will
exhibit two classes of linearly ordered Heyting algebras which admit explicitly de-
scribable interpretation of formulæ of that logic. The mainmotivation for doing this
lies in approaching quantifier elimination for the logic with linearity and some addi-
tional axioms added.

Quantifier elimination in broad sense has been considered extremely important
(although rare) ever since the seminal paper [TAR 48], and there is a lot of work done
on quantifier elimination in classical logic, starting fromtextbooks and monographs
(see [GAB 06] for a recent example) and ending with computer software ([DOL 99,
WOL 06]). A modern day evidence for this can be produced just by typing “quantifier
elimination” in a Google search window.

Of course it is quite natural to ask about quantifier elimination in non-classical
logic. In modal logic, we are aware of [SZA 02]. In the contextof the second order
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458 JANCL – 16/2006. Algebraic and relational deductive tools

intuitionistic logic (in the sense of [GAB 74]), we know of works [BAA 96, BAA 00a,
BAA 00b, BAA 06] of Baaz and collaborators.

In the present paper we want to give some indication of possibility of quantifier
elimination in presence of linearity axiom in two separate cases—one corresponding
to dense linearly ordered Heyting algebras and another corresponding to Heyting al-
gebras which possess successors for all elements (except the top). Namely, we will
show that over such algebras semantical interpretation of every formula is the same as
for some other formula which does not contain quantifiers in the first case, and only
contains quantifiers involved in expressing the successor operator in the second case.
We will do this by giving explicit description of all maps which occur as a semantical
interpretation of some formula.

2. Setup

2.1. Basic notions and notation

The language of the second order intuitionistic propositional logic consists of the
logical connectives∧, ∨, ⊤, ⊥, →, ∀, ∃ and a denumerable set of propositional vari-
ables.

The set of second order propositional formulæ is defined inductively as follows:
⊤, ⊥, and any propositional variable is a formula; ifA andB are formulæ andp is a
propositional variable, thenA ∧B,A ∨B,A→ B, ∃pA, ∀pA are formulæ.

The notions of free and bound variables and the notions of open and closed for-
mulæ are the usual ones. IfA is a formula, we will writeA(p1, ..., pn) to indicate
that all free variables ofA are amongp1, ..., pn. MoreoverA(A1/pi1 , ..., Ak/pik) de-
notes the simultaneous substitution of all the free occurrences ofpi1 , ..., pik in A with
formulæA1, ..., Ak respectively.

We will use some abbreviations:

|V | := number of elements in the finite setV,

[n] := {1, 2, ..., n} ,

[n]0 := {0, 1, 2, ..., n} ,

¬A := A→ ⊥,

A↔ B := (A→ B) ∧ (B → A)

2(A) := ∀p(p ∨ p→ A),

wherep is any variable which is not free inA.

For any second order propositional formulaA its quantifier degree, a nonnegative
integerdeg(A), is defined inductively in the usual way:
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Definable functions on Heyting algebras 459

– if A is ⊤, ⊥ or a variable, thendeg(A) = 0;

– if A is ¬B, thendeg(A) = deg(B);

– if A is either ofB ∧ C,B ∨ C,B → C orB ↔ C
thendeg(A) = max {deg(B),deg(C)};

– if A is ∀pB or ∃pB, thendeg(A) = deg(B) + 1.

The logic IpC2 has the axiomatic description consisting of:

– the usual axioms of the Heyting propositional calculus;

– axiom schemata∀pA→ A(B/p) andA(B/p) → ∃pA;

– comprehension schema:∃p(p↔ A), wherep does not occur freely inA,

with rules

A→ B

A→ ∀pB

and

B → A

∃pB → A
,

wherep does not occur freely inA.

We will use the followingcongruence property for↔ easily provable in IpC2. For
any formulaA(p1, ..., pn) one has

(Cong)
IpC2 ⊢

(p1 ↔ p′1 ∧ · · · ∧ pn ↔ p′n) → (A(p1, ..., pn) ↔ A(p′1/p1, ..., p
′

n/pn)) .

2.2. Semantics

Semantical content of this logic consists for us in the assignment, for a given Heyt-
ing algebraH, to each formulaA(p1, ..., pn), of a partially defined map

pAq : Hn → H.

This assignment, where defined, is uniquely determined by the following (here we
denote logical connectives and the Heyting algebra operations corresponding to them
by the same symbols):

p⊤q (h1, ..., hn) := ⊤,

p⊥q (h1, ..., hn) := ⊥;
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460 JANCL – 16/2006. Algebraic and relational deductive tools

for ∗ ∈ {∧,∨,→},

pA ∗Bq (h1, ..., hn) := pAq (h1, ..., hn) ∗ pBq (h1, ..., hn);

p∀piAq (h1, ..., hi−1, hi+1, ..., hn) :=
∧

h∈H

pAq (h1, ..., hi−1, h, hi+1, ...hn),

p∃piAq (h1, ..., hi−1, hi+1, ..., hn) :=
∨

h∈H

pAq (h1, ..., hi−1, h, hi+1, ...hn).

Here the symbol “:=” means that the left hand side is defined tobe equal to the right
hand side provided the latter is already defined, and is undefined otherwise.

2.3. Semantical equivalence of formulæ

A modelof the second order intuitionistic propositional logic is aHeyting algebra
H, such that the above interpretation gives totally defined maps for all formulæ; such
Heyting algebras will be calledformula complete.

If some classK of models is given, we say that two formulæA andB areK -
equivalent, if their interpretations coincide in each model ofK .

In Heyting algebras we use the notation< with its usual meaning (i. e.h1 < h2

means thath1 6 h2 andh1 6= h2). For eachh ∈ H the successorof h is the least
h′ ∈ H such thath′ > h (if it exists), i. e. suchs(h) ∈ H thath < s(h), ands(h) 6 h′

for everyh′ > h. Of course it is clear, that the top element⊤ in H can never have a
successor.

In every Heyting algebra the interpretation of all logical connectives except quan-
tifiers gives totally defined functions in a well-known way. In any linear Heyting
algebraH these are as follows:

h1 ∧ h2 = min {h1, h2} ;

h1 ∨ h2 = max {h1, h2} ;

¬h =

{

⊥, if h > ⊥,

⊤, if h = ⊥;

h1 → h2 =

{

⊤, if h1 6 h2

h2, if h1 > h2;

h1 ↔ h2 =

{

⊤, if h1 = h2,

min {h1, h2} , if h1 6= h2

for anyh, h1, h2 ∈ H.
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Definable functions on Heyting algebras 461

Moreover, although interpretation of quantifiers gives in general only partially de-
fined maps, interpretation of2 is also totally defined in any linear Heyting algebra:

• 2(h) =
∧

{max {h′, h′ → h} | h′ ∈ H } =

{

s(h), if this successor exists,

h, otherwise.

2.4. The classesD andS

We consider two classes of linear Heyting algebrasD andS .

The classD consists of all dense linear Heyting algebras.

Note that anyH ∈ D is either trivial (i. e. consists of a single element), or is
infinite and in it the interpretations of the formulæ2A andA coincide for any formula
A.

The classS consists of all those linear Heyting algebras each of whose elements
except⊤ has a successor.

Note that in Heyting algebras from the classS interpretation of the formula2A
for each formulaA is as follows:

p2Aq (h1, ..., hn) =

{

s (pAq (h1, ..., hn)) , if pAq (h1, ..., hn) 6= ⊤,

⊤, if pAq (h1, ..., hn) = ⊤.

It will follow, among other things that both classes consistof formula complete
algebras. In fact, it will turn out that

Every formula isD-equivalent to a quantifier-free formula, i. e. to a for-
mula built from propositional variables and the connectives∧, ∨, →, ⊤,
⊥ (not quantifiers).

and

Every formula isS -equivalent to a formula in which quantifiers occur
only through application of2, i. e. to a formula built from propositional
variables, the connectives∧, ∨, →, ⊤, ⊥ (not quantifiers), and2.

2.5. Characterization of functions

In order to describe functions associated to formulæ of IpC2 with at mostn free
variables for classesD andS we consider certain subdivisions of the productHn

into subsets calledstrata.

First we consider more simple subdivision ofHn which is useful to describe in-
terpretation of formulæ for the classD (each function associated to a formula of
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462 JANCL – 16/2006. Algebraic and relational deductive tools

IpC2 will be in a certain sense “linear” on every stratum). The method is inspired
by [GER 00].

Then we consider a bit more complicated subdivision ofHn which is useful to
describe interpretation of formulæ for the classS . In this case also each function
associated to a formula of IpC2 will be “linear” on every stratum.

2.6. Maps, labelings

Let us define some more auxiliary terminology and notation.

Consider a mapϕ : [n] → [k]0, n > 0, 0 6 k 6 n+ 1.

We call a numberr ∈ [k]0 labeled, if ϕ−1(r) 6= ∅. If ϕ(i) = r, then we calli a
label ofr. The numberr ∈ [k]0 may have several labels.

The notion of smallest, largest, previous and next labeled element are the obvious
ones.

Statement 2.6.1

REMARK . — If we consider some subsetX of some ordered setY (e. g. X =
{x ∈ Y | α(x)}) and if this subsetX is empty, thenmaxX will be equal tominY
andminX will be equal tomaxY . 2

Using this remark for eachr ∈ [k]0, define the numberd(r) = r − s, where

s = max {t ∈ [k]0 | t is labeled andt < r} .

Thus by this remark one hasd(0) = 0.

3. Subdivision for D

Statement 3.1

For eachH ∈ D and each naturaln > 0 we will introduce a subdivision of
Hn taking into account the possible orders between componentsof eachn-tuple
(h1, ..., hn) ∈ Hn.

Consider the set

Cn =
{

ϕ : [n] → [k]0
∣

∣ ϕ−1(r) 6= ∅ for each0 < r < k andϕ−1(k) = ∅

}

.

Statement 3.2

Eachϕ : [n] → [k]0 may be represented as a linearly ordered setV with k + 1
elements, some of which are labeled with elements of[n] in such a way that for every
i ∈ [n] there is one and only one point fromV which is labeled withi. An element of
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Definable functions on Heyting algebras 463

V may have several labels. Moreover such aV represents an element ofCn iff the top
of V is not labeled and each element ofV different from the top and from the bottom
is labeled. In this paper we identify elements ofCn with their correspondent labeled
linearly ordered sets.

Statement 3.3

EXAMPLE . —
3 1, 4 2
◦ → ◦ → ◦ → ◦

(where “→” depicts the ordering) represents an element ofC4 with k = 3. The
corresponding functionϕ : [4] → [3]0 is given byϕ(1) = ϕ(4) = 1, ϕ(2) = 2,
ϕ(3) = 0. 2

Statement 3.4

For everyϕ : [n] → [k]0 in Cn and a Heyting algebraH define

F
ϕ
H =

{

f : [k]0 → H

∣

∣

∣

∣

∣

f(0) = ⊥, f(k) = ⊤ and for all0 6 s < r 6 k

eitherf(s) < f(r) or f(s) = f(r) = ⊤

}

and

Hϕ =















(h1, h2, ..., hn) ∈ Hn

∣

∣

∣

∣

∣

∣

∣

∣

hi = ⊥ if ϕ(i) = 0,
hi = hj if ϕ(i) = ϕ(j)
and
eitherhi < hj or hi = hj = ⊤ if ϕ(i) < ϕ(j)















.

For everyH ∈ D andϕ ∈ Cn, there is a naturally defined map

cϕH : F
ϕ
H → Hϕ,

f 7→ f ◦ ϕ.

This map is an order preserving isomorphism (with respect tothe pointwise order on
the set of functionsFϕH ).

E. g., for anyH ∈ D the subset ofH4 corresponding to the labeled linear ordered
set from 3.3 is:

Hϕ =















(h1, h2, h3, h4)

∣

∣

∣

∣

∣

∣

∣

∣

⊥ = h3 < h1 = h4 < h2, or

⊥ = h3 < h1 = h4 = h2 = ⊤, or

⊥ = ⊤















= {(h, h′,⊥, h) | ⊥ < h < h′ or h = h′ = ⊤} .
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464 JANCL – 16/2006. Algebraic and relational deductive tools

Statement 3.5

For two elementsϕ1 andϕ2 fromCn the setsHϕ1 andHϕ2 for a nontrivialH ∈ D

are disjoint if and only ifϕ−1
1 (0) 6= ϕ−1

2 (0). If ϕ−1
1 (0) = ϕ−1

2 (0), thenHϕ1 and
Hϕ2 have nonempty intersection. For example take the element(h1, ..., hn) of Hn

with hi = ⊥ if ϕ1(i) = 0 andhi = ⊤ otherwise. Thisn-tuple belongs to both subsets
Hϕ1 andHϕ2 .

Note that the union of allHϕ is the wholeHn. Indeed for each(h1, ..., hn) ∈ Hn,
n > 1, consider the linearly ordered setU = {h1, ..., hn} ∪ {⊥}, with the induced
linear order. Label an elementh in U with i ∈ [n] wheneverhi = h.

Let V be a new labeled linearly ordered set, obtained fromU by adding new non-
labeled top element.

It is then clear that(h1, ..., hn) ∈ Hϕ, whereϕ is the map corresponding to the
labeled linearly ordered setV .

Statement 3.6

DEFINITION. — For two elementsϕ1 : [n] → [k1]0 andϕ2 : [n] → [k2]0 ofCn the
nonnegative integerϕ1|ϕ2 is given by the equality

ϕ1|ϕ2 = min
{

r ∈ [k1]0 ∩ [k2]0
∣

∣ ϕ−1
1 (r) 6= ϕ−1

2 (r)
}

.

It is clear, that ifϕ1|ϕ2 = ki, i = 1, 2, then for any0 6 r 6 ki one hasϕ−1
1 (r) =

ϕ−1
2 (r). ki is not labeled in[ki]0 and for[ki − 1]0 are used all labels forϕi from [n]

and therefore
{

r ∈ [k1]0 ∩ [k2]0
∣

∣ ϕ−1
1 (r) 6= ϕ−1

2 (r)
}

= ∅,

hencek1 = k2 andϕ1 = ϕ2.

Statement 3.7

For eachϕ ∈ Cn we construct a formulaχϕ, which we call thecharacteristic
formulafor the stratum ofϕ. The value of the functionpχϕq on the tuple(h1, ..., hn)
will be equal to⊤ if and only if (h1, ..., hn) ∈ Hϕ

Such a formula can be constructed using the following “characteristic formulæ”
for the relations=,< and6. These we define as follows:

χ=(p, q) := p↔ q,

χ<(p, q) := (q → p) → q,

χ6(p, q) := p→ q.
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Definable functions on Heyting algebras 465

Using these formulæ one can construct:

χϕ(p1, p2, ..., pn) :=
∧

{χ=(pi,⊥) | ϕ(i) = 0}

∧
∧

{χ=(pi, pj) | ϕ(i) = ϕ(j)}

∧
∧

{χ<(pi, pj) | ϕ(i) < ϕ(j)} .

Statement 3.8

PROPOSITION. — For anyH ∈ D , anyϕ1, ϕ2 ∈ Cn and anyf ∈ F
ϕ1

H the following
equality holds:

pχϕ2q (cϕ1

H (f)) = f(ϕ1|ϕ2).

PROOF. — Let cϕ1

H (f) = (h1, h2, ..., hn). Then by definition ofχ one has

pχϕ2q(h1, h2, ..., hn)

=































































⊥,

if there exists ani
such that either
hi = ⊥ & ϕ2(i) > 0
or
hi > ⊥ & ϕ2(i) = 0,

min























hi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

there exists aj
such that either
hi < hj & ϕ2(i) = ϕ2(j)
or
hi 6 hj & ϕ2(i) > ϕ2(j)























, otherwise

=































⊥ if ϕ−1
1 (0) 6= ϕ−1

2 (0),

f













min























ϕ1(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

there exists aj
such that either
ϕ1(i) < ϕ1(j) & ϕ2(i) = ϕ2(j)
or
ϕ1(i) 6 ϕ1(j) & ϕ2(i) > ϕ2(j)



































otherwise

=































⊥ if ϕ−1
1 (0) 6= ϕ−1

2 (0),

f













min























ϕ1(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

there exists aj
such that either
ϕ1(i) < ϕ1(j) & ϕ2(i) > ϕ2(j)
or
ϕ1(i) = ϕ1(j) & ϕ2(i) 6= ϕ2(j)



































otherwise.
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466 JANCL – 16/2006. Algebraic and relational deductive tools

Let us denote

s =































0, if ϕ−1
1 (0) 6= ϕ−1

2 (0),

min























ϕ1(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

there exists aj
such that either
ϕ1(i) < ϕ1(j) & ϕ2(i) > ϕ2(j)
or
ϕ1(i) = ϕ1(j) & ϕ2(i) 6= ϕ2(j)























,otherwise;

we will prove thatϕ1|ϕ2 = s.

First let us proves > ϕ1|ϕ2. It suffices to prove that there existss′ 6 s with
ϕ−1

1 (s′) 6= ϕ−1
2 (s′). Consider the cases:

• s = 0 andϕ−1
1 (0) 6= ϕ−1

2 (0), then fors′ we can choose0.

• There existi, j ∈ [n] such thats = ϕ1(i) < ϕ1(j) andϕ2(i) > ϕ2(j).

If ϕ1(i) = ϕ2(i), we can chooses′ = ϕ2(j) 6 ϕ2(i) = s. Thenϕ2(j) 6 ϕ2(i) =
ϕ1(i) < ϕ1(j).

If ϕ1(i) 6= ϕ2(i), we can chooses′ = s.

• There existi, j ∈ [n] such thats = ϕ1(i) = ϕ1(j) andϕ2(i) 6= ϕ2(j).

We can chooses′ = s. i, j ∈ ϕ−1
1 (s) and eitheri /∈ ϕ−1

2 (s), or j /∈ ϕ−1
2 (s).

Now let us prove thatϕ1|ϕ2 > s. Consider the cases:

• There existsi ∈ [n] such thatϕ1(i) = ϕ1|ϕ2 < ϕ2(i) (the caseϕ2(i) < ϕ1|ϕ2

is not possible, because for allt < ϕ1|ϕ2 one hasϕ−1
1 (t) = ϕ−1

2 (t)). Let j ∈
ϕ−1

2 (ϕ1|ϕ2), thenϕ2(j) 6 ϕ2(i). Moreover one hasϕ2(j) < ϕ2(i) andϕ1(i) 6

ϕ1(j), thereforeϕ1|ϕ2 = ϕ1(i) > s.

• There existsi ∈ [n] such thatϕ2(i) = ϕ1|ϕ2 < ϕ1(i) (the caseϕ1(i) < ϕ1|ϕ2

is not possible, as in the previous case). Letj ∈ ϕ−1
1 (ϕ1|ϕ2), thenϕ1(j) 6 ϕ2(j).

We haveϕ1(j) < ϕ1(i) andϕ2(j) > ϕ2(i), thereforeϕ1|ϕ2 = ϕ1(j) > s.

■

Statement 3.9

DEFINITION. — For anyϕ : [n] → [k]0 ∈ Cn, its r-th projection(0 6 r 6 k) is the
mapπϕr : Hϕ → H defined as follows:

πϕr (f ◦ ϕ) = f(r) for anyf ∈ F
ϕ
H .

In other words, one has

πϕ0 (h1, ..., hn) = ⊥,

πϕr (h1, ..., hn) = hi for anyi ∈ ϕ−1(r), and

πϕk (h1, ..., hn) = ⊤.
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Definable functions on Heyting algebras 467

It is clear that for everyr there exists a formulaAϕr (which may be equal either
to ⊤ if r = k, or to⊥ if r = 0, or to the variablepi if i is a label ofr), such that
pAϕr q|Hϕ = πϕr .

Statement 3.10

For n > 1 and1 6 i 6 n we will denote bypri : Hn → Hn−1 the projection
which omits thei-th component of(h1, ..., hn), i. e.

pri(h1, ..., hn) = (h1, ..., hi−1, hi+1, ..., hn).

PROPOSITION. — For anyn > 1, any1 6 i 6 n and anyH ∈ D the image of each
stratumHϕ ⊂ Hn with ϕ ∈ Cn under the projectionpri : Hn → Hn−1 is a stratum
Hϕ′

⊂ Hn−1 for someϕ′ ∈ Cn−1. This element ofCn−1 may be constructed from
the labeled linearly ordered set corresponding toϕ ∈ Cn by deleting the labeli and,
if there exists an element without label different from the top and from the bottom,
removing it.

Conversely, for any stratumHϕ′

⊂ Hn−1 with ϕ′ ∈ Cn−1, one can construct
everyϕ ∈ Cn with pri(H

ϕ) = Hϕ′

either by adding new labeli to one of the non-
top elements in the labeled linear order corresponding toϕ′ ∈ Cn−1, or inserting
between two consecutive elements of this set a new element with labeli.

PROOF. — Trivial. ■

Statement 3.11

For the proof of the subsequent theorems the following lemmais useful:

LEMMA . — For anyH ∈ D and anyn > 0 if there are given two integersr1, r2,
two elementsϕ1 : [n] → [k1]0, ϕ2 : [n] → [k2]0 of Cn such that0 6 r1 6 k1, 0 6

r2 6 k2 and restrictions of the projectionsπϕ1

r1 andπϕ2

r2 toHϕ1 ∩Hϕ2 coincide(i. e.
πϕ1

r1

∣

∣

Hϕ1∩Hϕ2
= πϕ2

r2

∣

∣

Hϕ1∩Hϕ2
), then eitherr1 = r2, or ϕ1|ϕ2 6 min {r1, r2}.

PROOF. — Let k := ϕ1|ϕ2 and letH be some nontrivial dense Heyting algebra.
Consider the order preserving inclusiong : [k − 1]0 → H, with g(0) = ⊥ and
g(k−1) < ⊤. Such an inclusion exists, becauseH is dense and nontrivial. Using this
g let us construct elementsf1 ∈ F

ϕ1

H andf2 ∈ F
ϕ2

H by the rules

fi(s) =

{

g(s), if 0 6 s < k for i = 1, 2,

⊤, otherwise.

If k = 0, then the claim of the lemma trivially holds, if not, thenφ−1
1 (0) = φ−1

2 (0)

and two elementsf1 ◦ φ1 andf2 ◦ φ2 coincide. denotêh := f1 ◦ φ1 = f2 ◦ φ2. This
ĥ belongs to bothHϕ1 andHϕ2 . Henceπϕ1

r1 (ĥ) = πϕ1

r1 (ĥ). Therefore if for example

r1 < k, thenπϕ1

r1 (ĥ) = g(r1) and if r1 6= r2 one hasπϕ1

r1 (ĥ) 6= πϕ1

r1 (ĥ) contradiction.
The claim of lemma holds. ■
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468 JANCL – 16/2006. Algebraic and relational deductive tools

Statement 3.12

THEOREM. — For any formulaA(p1, ..., pn), there exists a functionr : Cn → N

such that for eachH ∈ D and any[n]
ϕ
−→ [k]0 ∈ Cn, one has0 6 r(ϕ) 6 k and

pAq|Hϕ = πϕr(ϕ). That is, restriction of the functionpAq to the stratumHϕ for any
ϕ ∈ Cn is ther(ϕ)-th projection ofϕ.

PROOF. — The proof proceeds by induction on the difficulty of the formulaA:

• A = ⊤, orA = ⊥, orA = pi, trivial. For these cases for any[n]
ϕ
−→ [k]0 ∈ Cn

one can chooser(ϕ) = k, r(ϕ) = 0 or r(ϕ) = ϕ(i) respectively.

• A = A1 ∧ A2 or A = A1 ∨ A2 or A = A1 → A2. By induction hypothesis
there exist functionsr1, r2 : Cn → N, such that for any[n]

ϕ
−→ [k]0 ∈ Cn, one

has0 6 riϕ 6 k and pAiq|Hϕ = πϕriϕ
for i = 1, 2. In these cases we can define

r : Cn → N by r(ϕ) = min
{

r1ϕ, r
2
ϕ

}

, r(ϕ) = max
{

r1ϕ, r
2
ϕ

}

and

r(ϕ) =

{

k, if r1ϕ 6 r2ϕ,

r2ϕ, if r1ϕ > r2ϕ.

respectively.

• A(p1, ..., pi−1, pi+1, ..., pn) = ∀piB(p1, ..., pi−1, pi, pi+1, ..., pn). By induc-

tion hypothesis there exists a functions : Cn → N such that for any[n]
ψ
−→

[k]0 ∈ Cn, one has0 6 s(ψ) 6 k and pBq|Hψ = πψs(ψ). By definition for any

h̃ = (h1, ..., hi−1, hi+1, ..., hn) ∈ Hn−1 one has

pAq (h̃) =
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hn&pri(ĥ) = h̃

}

=
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

.

We must prove, that such
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

always exists and that there

exists a functionr : Cn−1 → N such that for any[n− 1]
ϕ
−→ [k]0 ∈ Cn−1 and

h̃ ∈ Hϕ one has0 6 r(ϕ) 6 k and
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

= πϕr(ϕ)(h̃).

For every[n− 1]
ϕ
−→ [k]0 ∈ Cn−1 consider the subsetCϕ ⊂ Cn of all such

[n]
ψ
−→ [m]0 ∈ Cn thatpri(H

ψ) = Hϕ.

Then for each̃h ∈ Hϕ one has

∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

=
∧

[n]
ψ
−→[m]

0
∈Cϕ

∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

.
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Definable functions on Heyting algebras 469

We will find for each[n]
ψ
−→ [m]0 ∈ Cϕ a nonnegative integerrϕ,ψ, such that

∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

= πϕrϕ,ψ (h̃)

for everyh̃ ∈ Hϕ.

Eachψ ∈ Cϕ using the Proposition in 3.10 can be represented either by adding
label i to one of the non-top elements in the labeled linear order corresponding to
ϕ ∈ Cn−1, or inserting in this linear order a new element with labeli between two
consecutive points.

Consider the cases:

1) ψ ∈ Cϕ is represented by a labeling with labeli on one of the nonmaximal
points in the labeled linear ordered set corresponding toϕ ∈ Cn−1. Then for eacĥh ∈

Hψ one hasπψs(ψ)(ĥ) = πϕs(ψ)(pri(ĥ)). Hence
{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

=
{

πϕs(ψ)(h̃)
}

, and
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

= πϕs(ψ)(h̃). So we may

put rϕ,ψ = s(ψ).

2) ψ ∈ Cϕ is represented by inserting into the labeled linear order correspond-
ing toϕ a new element labeled withi between two adjacent elements ands(ψ) is not
the number of this new element. In this case define:rϕ,ψ = s(ψ) if s(ψ) is less than
number of this new element andrϕ,ψ = s(ψ)−1 otherwise. It is clear that for eacĥh ∈

Hψ one hasπψs(ψ)(ĥ) = πϕrϕ,ψ (pri(ĥ)). Hence
{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

=
{

πϕrϕ,ψ (h̃)
}

, and
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

= πϕrϕ,ψ (h̃).

3) ψ ∈ Cϕ is represented by inserting a new element labeled withi be-
tween two consecutive elements into the labeled linear order corresponding toϕ
ands(ψ) is the number of this new element. Let the numbers of these consecutive
elements beq1 and q2. Then pBq (h1, ...hi−1, hi, hi+1, ...hn) = hi for all ĥ =

(h1, ...hi−1, hi, hi+1, ...hn) ∈ Hψ. Hence
{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

=

(f(q1), f(q2)), wheref = cψH
−1

(ĥ). But
∧

(f(q1), f(q2)) = f(q1), becauseH is
dense. Therefore

∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ Hψ &pri(ĥ) = h̃

}

=
∧

(f(q1), f(q2)) = f(q1)

So we can chooserϕ,ψ = q1.

HencepAq (h1, ..., hi−1, hi+1, ..., hn) is a finite intersection of projections, thus is
itself a projection. Let us definer(ϕ) asmin {rϕ,ψ | ψ ∈ Cϕ }.

• A = ∃piB. Similar to the previous case.

■

Statement 3.13

Now we will prove the converse theorem.

D
ow

nl
oa

de
d 

by
 [

L
in

ko
pi

ng
s 

un
iv

er
si

te
ts

bi
bl

io
te

k]
 a

t 1
3:

13
 1

7 
Ju

ne
 2

01
3 



470 JANCL – 16/2006. Algebraic and relational deductive tools

THEOREM. — For H ∈ D andn > 0, suppose given a functionr : Cn → N such
that for eachH ∈ D and anyϕ1 : [n] → [k1]0, ϕ2 : [n] → [k2]0 fromCn one has
0 6 r(ϕ1) 6 k1, 0 6 r(ϕ2) 6 k2 and restrictions of the projectionsπϕ1

r(ϕ1)
and

πϕ2

r(ϕ2)
toHϕ1 ∩Hϕ2 coincide,

πϕ1

r(ϕ1)

∣

∣

∣

Hϕ1∩Hϕ2

= πϕ2

r(ϕ2)

∣

∣

∣

Hϕ1∩Hϕ2

.

Then there exists a quantifier-free formulaA(p1, ..., pn) with at mostn free variables
such that restriction of the functionpAq to every stratumHϕ coincides with the pro-
jectionπϕr(ϕ) (i. e. pAq|Hϕ = πϕr(ϕ)).

PROOF. — Let us construct the formulaA using the functionr : Cn → N as follows:

A =
∧

ϕ∈Cn

(χϕ → Aϕr(ϕ))

whereAϕr(ϕ) is the formula mentioned in 3.9.

Let us prove that restriction of the functionpAq to any stratumHϕ coincides with
the projectionπϕr(ϕ) (i. e. pAq |Hϕ = πϕr(ϕ)).

Supposef ∈ FHϕ andf ◦ ϕ = ĥ = (h1, h2, ..., hn) ∈ Hϕ, then

pAq (ĥ) =
∧

ψ∈Cn

pχψq (ĥ) → pA
ψ
r(ψ)q (ĥ).

First we will prove, that for anyψ ∈ Cn the inequality

(pχϕq (ĥ) → pA
ϕ
r(ϕ)q (ĥ)) 6 (pχψq (ĥ) → pA

ψ
r(ψ)q (ĥ))

holds, then using this inequality we will havepAq (ĥ) = (pχϕq (ĥ) → pA
ϕ
r(ϕ)q (ĥ)).

But by definition of “characteristic” formulæ one haspχϕq (ĥ) = ⊤ becausêh =

(h1, h2, ..., hn) ∈ Hϕ. HencepAq (ĥ) = pA
ϕ
r(ϕ)q (ĥ) = πϕr(ϕ)(ĥ), which means, that

the claim of the theorem holds.

Really, becausepχϕq (ĥ) = ⊤, we must prove, thatpA
ϕ
r(ϕ)q (ĥ) 6 (pχψq (ĥ) →

pA
ψ
r(ψ)q (ĥ)). Definek := ψ|ϕ. Then of coursepA

ϕ
r(ϕ)q (ĥ) = f(r(ϕ)) and using the

proposition 3.8, one haspχψq (ĥ) = f(k), therefore we must prove, thatf(r(ϕ)) 6

f(k) → pA
ψ
r(ψ)q (ĥ).

There are two cases:

1) k 6 r(ψ), then of coursef(k) 6 pA
ψ
r(ψ)q (ĥ) and our claim holds trivially.

2) r(ψ) < k, thenpA
ψ
r(ψ)q (ĥ) = f(r(ψ)) and our claim is to provef(r(ϕ)) ≤

f(k) → f(r(ψ)) inequality. Using the lemma from 3.11 one has eitherf(r(ϕ)) =
f(r(ψ)), or k 6 min(f(r(ϕ)), f(r(ψ))); in both cases the claim holds.

■
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Definable functions on Heyting algebras 471

4. Subdivision for S

Statement 4.1

Now we define another subdivision ofHn, which is useful for describing func-
tions forH ∈ S . This subdivision takes into account not only ordering between
components ofn-tuples fromHn. If H ∈ S , then for two elementsh1, h2 ∈ H
the caseh1 < h2 may be divided into subcases: whenh2 = 2(h1), h2 = 2

2(h1),
h2 = 2

3(h1), . . . .

First of all let us fix two natural numbersm andm1 with m 6 m1. Consider a
mapϕ : [n]0 → [k]0, 0 6 k, such that

1) ϕ(0) = 0;

2) for anym1 consecutive numbers0 6 i, i+ 1, i+ 2, ..., i+m1 − 1 < k at least
one belongs to the image ofϕ;

3) none of them consecutive numbersk−m+ 1, k−m+ 1, ..., k− 1, k belongs
to the image ofϕ.

LetCm,m1

n denote the set of all such mapsϕ. If m = m1, we writeCmn for short.

In terms of the functiond defined in 2.6.1 above, these conditions read, respec-
tively:

1) ϕ(0) = 0;

2) for anyr ∈ [k]0 one hasd(r) 6 m1;

3) ϕ−1(k) = ∅;

4) d(k) > m.

For ϕ ∈ Cm,m1

n as above, a numbers ∈ [k]0 will be calledϕ-peculiar if either
ϕ−1(s) 6= ∅ andd(r) > m, or s = k. Note that each peculiar element exceptk is
labeled andk is not labeled.

Statement 4.2

As for the classD , we can represent elements ofCm,m1

n by finite, labeled linear
orders, where now it is not required anymore that all elements different from top and
bottom are labeled. Now the set of labels is[n]0 and the bottom element is necessarily
labeled at least with0. We impose the condition that there are nom1 consecutive
nonlabeled elements, except for the lastm1 elements. Moreover we demand that
distance from the largest labeled element to the top is exactly m1.

It is easy to see that in these terms peculiarity of an elementmeans that this element
is different from the bottom, is labeled, and the equality

(distance from it to the previous labeled element)> m

is satisfied. Note that the top element is always peculiar. When drawing such ordered
sets, peculiar elements will be depicted by black circles.
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472 JANCL – 16/2006. Algebraic and relational deductive tools

The set of all such finite, labeled linear ordered sets will bedenoted byRm,m1

n .
Here also ifm = m1, we writeRmn for short instead ofRm,mn .

There is a natural isomorphismαm,m1

n betweenCm,m1

n andRm,m1

n , which sends
everyϕ : [n]0 → [k]0 to the set[k]0 equipped with the corresponding labeling and
peculiarity.

Statement 4.3

EXAMPLES. — The picture

0 2, 5 6 1 3, 4
◦ → ◦ → ◦ → ◦ → ◦ → ◦ → ◦ → ◦ → •

represents an elementϕ of C3
6 . None of its elements except for the top are peculiar.

As another example, involving some more peculiar elements,take

2 3 1
◦ → ◦ → ◦ → ◦ → • → ◦ → ◦ → ◦ → ◦ → ◦ → •

This represents an element ofC4
3 , and its element with label3 is peculiar. 2

Statement 4.4

For everyϕ ∈ Cm,m1

n we consider the subsetHϕ ⊆ Hn, consisting of alln-tuples
(h1, ..., hn) ∈ Hn such that for anyi, j ∈ [n]0 andh0 = ⊥ one has:

• if ϕ(i) = ϕ(j), thenhi = hj ;

• if ϕ(i) is the next labeled element afterϕ(j) in [k]0 andϕ(i) − ϕ(j) < m, then
hi = 2

ϕ(i)−ϕ(j)hj ;

• if ϕ(i) is the next labeled element afterϕ(j) in [k]0 andϕ(i) − ϕ(j) > m, then
hi > 2

ϕ(i)−ϕ(j)hj

These conditions can be rewritten in the following equivalent form:

• if ϕ(i) = ϕ(j), thenhi = hj ;

• if ϕ(i) − ϕ(j) = d > 0, thenhi > 2
dhj ;

• if ϕ(i)−ϕ(j) = d > 0 and there are no peculiar elements amongϕ(j+1), ϕ(j+
2), ..., ϕ(i), thenhi = 2

dhj .

Also we can define:

F
ϕ
H =







































f : [k]0 → H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f(0) = ⊥ and

f(k) = ⊤ and

for all i > j, f(i) > 2
i−jf(j) and

for all i > j with no peculiar elements

in j + 1, ..., i, f(i) = 2
i−jf(j)







































.
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Definable functions on Heyting algebras 473

For everyH ∈ S andϕ ∈ Cmn , there is a naturally defined map

cϕH : F
ϕ
H −→ Hϕ,

f 7−→ f ◦ ϕ|[n]

(ϕ is defined on[n]0, and to determine the mapcϕH we useϕ|[n]).

The mapcϕH is an order preserving isomorphism.

For simplicity we denote for eachV ∈ Rm,m1

n the stratumHα−1(V ), the set

F
α−1(V )
H and the mapcα

−1(V )
H byHV , FVH andcVH respectively.

E. g., the stratum inH6 corresponding to the first example in 4.3 is

{

(h1, ..., h6)
∣

∣ h2 = h5 = 2(⊥),2(h5) = h6,2(h6) = h1,2
2(h1) = h3 = h4

}

=
{

(23(⊥),2(⊥),25(⊥),25(⊥),2(⊥),22(⊥))
}

.

The stratum inH3 corresponding to the second example in 4.3 is

{

(h1, h2, h3) ∈ H3
∣

∣ h2 = ⊥, 2
4(h2) 6 h3, h1 = 2(h3)

}

=
{

(2(h),⊥, h)
∣

∣ 2
4(⊥) 6 h ∈ H

}

.

Statement 4.5

For eachϕ : [n]0 → [k]0 ∈ Cmn , the setsHϕ andF
ϕ
H are nonempty, moreover we

can choose some so called “standard” elementsstϕH in F
ϕ
H . Define:

stϕH :[k]0 −→ H

r 7−→

{

2
r(⊥), if 0 6 r < k;

⊤, if r = k

The element ofHϕ corresponding tostϕH under the mappingcϕH will be denoted
by pstϕHq. This “standard” element is the least element inF

ϕ
H .

Note that the union of allHϕ, ϕ ∈ Cmn , is the wholeHn. Indeed, given any
(h1, ..., hn) ∈ H

n puth0 = ⊥ and consider the set

U =
{

2
d(h) | 0 6 d 6 n and(h = hi for somei ∈ [n])

}

.

Label an elementh in V with i ∈ [n] wheneverhi = h.

If h is the top element ofU andk = d(h) < m, then letV be a new labeled
linearly ordered set obtained fromU by addingm−k new nonlabeled elements which
are greater than each element ofU , otherwise letV = U . Clearly(h1, ..., hn) ∈ HV .
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474 JANCL – 16/2006. Algebraic and relational deductive tools

Statement 4.6

DEFINITION. — For two elementsϕ1 : [n]0 → [k1]0 andϕ2 : [n]0 → [k2]0 of Cmn
the nonnegative integerϕ1|ϕ2 is given by the equality

ϕ1|ϕ2 = min
{

r ∈ [k1]0 ∩ [k2]0
∣

∣ ϕ−1
1 (r) 6= ϕ−1

2 (r)
}

.

Then arguing similarly to the case in 3.6 one can show that ifϕ1|ϕ2 = ki, i = 1, 2,
thenk1 = k2 andϕ1 = ϕ2.

Statement 4.7

For eachϕ ∈ Cm,m1

n we construct the formulaχϕ , which we callcharacteristic
formulafor the stratum ofϕ. The value of the functionpχϕq on the tuple(h1, ..., hn)
will be equal to⊤ if and only if (h1, ..., hn) ∈ Hϕ.

Such a formula also can be constructed using the “characteristic formulæ” for the
relations=, < and6, as in 3.7. Free variables of the formulaχϕ will be among
{p1, p2, ..., pn}. Denote byp0 the constant⊥ and put

χϕ(p1, p2, ..., pn) :=
∧

{

χ6(2d(pi), pj) | d = ϕ(j) − ϕ(i) > 0
}

∧
∧

{

χ6(pj ,2
d(pi))

∣

∣

∣

∣

∣

d = ϕ(j) − ϕ(i) > 0

and none ofϕ(i) + 1, ϕ(i) + 2, ..., ϕ(j) are peculiar

}

.

Statement 4.8

PROPOSITION. — For anyH ∈ S , m > 0, ϕ1, ϕ2 ∈ Cmn and anyf ∈ F
ϕ1

H the
following equality holds:

pχϕ2q (cϕ1

H (f)) = f(ϕ1|ϕ2).

PROOF. — Let cϕ1

H (f) = (h1, h2, ..., hn), and leth0 = ⊥. Then by definition ofχ
one has
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Definable functions on Heyting algebras 475

pχϕ2q(h1, h2, ..., hn)

= min

{

hi

∣

∣

∣

∣

∣

there exists aj ∈ [n]0 such that

d = ϕ2(i) − ϕ2(j) > 0 andhi < 2
d(hj)

}

∧min















2
d(hi)

∣

∣

∣

∣

∣

∣

∣

∣

there exists aj ∈ [n]0 such thatd = ϕ2(j) − ϕ2(i) > 0

and none ofϕ2(i) + 1, ϕ2(i) + 2, ..., ϕ2(j) are peculiar

and2
d(hi) < hj















=f

































min

{

ϕ1(i)

∣

∣

∣

∣

∣

there exists aj ∈ [n]0 such that

d = ϕ2(i) − ϕ2(j) > 0 andϕ1(i) < d+ ϕ1(j)

}

∧min







































d+ ϕ1(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

there exists aj ∈ [n]0 such that

d = ϕ2(j) − ϕ2(i) > 0

and none ofϕ2(i) + 1, ϕ2(i) + 2, ..., ϕ2(j)

are peculiar

andd+ ϕ1(i) < ϕ1(j)







































































Let us denote

s := min

{

ϕ1(i)

∣

∣

∣

∣

∣

there exists aj ∈ [n]0 such that

d = ϕ2(i) − ϕ2(j) > 0 andϕ1(i) < d+ ϕ1(j)

}

∧min















d+ ϕ1(i)

∣

∣

∣

∣

∣

∣

∣

∣

there exists aj ∈ [n]0 such thatd = ϕ2(j) − ϕ2(i) > 0

and none ofϕ2(i) + 1, ϕ2(i) + 2, ..., ϕ2(j) are peculiar

andd+ ϕ1(i) < ϕ1(j)















;

we will prove thatϕ1|ϕ2 = s.

First let us proves > ϕ1|ϕ2. It suffices to prove that there existss′ 6 s with
ϕ−1

1 (s′) 6= ϕ−1
2 (s′). Consider the cases:

• s = ϕ1(i) and there existsj ∈ [n]0 such thatd = ϕ2(i) − ϕ2(j) > 0 and
ϕ1(i) < d + ϕ1(j). If ϕ1(i) 6= ϕ2(i), we can chooses instead ofs′; if not, let
us chooses′ = s − d. Thenϕ2(j) = ϕ2(i) − d, i. e. j ∈ ϕ−1

2 (s′) andϕ1(j) >
ϕ1(i) − d = s′, hencej /∈ ϕ−1

1 (s′).

• s = ϕ1(i)+d and there exists aj ∈ [n]0 such thatd = ϕ2(j)−ϕ2(i) > 0, there
are no peculiar elements amongϕ2(i)+1, ϕ2(i)+2, ..., ϕ2(j), andd+ϕ1(i) < ϕ1(j).

If ϕ1(i) 6= ϕ2(i), we can chooseϕ1(i) 6 s instead ofs′.

If ϕ1(i) = ϕ2(i), let us chooses′ := s = ϕ1(i) + d. Thenj ∈ ϕ−1
2 (s′) and

s′ = ϕ1(i) + d > ϕ1(j), hencej /∈ ϕ−1
1 (s′).
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476 JANCL – 16/2006. Algebraic and relational deductive tools

Now let us prove thatϕ1|ϕ2 > s. Denoter = ϕ1|ϕ2. Consider the cases:

1) There exists anl ∈ [n] such thatϕ1(l) = r < ϕ2(l) (the caseϕ2(l) < r is
not possible, because for allt < r one hasϕ−1

1 (t) = ϕ−1
2 (t)). Let i = l, j = 0 and

d = ϕ2(i). Thend = ϕ2(i) − ϕ2(j) andϕ1(i) < d + ϕ1(j) = d = ϕ2(i). Hence
s 6 ϕ1(i) = r.

2) There exists anl ∈ [n] such thatϕ2(l) = r < ϕ1(l) (ϕ1(l) < r is not possible,
as in the previous case) andr is peculiar forϕ2. Sincer is peculiar forϕ2, r −m is
labeled withϕ2 and none ofr−m+ 1, r−m+ 2, ..., r− 1 are labeled withϕ2. But
for all t < r one hasϕ−1

1 (t) = ϕ−1
2 (t), hencer −m is labeled withϕ1 and none of

r−m+ 1, r−m+ 2, ..., r− 1 are labeled withϕ1. It means thatr is peculiar forϕ1.
Therefore it is labeled underϕ1. Supposeϕ1(l

′) = r.

If ϕ2(l
′) > r, we getr > s as in the previous case.

If ϕ2(l
′) = r, thenr = ϕ2(l) = ϕ2(l

′) = ϕ1(l
′) < ϕ1(l). Denotei := l′, j := l

andd := 0. Thend+ϕ1(i) < ϕ1(j) andϕ2(j)−ϕ2(i) = d. Hences 6 d+ϕ1(i) = r.

3) There existsl ∈ [n] such thatϕ2(l) = r < ϕ1(l) andr = 0. Denotei = 0,
j := l andd = 0. Thend = ϕ2(j) − ϕ2(i), there are no elements peculiar forϕ2

between0 = ϕ2(j) andϕ2(i) = 0 andd+ ϕ1(i) = 0 < ϕ1(j). Hences = 0.

4) There existsl ∈ [n] such thatϕ2(l) = r < ϕ1(l), and r > 0 and r is
not peculiar forϕ2. Let r′ be max

{

t < r
∣

∣ ϕ−1
2 (t) 6= ∅

}

. Then sincer′ < r

one hasϕ−1
1 (r′) = ϕ−1

2 (r′) 6= ∅. Let i be in ϕ−1
1 (r′) = ϕ−1

2 (r′), j := l and
d = r − r′. Thend = ϕ2(j) − ϕ2(i), there are no elements peculiar forϕ2 among
{ϕ2(i) + 1, ϕ2(i) + 2, ..., ϕ2(j)} = {r′ + 1, r′ + 2, ..., r} and d + ϕ1(i) = r <
ϕ1(j). Hences 6 r.

■

Statement 4.9

DEFINITION. — For anyϕ : [n] → [k]0 ∈ Cm,m1

n , its r-th projection(0 6 r 6 k) is
the mapπϕr : Hϕ → H is defined as follows:

πϕr (f ◦ ϕ) = f(r) for anyf ∈ F
ϕ
H .

In other words, one has

πϕ0 (h1, ..., hn) = ⊥,

πϕk (h1, ..., hn) = ⊤,

πϕr (h1, ..., hn) = 2
r−r′hi, if r′ is the greatest among labeled elements

not exceedingr, andi is a label ofr′

As in the case of dense algebras, for everyr ∈ [k]0 there exists a formulaAϕr
(which may be equal either to⊤ if r = k, or to⊥ if r = 0, or to 2

r−r′pi if r′ is
the greatest among labeled elements not exceedingr andi is a label ofr′), such that
pAϕr q|Hϕ = πϕr .
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Definable functions on Heyting algebras 477

Statement 4.10

Now for eachCm,m1

n , or equivalently forRm,m1

n we determine a mapβm,m1 :
Rm,m1

n → Rmn such that, for everyV ∈ Rm,m1

n the stratumHV will be a subset
of Hβm,m1

n (V ). That is, the subdivision
{

HV | V ∈ Rm,m1

n

}

of Hn is finer than
{

HV | V ∈ Rmn
}

.

For V ∈ Rm,m1

n let V1 be the subset ofV obtained fromV by deleting all those
nonlabeled and nontop elementss ∈ V which satisfyd(s) > m, i. e.

V1 = V \















s ∈ V

∣

∣

∣

∣

∣

∣

∣

∣

s is not a top element and

s is not labeled and

d(s) > m















.

The finite setV1 with the ordering and labeling induced fromV is an element of
Rmn . Determineβm,m1(V ) asV1. Of courseHV ⊂ HV1 = Hβm,m1 (V ).

Denote byγV or by γϕ (if ϕ is the element ofCm,m1

n corresponding toV ) the
inclusionV1 ⊆ V .

For eachf ∈ FVH the compositeγV ◦ f is an elementf ′ ∈ F
V1

H such thatcVH(f) =

cV1

H (f ′).

If there is given0 6 r < |V1|, then restriction of ther-th projection ofHV1 =
Hβm,m1

n (V ) toHV is theγV (r)-th projection ofHV . That is,

πβ
m,m1 (V )
r

∣

∣

∣

HV
= πVγV (r).

Statement 4.11

To prove subsequent theorems, the following lemma is useful:

LEMMA . — If for some formulaA(p1, ..., pn) and some integerm > 0 there exists
a functionr : Cmn → N such that, for eachH ∈ S andϕ ∈ Cmn , one has0 6

r(ϕ) 6 k and pAq|Hϕ = πϕr(ϕ), then for anyϕ1, ϕ2 ∈ Cmn eitherr(ϕ1) = r(ϕ2), or
ϕ1|ϕ2 6 min {r(ϕ1), r(ϕ2)}.

PROOF. — let k := ϕ1|ϕ2 and letH be some infinite Heyting algebra fromS .
Consider the “standard” elementsstϕ1

H = (h1
1, h

1
2, ..., h

1
n) andstϕ2

H = (h2
1, h

2
2, ..., h

2
n)

in Hn. By the congruence property (Cong) (see the end of 2.1) one has
∧

i∈[n]

(h1
i ↔ h2

i ) 6 pAq (stϕ1

H ) ↔ pAq (stϕ2

H ).

Let f1 ∈ F
ϕ1

H andf2 ∈ F
ϕ2

H correspond tostϕ1

H andstϕ2

H respectively. Then one has
pAq (stϕ1

H ) = f1(r(ϕ1)), pAq (stϕ2

H ) = f2(r(ϕ2)) and
∧

i∈[n]

(h1
i ↔ h2

i ) = min
{

min{h1
i , h

2
i }

∣

∣ h1
i 6= h2

i

}

= f1(ϕ1|ϕ2) = f2(ϕ1|ϕ2)
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478 JANCL – 16/2006. Algebraic and relational deductive tools

(becausef1 andf2 are “standard” elements). Then

f1(ϕ1|ϕ2) = f2(ϕ1|ϕ2) 6 f1(r(ϕ1)) ↔ f2(r(ϕ2)).

SinceH is infinite, the mapsf1 andf2 are inclusions, hence the lemma. ■

Statement 4.12

THEOREM. — For any formulaA(p1, ..., pn) and m = 2deg(A) (deg(A) means
quantifier degree ofA, see 2.1) there exists a functionr : Cmn → N such that, for
eachH ∈ S and [n]0

ϕ
−→ [k]0 ∈ Cmn , one has0 6 r(ϕ) 6 k and pAq|Hϕ = πϕr(ϕ),

i. e. restriction of the functionpAq to the stratumHϕ for anyϕ ∈ Cmn is ther(ϕ)-th
projection.

PROOF. — The proof proceeds by induction on the difficulty of the formulaA.

• A = ⊤, orA = ⊥, orA = pi, trivial. For these cases for any[n]0
ϕ
−→ [k]0 ∈

Cmn one can chooser(ϕ) = k, r(ϕ) = 0 or r(ϕ) = ϕ(i) respectively.

• A = A1 ∧ A2 or A = A1 ∨ A2 or A = A1 → A2. Supposem1 = deg(A1),
m2 = deg(A2) andm = max(m1,m2), then by definition of quantifier degree, one
hasm = deg(A). By induction hypothesis there exist functionsr1, r2 : Cn → N,
such that fori = 1, 2 andϕi : [n]0 → [ki]0 in Cmin one has0 6 ri(ϕi) 6 k and
pAiq|Hϕi = πϕiri(ϕi) . EveryV ∈ Rmn can be considered as an element ofRmi,mn

for eachi = 1, 2 and the stratumHV is a subset of the stratumHβ
m,mi
n (V ) (see

4.10); moreover ifγi is the corresponding inclusion ofVi = βm,min (V ) into V and if
si(V ) = γi(ri(Vi)), then it is clear that restriction ofpAqi toHV is thesi(V )-th pro-
jection. In these cases we can definer : Cmn → N by r(V ) = min {s1(V ), s2(V )},
r(V ) = max {s1(V ), s2(V )}, and

r(V ) =

{

the top element ofV, if s1(V ) 6 s2(V ),

s2(V ), if s1(V ) > s2(V )

respectively.

• A(p1, ..., pn−1) = ∀piB(p1, ..., pn−1, pn) (of course we can suppose thati = n,
i. e. the bound variable in the formulaA is pn). By induction hypothesis there exists
a functions : C

m/2
n → N (note, thatdeg(A) = deg(B) + 1) such that for any

ψ : [n]0
ψ
−→ [k]0 in Cm/2n one has0 6 s(ψ) 6 k andpBq|Hψ = πψs(ψ).

By definition for anỹh = (h1, ..., hn−1) ∈ Hn−1 one has

pAq (h̃) =
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

.

We must prove that such
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

always exists and that there

exists a functionr : Cmn−1 → N such that, for any[n− 1]0
ϕ
−→ [k]0 ∈ Cmn−1 and

h̃ ∈ Hϕ one has0 6 r(ϕ) 6 k and
∧

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

= πϕr(ϕ)(h̃).
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Definable functions on Heyting algebras 479

For every[n− 1]0
ϕ
−→ [k]0 ∈ Cmn−1 we will construct a subsetC ⊂ C

m/2,m
n

with Hϕ =
⋃

{

Hψ | ψ ∈ C
}

. Then for eachψ ∈ C, the stratumHψ will be a

subset of the stratumHβm/2,m(ψ) and the restriction of thes(βm/2,m(ψ))-th projec-
tion ofHβm/2,m(ψ) toHψ will be tψ = γψ(s(βm/2,m(ψ)))-th projection ofHψ (see
4.10). Then we will determine a numberrψ such that for everỹh ∈ Hϕ one has
∧

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

= πϕrψ (h̃).

Then forr(ϕ) = min {rψ | ψ ∈ C } we will havepAq|Hϕ = πϕr(ϕ).

For [n− 1]0
ϕ
−→ [k]0 ∈ Cmn−1, we will determine the subsetC ⊂ R

m/2,m
n taking

into account the possible orders between a new componenthn and the components
h1, h2, ..., hn−1 of any element of̃h = (h1, ..., hn−1) ∈ Hϕ. All ψ ∈ C will be of
the shapeψ : [n]0 → [k]0 (note, that ranges ofψ andϕ coincide), moreoverψ will be
extension ofϕ expect of one 11-th case. In this 11-th case elements ofC, we will find
the corresponding element of 10-th case such that the intersection of the elements of
the corresponding 10-th case will be less or equal to intersection of elements of 11-th
case.

Now consider the cases:

1) hn = ⊥. In this case extend the mapϕ to [n]0 by ψ(n) = 0. Then we will

have
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

πψtψ (h̃)
}

and we can chooserψ = tψ.

2) hn = ⊤. Let ψ(n) = k − m/2. Then as in the 1-st case we can choose
rψ = tψ.

3) hn = hi for i ∈ [n− 1]0. Let ψ(n) = ϕ(i). As in previous cases we can
chooserψ = tψ.

4) Let i1 be such element in[n− 1]0, thatϕ(i1) is the largest labeled element
of [k]0 (i. e. i1 ∈ ϕ−1(k − m)) andhn = 2

d(hi1) with 0 < d < m/2. Let
ψ(n) = k − m + d. This case is also similar to previous cases and let us choose
rψ = tψ.

5) i1 ∈ ϕ−1(k−m) andhn > 2
m/2(hi1). Letψ(n) = k−m/2. Then iftψ <

k−m/2 or tψ = k, as in previous cases chooserψ = tψ. If k−m/2 6 tψ < k, then

we will have the equality
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

= (2tψ−(k−m)(hi1),⊤),

hence
∧

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

= 2
tψ−(k−m)(hi1) and let us again choose

rψ = tψ.

6) Let ϕ(i) andϕ(j) be consecutive labeled elements in[k]0 and2
d(hi) =

hn < hj with d < m/2. Letψ(n) = ϕ(i)+d. Then
{

πψtψ(ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

πψtψ (h̃)
}

and we can chooserψ = tψ.

7) Letϕ(i) andϕ(j) be consecutive labeled elements in[k]0 and2
m/2(hi) 6

hn 6 hj with tψ < ϕ(i) + m/2 or tψ > ϕ(j). Let ψ(n) = ϕ(i) + m/2. As in the
cases 1-4 we can chooserψ = tψ.
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480 JANCL – 16/2006. Algebraic and relational deductive tools

8) Letϕ(i) andϕ(j) be consecutive labeled elements in[k]0,ϕ(j)−ϕ(i) < m,
2
m/2(hi) 6 hn and2

d(hn) = hj with m/2 + d = ϕ(j) − ϕ(i) andϕ(i) +m/2 6

tψ < ϕ(j). Let ψ(n) = ϕ(i) + m/2. Then
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

2
m/2(hi)

}

and we can chooserψ = tψ.

9) Letϕ(i) andϕ(j) be consecutive labeled elements in[k]0,ϕ(j)−ϕ(i) < m,
2
m/2(hi) 6 hn and2

d(hn) = hj with m/2 + d < ϕ(j) − ϕ(i) andϕ(i) +m/2 6

tψ < ϕ(j). In this case the codomain ofψ is not [k]0. To obtainψ let us define
ψ(n) = ϕ(i) + m/2 and delete nonlabeled elements in[k]0 which are greater or

equal toϕ(i)+m/2+ d and less thenϕ(i). Then
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

2
tψ−ϕ(i)(hi)

}

and we chooserψ = tψ.

10) Letϕ(i) andϕ(j) be consecutive labeled elements in[k]0,ϕ(j)−ϕ(i) = m,
2
m/2(hi) 6 hn and2

m/2(hn) 6 hj with ϕ(i) + m/2 6 tψ < ϕ(j). Let ψ(n) =
ϕ(i) +m/2. Then

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

2
tψ−m/2−ϕ(i)(hn)

∣

∣

∣ 2
m/2(hi) 6 hn and2

m/2(hn) 6 hj

}

.

This set is not empty. For example2tψ−ϕ(i)(hi) belongs to this set and in fact is its
smallest element. Therefore we can chooserψ = tψ.

11) Letϕ(i) andϕ(j) be consecutive labeled elements in[k]0,ϕ(j)−ϕ(i) = m,
2
m/2(hi) 6 hn and2

d(hn) = hj with d < m/2 andϕ(i) +m/2 6 tψ < ϕ(j). In
this case codomain ofψ is not[k]0. To obtainψ let us defineψ(n) = ϕ(i) +m/2 and
delete nonlabeled elements in[k]0 which are greater or equal toϕ(i) +m/2 + d and
less thanϕ(i). Then

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

2
tψ−m/2−ϕ(i)(hn)

∣

∣

∣
2
m/2(hi) 6 hn and2

d(hn) = hj

}

.

For someH ∈ S this set may be empty. But in any case, let us consider the element
ψ′ ∈ C

m/2,m
n with the samei andj from the previous case 10. Then by the lemma

from 4.11 one hastψ = tψ′ . Therefore
∧

{

πψ
′

tψ′

∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ′

}

6
∧

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

and we can chooserψ = k since the subset in the meet corresponding toψ will not
influence the meet at all.

HencepAq (h1, ..., hn−1) is a finite meet of projections, thus is itself a projection. Let
us definer(ϕ) asmin {rψ | ψ ∈ C }.

• A(p1, ..., pn−1) = ∃piB(p1, ..., pn−1, pn) (here too we suppose that the nonfree

variable ofA is pn). By induction hypothesis there exists a functions : C
m/2
n → N
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(note, thatdeg(A) = deg(B) + 1) such that for anyψ : [n]0 → [k]0 in Cm/2n one has
0 6 s(ψ) 6 k andpBq|Hψ = πψs(ψ).

By definition for anỹh = (h1, ..., hn−1) ∈ Hn−1 one has

pAq (h̃) =
∨

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

.

We must prove that such
∨

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

always exists and that there

exists a functionr : Cmn−1 → N such that for any[n− 1]0
ϕ
−→ [k]0 ∈ Cmn−1 and

h̃ ∈ Hϕ one has0 6 r(ϕ) 6 k and
∨

{

pBq (ĥ)
∣

∣

∣
ĥ ∈ pr−1

i (h̃)
}

= πϕr(ϕ)(h̃).

Here also as in the previous case we construct elements ofC ∈ C
m/2,m
n and for

everyψ ∈ C also denote:tψ = γψ(s(βm/2,m(ψ))) and determine a numberrψ such

that for everỹh ∈ Hϕ one has
∨

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

= πϕrψ(h̃).

Then puttingr(ϕ) = max {rψ | ψ ∈ C } we obtainpAq|Hϕ = πϕr(ϕ).

Now consider the cases:

1) Either one ofhn = ⊥, hn = ⊤, or hn = hi. In all these cases the set
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

has a single element and we can chooserψ = tψ.

2) hn = 2
d(hi1) with i1 ∈ ϕ−1(k −m), hn = 2

d(hi1) and0 < d < m/2.

Here also the set
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

is a singleton and we can choose
rψ = tψ.

3) i1 ∈ ϕ−1(k − m) and hn > 2
m/2(hi1). If either tψ < k − m/2

or tψ = k, then as in previous cases let us chooserψ = tψ. If k − m/2 6

tψ < k, then one has
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

2
tψ−(k−m)(hi1),⊤

}

and
∨

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

= ⊤, so let us chooserψ = k.

4) Let ϕ(i) andϕ(j) be consecutive labeled elements in[k]0 and2
d(hi) =

hn < hj with d < m/2. Then puttingψ(n) = ϕ(i) + d one will have
{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

=
{

πψtψ (h̃)
}

and we can chooserψ = tψ.

5) Letϕ(i) andϕ(j) be consecutive labeled elements in[k]0 and2
m/2(hi) 6

hn 6 hj with tψ < ϕ(i) +m/2 or tψ > ϕ(j). Letψ(n) = ϕ(i) +m/2. Here as in
the case 1 we can chooserψ = tψ.

6) Let ϕ(i) andϕ(j) be consecutive labeled elements in[k]0, 2
m/2(hi) 6

hn 6 hj . Then in any case letψ(n) = ϕ(i) +m/2 and consider the elementψ′ ∈ C
from the case 1 withhn = hj . If we compareψ with tψ-th projection andψ′ with
tψ′-th projection from the lemma in 4.11 one hastψ′ > ϕ(i) + m/2. But tψ′-th

projection ofHψ′

is induced from some projection of an element ofC
m/2
n , therefore

d(tψ′) 6 m/2, hencetψ′ > ϕ(j). It means that
∨

{

πψ
′

tψ′

∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ′

}

>
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∨

{

πψtψ (ĥ)
∣

∣

∣
ĥ ∈ pr−1

n (h̃) ∩Hψ
}

. So we can chooserψ = 0 since the subset in the

join corresponding toψ will not influence the join at all.

HencepAq (h1, ..., hn−1) is equal to a finite join of projections, thus is itself a projec-
tion. Let us definer(ϕ) asmax {rψ | ψ ∈ C }.

■

Statement 4.13

Now we will prove the converse theorem.

THEOREM. — For H ∈ S andn, m > 0, suppose given a functionr : Cmn → N

such that for eachH ∈ S and anyϕ1 : [n] → [k1]0, ϕ2 : [n] → [k2]0 from
Cmn one has0 6 r(ϕ1) 6 k1, 0 6 r(ϕ2) 6 k2 and eitherr(ϕ1) = r(ϕ2), or
ϕ1|ϕ2 6 min{r(ϕ1), r(ϕ2)} Then there exists a formulaA(p1, ..., pn) with at most
n free variables in which quantifiers occur only through application of2, such that
restriction of the functionpAq to every stratumHϕ coincides with the projectionπϕr(ϕ)

(i. e. pAq|Hϕ = πϕr(ϕ)).

PROOF. — Let us construct the formulaA using the functionr : Cmn → N as
follows:

A =
∧

ϕ∈Cmn

(χϕ → Aϕr(ϕ))

whereAϕr(ϕ) is the formula mentioned in 4.9. Then restriction of the function pAq to

any stratumHϕ coincides with the projectionπϕr(ϕ) (i. e. pAq |Hϕ = πϕr(ϕ)).

The proof of this fact coincides with the proof of the theorem3.13, with the use of
the proposition from 3.8 and of the lemma from 3.11 replaced by the proposition from
4.8 and the lemma from 4.11 respectively. ■
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