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THE SCREEN TYPE BOUNDARY VALUE PROBLEMS FOR
ANISOTROPIC PSEUDO-MAXWELL’S EQUATIONS

Introduction

Let Ω denote either a bounded Ω+ ⊂ R3 or an unbounded Ω− := R3\Ω+

domain with smooth boundary S := ∂Ω+ and let ν be the outer unit normal
vector field to S.

By C we denote an orientable smooth open surface in R3 (a screen) with
the smooth boundary ∂C. The screen has two faces C− and C+ distinguished
by the orientation of the normal vector field: ν is pointing from C+ to C−.
Moreover, we assume that C is a part of some smooth and simple (non
self intersecting) hypersurface S that divides the space R3 into two disjoint
domains Ω+ and Ω− := R3\Ω+ such that Ω+ is bounded and S = ∂Ω±.

Our purpose is to investigate the screen-type boundary value problem
for pseudo-Maxwell’s equations

curl µ−1curl U − s ε grad div (ε U)− ω2εU = 0 in R3
C , (1)

where R3
C := R3 \C is the domain with a screen, using the potential method.

The present investigation covers the anisotropic case when the matrices
in (1)

ε = [εjk]3×3 , µ = [µjk]3×3 , (2)

are real valued, constant, symmetric and positive definite, i.e.,

〈εξ, ξ〉 ≥ c|ξ|2 , 〈µξ, ξ〉 ≥ d|ξ|2 , ∀ξ ∈ R3 ,

for some positive constants c > 0, d > 0, where

〈η, ξ〉 :=
3∑

j=1

ηjξj , η, ξ ∈ C3.

s is a positive real number and the frequency parameter ω is assumed to be
non-zero and complex valued, i.e., Im ω 6= 0.

The study of boundary value problems in electromagnetism naturally
leads us to the pseudo-Maxwell’s equations inherited with tangent boundary
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conditions, which are in some sense non-standard for the elliptic equations
(1), cf. works of Buffa, Costabel, Christiansen, Dauge, Hazard, Lenoir,
Mitrea, Niciase and others. The case with the Dirichlet type boundary
condition ν × U is mostly investigated by variational methods, here ν is
the unit normal to the boundary ∂Ω. Our goal is investigate well posedness
of the Neumann type boundary value problems for (1) as well as its unique
solvability in unbounded domains with screen R3

C .
For rigorous formulation of conditions for the unique solvability of the

formulated boundary value problems we use the Bessel potential Hr(Ω),
Hr(S) spaces. We quote [3] for definitions and properties of these spaces.

The space H̃r(C) comprises those functions ϕ ∈ Hr(S) which are sup-
ported in C (functions with the “vanishing traces on the boundary”). For
the detailed definitions and properties of these spaces we refer, e.g., to [3]).

It is well known that the space Hr−1/2(S) is a trace space for Hr(Ω),
provided that r > 1/2 and the corresponding trace operator is denoted by
γS . For the detailed definitions and properties of these spaces we refer, e.g.,
to [3].

We introduce the following spaces:

Hr
εν,0(S) : =

{
U ∈ Hr(S) : 〈εν, U〉 = 0

}
,

H1
εν,0(Ω

+) =
{

U ∈ H1(Ω+) : 〈εν, γSU〉 = 0 on S
}

,

H1
εν,0(R3

C) =
{

U ∈ H1(R3
C) : 〈εν, γC±U〉 = 0 on C

}
.

Theorem 0.1. The operator in (1)

A(D)U := curl µ−1curlU − s ε grad div(εU)− ω2εU

is elliptic, has the positive definite principal symbol

Apr(ξ) := σcurl(ξ)µ−1σcurl(ξ) + s ε
[
ξjξk]3×3ε, ξ = (ξ1, ξ2, ξ3)> ∈ R3, (3)

where

σcurl(ξ) :=




0 iξ3 −iξ2

−iξ3 0 iξ1

iξ2 −iξ1 0


 ,

is non-vanishing detApr(ξ) 6= 0 for ξ 6= 0 and positive definite

〈Apr(ξ)η, η〉 ≥ c|ξ|2|η|2 c = const > 0, ∀ ξ ∈ R3, ∀η ∈ C3. (4)

Moreover, the operator A(D) is self-adjoint and the following Green’s
formula holds

(A(D)U , V )Ω+ = (N(D, ν)U ,V )S + aε,µ(U ,V )Ω+ − ω2(ε U ,V )Ω+ , (5)

for all U ,V ∈ H1(Ω+). Here N(D, ν) is the Neumann’s boundary operator

N(D, ν)U := ν × µ−1curlU − sdiv(εU)εν, U ∈ H1(Ω+) (6)
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and aε,µ is the natural bilinear differential form associated with the Green
formula

aε,µ(U , V )Ω := (µ−1curlU , curl V )Ω + s (div(εU), div(εV ))Ω. (7)

Based on this fact we obtain that the Neumann’s trace N(D, ν)U ∈
H− 1

2 (S).
Let us mention the well known fact, that the Neumann boundary value

problem

A(D)U = 0 in Ω+, N(D,ν)U = g on S, g ∈ H− 1
2 (S),

is not an elliptic boundary value problem in the sense of the Shapiro-
Lopatinski condition. To overcome the problem we consider the tangent
boundary conditions and look for a solution in tangent spaces. First, for
any V ∈ H1

εν,0(Ω
+) we have πενV = V , where πενU := U −〈U , εν〉εν is a

projection on the hyperplane, orthogonal to the vector field εν. Therefore
from (6) and (7) we obtain

(N(D, ν)U ,V ) = (N(D, ν)U , πενV ) = (πενN(D, ν)U , πενV ).

Thus πενN(D, ν)U is well-defined as a functional on H
1
2
εν,0(S) and belongs

to H−
1
2

εν,0(S).
An important role in the investigation goes to the following lemma, which

was proved by M. Costabel in [2] for a compact domain, We have extended
the result for a non-compact domains, including domains with a screen.

Lemma 0.2. The bilinear differential form aε,µ(U , U)Ω+ in (7) is co-
ercive, i.e., there exist positive constants c1 and c2 such that

Re aε,µ(U ,U)Ω± ≥ c1

∥∥U
∣∣H1(Ω±)

∥∥2 − c2

∥∥U
∣∣L2(Ω±)

∥∥2 (8)

on the space H1
εν,0(Ω

+).
Moreover, the bilinear differential form aε,µ(U ,U)Ω− is coercive for all

vector fields U ∈ H1
εν,0(Ω

−) provided they are solutions to pseudo-Maxwell’s
equation.

1. Basic Results

Our main goal is to investigate following screen type Neumann boundary
value problem (BVP) for pseudo-Maxwell’s equations:

Problem. Find U ∈ H1
εν,0(R3

C) such that
{

A(D)U = curl µ−1curlU − s ε grad div(εU)− ω2εU = 0 in R3
C ,

γ±C (πενN(D, ν)U) = g± on C ,
(9)

where s is an arbitrary positive constant and the given data g± satisfy the
conditions

g± ∈ H−1/2
εν,0 (C), g+ − g− ∈ rCH̃−1/2

εν,0 (C). (10)
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Let us consider, respectively, the single layer and double layer potential
operators

VU(x) :=
∮

S

FA(x− τ)U(τ) dS,

WU(x) :=
∮

S

[(N(D, ν(τ))FA)(x− τ)]>U(τ) dS, x ∈ Ω, (11)

related to pseudo-Maxwell’s equations in (9), where FA is a fundamental
solution to A(D).

Lemma 1.1. The direct value V−1 of the single layer potential in (11)
is invertible in the following space settings

V−1 : Hr(S) → Hr+1(S) ∀r ∈ R.

The principal symbol of the pseudodifferential operator V−1 is positive def-
inite

〈V−1,pr(X , ξ)η, η〉 ≥ c0|η|2|ξ|−1 ∀η ∈ C3 , X ∈ S, ξ ∈ R3,

for some positive constant c0.

The foregoing Lemma 1.1 enables to look for a solution of the BVP (9)–
(10) in the form

U(x) =





V(V−1)−1Φ+(x) x ∈ Ω+,

V(V−1)−1Φ−(x) x ∈ Ω− for some Φ± ∈ H1/2
εν,0(S),

where Ω± are the domains bordered by a surface S = ∂Ω+ = ∂Ω−, which
contains C as a subsurface C ⊂ S. Then U satisfies the basic differential
equation from BVP (9) in the domains Ω± and, due to the mapping prop-
erties of V we have U ∈ H1

εν,0(R3
C). Further we need to fulfill the boundary

conditions (cf. (6))

rCγS± (πενN(D, ν)U) = g± on C.
Due to the Plemelji formulae we derive the following boundary pseudodif-
ferential equations

rCP±Φ± = g± on C,
where

P± := πεν

(1
2
I ∓ (W0)∗

)
(V−1)−1

are the modified Poincaré-Steklov pseudodifferential operators of order 1.
W0 is the direct value of the double layer potential in (11), while (W0)∗ is
the adjoint operator.

Lemma 1.2. For an open subsurface C ⊂ S the operators

rCP± : H̃1/2
εν,0(C) → H−1/2

εν,0 (C)
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are coercive

Re (rCP±Φ,Φ)C ≥ c0

∥∥Φ∣∣H̃1/2
εν,0(C)

∥∥2 − c1

∥∥Φ∣∣L2,εν,0(C)
∥∥2

for some positive constants c0, c1 and all Φ ∈ H̃1/2
εν,0(C). Moreover, the

operators have the trivial kernels Ker rCP± = {0} and are invertible.
If the frequency is purely imaginary ω = iβ 6= 0, β ∈ R, the operators

rCP± are positive definite

(rCP±Φ,Φ)C ≥ M±
∥∥Φ∣∣H̃1/2

εν,0(C)
∥∥

for some positive constants M±.

Based on the foregoing lemmata in [1] we have proved the following result.

Theorem 1.3. Let 0 ≤ r < 1
2 and the condition

g± ∈ Hr−1/2
εν,0 (C), g+ − g− ∈ rCH̃r−1/2

εν,0 (C).
hold. Then the elliptic BVP (9) has a unique solution U ∈ Hr+1

εν,0(R3
C).
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