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Ehrenpreis’ fundamental principle is an existence theorem for

inhomogeneous linear partial differential equations, and has great

system-theoretic significance. Usually it is formulated for the equa-

tions defined on open convex sets. However, openness of domains of

definition is somewhat restrictive in systems theory. In this article,

we show that the principle is valid in the case of sets that are the

unions of increasing sequences of convex compact sets. Moreover,

we offer a simplified proof.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let s1, . . . , sn be indeterminates, and let ∂1, . . . , ∂n be partial differentiation operators. Put

s = (s1, . . . , sn) and ∂ = (∂1, . . . , ∂n).

Given a convex open set �⊆R
n, a polynomial matrix P∈C[s]r×p and f∈C∞(�)r , one has a linear PDE

P(∂)w = f , w ∈ C∞(�)p.

There is an obvious compatibility condition for this equation to have a solution. Indeed, choose a

maximal left annihilator Q ∈ C[s]q×r of the matrix P (that is, a matrix for which the sequence
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C[s]q Qtr→ C[s]r Ptr→ C[s]p is exact). Then Q(∂) ◦ P(∂) = 0, and consequently, if the equation is

solvable,

Q(∂)f = 0

necessarily. The Ehrenpreis Fundamental Principle states that this condition is sufficient as well.

Needless to say that this is a very important result. It is due toEhrenpreis,Malgrange andPalamodov.

A proof can be found in Hörmander [2] (see Theorem 7.6.13).

TheFundamentalPrinciple isofgreat importance in linear systems theoryas it yields theelimination

theorem (see [6,8–11]).

Unfortunately, the principle, in the form above, does not apply for linear PDE’s defined on sets that

are not open but are interesting for applications (say, Rn+, for example). One wants therefore to relax

the requirement that the domains of definition are open.

In this article, we shall extend the Fundamental Principle to linear PDE’s defined on convex Fσ -sets

with nonempty interior.

We remind that a subset of R
n is said to be an Fσ -set if it is the union of a countable number of

closed sets (see Kechris [4] about Fσ -sets.) Every closed set trivially is an Fσ -set; it is not difficult to

see that every open set is an Fσ -set. Certainly, the union of countably many Fσ -sets is an Fσ -set, and

the intersection of finitely many Fσ -sets is an Fσ -set. Notice that an Fσ -set can be written as the union

of an increasing sequence of bounded closed sets.

Remark. From the topological point of view, the simplest sets ofRn are the open sets and the closed

sets. Next come theGδ-sets (= countable intersections of open sets) and the Fσ -sets (= countable unions

of closed sets). Continuing this way, one builds up the family of Borel sets, which include most of the

sets that arise naturally in mathematical practice.

In what follows, � ⊆ R
n is a fixed convex Fσ -set with nonempty interior.

By a compact set, let us mean a subset of R
n that is the closure of a bounded open subset in R

n. It

is a standard fact that the convex hull of a bounded closed set is bounded and closed. Using this, one

can easily show that � is the union of an increasing sequence

K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · ·
of convex compact sets.

Given a compact subset K ⊆ R
n, for every k ∈ Z+, let Ck(K) denote the space of complex valued

functions f on K such that f has continuous derivatives up to order k in the interior of K and all these

derivatives extend continuously to K . Then Ck(K) has the natural structure of a Banach space (see

Example 5.16(6) in Meise and Vogt [5]). One defines in an obvious way C∞-functions on K . Follow-

ing the tradition, we denote the space of such functions by E(K). This is the projective limit of the

system

C0(K)← C1(K)← C2(K)← C3(K)← · · · ,
and consequently this is a Fréchet space.

A function f : �→ C is said to be of class C∞ if

f |K ∈ E(K)

for every compact K in �. The space of all such functions will be denoted by E(�). One defines in an

obvious way the derivatives of a function f ∈ E(�). For every compact K ⊆ � and for every integer

k ∈ Z+, one defines the seminorm || ||K,k by the formula

||f ||K,k = sup{|∂ if (t)| : t ∈ K, |i| � k}.
(Here i = (i1, . . . , in) ∈ Z

n+, and ∂ i = (∂
i1
1 · · · ∂ in

n ) and |i| = i1+· · · in. These seminormsmake E(�)
into a Fréchet space. Indeed, one can see that E(�) is the projective limit of

E(K0)← E(K1)← E(K2)← E(K3)← · · · .
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(Notice that it can be viewed also as the projective limit of

C0(K0)← C1(K1)← C2(K2)← C3(K3)← · · · .)
The strong dual V ′ of a locally convex space V is the space of all continuous linear functionals on V ,

equippedwith the strong dual topology, i.e., the topology of uniform convergence on bounded subsets

of V .
For every compact set K , we let E ′(K) denote the strong dual of E(K). This is precisely the space of

distributions ofRn having support in K . Similarly, E ′(�)will stand for the strong dual of E(�). Remark

that

E ′(�) =⋃

K

E ′(K),

where K ranges over compact subsets of �.

One defines an exponential function as a function of the form

f (x)eλ·x, x ∈ R
n,

where f is a polynomial and λ ∈ C
n. (With obvious notation, λ · x = λ1x1 + · · · + λnxn.)

The following result will be our starting point.

Lemma 1. Let K be a convex compact set, and let R be a polynomial matrix, say, of size p × q. Then the

space of continuous linear functionals on E(K)q vanishing on the exponential solutions of the equation

R(∂)w = 0, w ∈ E(K)q (1)

is equal to Rtr(−∂)E ′(K)p.

The proof of this difficult result can be found in the proof of Theorem 7.6.14 in Hörmander [2]. (The

proof there is for the case when a linear PDE is defined on a convex open set. But it is easily seen (and

Hörmander himself remarks) that it applies also when a linear PDE is defined on a convex compact

set. The proof applies since, as remarked already, for compact K , E ′(K) is the space of distributions of

R
n with support in K .)

We shall see that very little beyond the above lemma is needed to prove the Fundamental Principle.

2. Preliminaries

Let R be a polynomial matrix of size p× q, and let B be the solution set of the equation

R(∂)w = 0, w ∈ E(�)q. (2)

We have a canonical duality

E ′(�)q × E(�)q→ C.

For X ⊆ E(�)q and Y ⊆ E ′(�)q, one defines in an obvious way the orthogonal sets X⊥ and Y⊥. It is
clear that both these sets are closed linear subspaces. For later use, we remark that if X ⊆ E(�)q is a

linear subspace, then

X = X⊥⊥.

This follows from the bipolar theorem (see Theorem 22.13 in Meise and Vogt [5]). If one wants, one

can easily deduce it directly from the Hahn–Banach theorem.

Let E denote the space of the linear combinations of exponential functions. The following lemma

is a generalization of Lemma 1.
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Lemma 2. There holds

(B ∩ Eq)⊥ = Rtr(−∂)E ′(�)p.

Proof. The inclusion "⊆" is immediate from Lemma 1. Indeed, let f ∈ E ′(�)q. Then f ∈ E ′(K)q for

some convex compact subset K ⊆ �. Clearly, the exponential solutions of (2) are the same as the

exponential solutions of (1). Consequently, if f ∈ (B ∩ Eq)⊥, then, by Lemma 1,

f ∈ Rtr(−∂)E ′(K)p ⊆ Rtr(−∂)E ′(�)p.

The reverse inclusion "⊇" is elementary. Indeed, if g ∈ E ′(�)p, then, for every w ∈ B, we have

〈Rtr(−∂)g,w〉 = 〈g, R(∂)w〉 = 〈g, 0〉 = 0;
hence, Rtr(−∂)g ∈ (B ∩ Eq)⊥.

The proof is complete. �

Corollary 1 (Malgrange’s approximation theorem).

B ∩ Eq = B.

Proof. As already said, for every g ∈ E ′(�)p and every w ∈ E(�)q, we have

〈Rtr(−∂)g,w〉 = 〈g, R(∂)w〉.
Using this, we can easily see that

(Rtr(−∂)E ′(�)p)⊥ = B.

From this (and from the lemma), we get

B ∩ Eq = (B ∩ Eq)⊥⊥ = (Rtr(−∂)E ′(�)p)⊥ = B.

The proof is complete. �

A very important consequence of Lemma 2 is also the following

Corollary 2. Rtr(−∂)E ′(�)p is closed in E ′(�)q.

Proof. Any linear subspace that is orthogonal to some set is closed. �

We shall recall now a bit of "Local Duality" (see Grothendieck [3, Ch. III]).

For every λ ∈ C
n, let Mλ be the maximal ideal of C[s] generated by s1 − λ1, . . . , sn − λn. It is

worth noting that the k-th power Mk
λ of the ideal Mλ is generated by the "λ-monomials"

(s1 − λ1)
i1 . . . (sn − λn)

in , i1 + · · · + in = k.

Let Hλ denote the space of linear functionals on C[s] that are continuous with respect to theMλ-adic

topology; that is,

Hλ = {ϕ ∈ HomC(C[s], C) : ϕ vanishes on some power ofMλ}.
We shall view Hλ as a module over C[s]. (The module structure is defined by the formula (fϕ)(g) =
ϕ(fg).)

Lemma 3 (Local duality theorem). Let A be a finitely generated C[s]-module such that Mk
λA = 0 for

some k � 0. There is a canonical isomorphism
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HomC[s](A,Hλ) � HomC(A, C).

Proof. For u ∈ HomC[s](A,Hλ), let ũ denote the linear map

a �→ (u(a))(1), a ∈ A.

Next, for χ ∈ HomC(A, C) and a ∈ A, define χa : C[s] → C to be

f �→ χ(fa), f ∈ C[s].
It is easily seen that χa vanishes onMk

λ, and hence belongs to Hλ. We leave to the reader to check that

the mappings

u→ ũ and χ �→ [a �→ χa]
are inverse to each other.

The proof is complete. �

Lemma 4. For every λ, Hλ is an injective module.

Proof. Suppose that I is an ideal of C[s], and let u : I → Hλ be an arbitrary homomorphism. Since I

is finitely generated, we can find k such that Mk
λu(I) = 0. Then u vanishes on the ideal Mk

λI. Further,

by the Artin–Rees lemma (see Bourbaki [1, Ch. III, §3]), there exists l such that

Ml
λ ∩ I ⊆ Mk

λI.

It follows thatuvanishesonMl
λ∩I, and therefore inducesa canonicalhomomorphismfrom I/(Ml

λ∩I) to
Hλ. We have a canonical embedding I/(Ml

λ∩ I)→ C[s]/Ml
λ. Applying the exact functorHomC(−, C)

to it, we get a surjective homomorphism

HomC(C[s]/Ml
λ, C)→ HomC(I/(Ml

λ ∩ I), C).

In view of the previous lemma, this yields a surjective homomorphism

HomC[s](C[s]/Ml
λ,Hλ)→ HomC[s](I/(Ml

λ ∩ I),Hλ).

Thus, thehomomorphism I/(Ml
λ∩I)→ Hλ canbeextended to somehomomorphismC[s]/Ml

λ → Hλ.

The compositionC[s] → C[s]/Ml
λ→ Hλ is a homomorphism that extends the givenhomomorphism

u.

The proof is complete. �

3. Ehrenpreis’ fundamental principle

Given λ ∈ C
n and k ∈ Z+, we set

Eλ,k = {f (x)eλ·x : f is a polynomial of degree � k − 1}.
Remark that Eλ,k is the solution set of the equations

(∂1 − λ1)
i1 . . . (∂n − λn)

in y = 0, i1 + · · · + in = k.

The following result can be found in Oberst [7, Section 6].

Lemma 5. There is a canonical isomorphism

Eλ,k � HomC(C[s]/Mk
λ, C).
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Proof. Consider the canonical pairing

C[s] × Eλ,k → C

defined by

(f , g) �→ (f (∂)g)(0).

This certainly is nondegenerate from the right. From the remark above, it follows that Mk
λ annihilates

Eλ,k . So that we have a pairing

C[s]/Mk
λ × Eλ,k → C.

Again, this is nondegenerate from the right. As both spaces have the same dimension, the pairingmust

be nondegenerate from the left as well.

This completes the proof. �

For λ ∈ C
n, let Eλ denote the set of all exponential functions of “type λ”, that is, the union of all

Eλ,k , k � 0. As it is differentiation invariant, it can be viewed as a module over C[s].
Lemma 5 yields an isomorphism

Eλ � Hλ.

Hence, by Lemma 4, the modules Eλ are injective. We conclude that

E = ⊕Eλ

is an injective module.

Before proceeding let us recall the following useful fact about continuous linear maps between

Fréchet spaces.

Lemma 6 (Closed range theorem). Let A : V → W be a continuous linear operator of Fréchet spaces.

Then

A(V) is closed in W ⇔ A′(W ′) is closed in V ′.

Proof. See Theorem 26.3 in Meise and Vogt [5]. �

We are now ready to prove the Ehrenpreis Fundamental Principle.

Theorem 1. Let P ∈ C[s]r×p and Q ∈ C[s]q×r be two polynomial matrices such that the sequence

C[s]q Qtr→ C[s]r Ptr→ C[s]p (3)

is exact. Then the sequence

E(�)p
P(∂)→ E(�)r

Q(∂)→ E(�)q

is exact.

Proof. By Corollary 2, the image of

E ′(�)r
Ptr(−∂)→ E(�)′p

is closed. Using Lemma 6, we obtain from this that

E(�)p
P(∂)→ E(�)r
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has closed image. Obviously, this image is contained in KerQ(∂), and therefore we only need to show

that P(∂)E(�)p is dense in KerQ(∂).
Because E is an injective module, (3) gives rise to the exact sequence

Ep
P(∂)→ Er

Q(∂)→ Eq.

In other words, we have that

P(∂)Ep = KerQ(∂) ∩ Er .

Using Corollary 1, we conclude

P(∂)Ep = KerQ(∂).

The proof is complete. �
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