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Abstract

In this paper we provide a simple version of Oberst’s duality between finitely generated polynom
modules and the solution sets of partial differential (and difference) equations.
 2004 Elsevier Inc. All rights reserved.

The spaceC∞(Ω), whereΩ is a connected open subset ofRr , can be viewed in
an obvious way as a module overR[s] = R[s1, . . . , sr ]. If R is a matrix with entries in
R[s], then the solution set of the associated partial differential equationR(D)ξ = 0 is
equal (as noticed by Malgrange [4]) to HomR[s](M,C∞(Ω)) with M = CokerRtr. One
is led therefore to consider the functor HomR[s](−,C∞(Ω)) defined on finitely generate
polynomial modules. It is a theorem of Ehrenpreis, Malgrange and Palamodov th
functor is exact, i.e., the moduleC∞(Ω) is injective. (For this deep result we ref
the reader to Hörmander [2], for example.) As is well known (see Matlis [5]), e
injective module over a commutative noetherian ring is a direct sum of indecompo
injective modules, which are classified via the prime ideals. In [7] Oberst has prove
C∞(Ω) is a “large” injective module (i.e.,C∞(Ω) contains at least one indecomposa
injective module of each type). From this (difficult) theorem, using the general dual
theory developed in Oberst [6] and Roos [10], Oberst has obtained that the functor
establishes a duality between the category of finitely generated polynomial modul
the category of the solution sets of partial differential equations. Oberst has show
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r+ , wherek is an arbitrary discrete field, also is a large injective module, and henc

function space also gives rise to a duality. (However, this case is considerably easie
The goal of this paper is to present a simple version of Oberst’s duality.
Let k be an arbitrary field equipped with an absolute value| | and complete with

respect to this absolute value. (One may assume thatk is eitherR or C, or an arbitrary
discrete field.) Letr be an arbitrary positive integer, and lets1, . . . , sr be indeterminates
Put t1 = s−1

1 , . . . , tr = s−1
r , and puts = (s1, . . . , sr ) andt = (t1, . . . , tr ). By a multi-index

we mean any element ofZr+. If f = (f1, . . . , fr ) is any sequence of rational function

then for each multi-indexi = (i1, . . . , ir ) ∈ Zr+, we write f i = f
i1
1 · · ·f ir

r . The degree
of a polynomialf = ∑

ais
i , denoted by degf , is the supremum of those multi-indic

i for which ai �= 0. (We consider the componentwise order on the set of multi-indi
Following [7, 6.60], we call a rational functionf/g proper, if degf � degg and the
coefficient atsdegg in g is distinct from 0. LetO denote the ring of proper ration
functions. (It is interesting to note thatO is the local ring of the “most infinite” poin
in (P1)r .) Clearly,O is contained in the ring of formal seriesk[[t]]. On the latter one ha
left shift operatorsσ1, . . . , σr making it ak[s]-module. Throughout,O will be regarded as
a k[s]-submodule ofk[[t]].

Call a (finite) point any sequencep = (p1, . . . , pr ), wherep1 ∈ k[s1], . . . , pr ∈ k[sr ]
are monic irreducible univariate polynomials. LetIp denote the ideal ink[s] generated
by the entries ofp. By Hilbert’s Nullstellensatz (see Proposition 2(iii) in [1, Chapter V]),
points are in a canonical one-to-one correspondence with maximal ideals ofk[s] (i.e., with
closed points of the affine spaceAr ).

Let p = (p1, . . . , pr ) be a point, and letd1, . . . , dr be the degrees of the polynomia
p1, . . . , pr . For each nonnegative integern, define

Ep(n) =
⊕

i,j

k · si

pj
,

where

(1, . . . ,1) � i � (d1, . . . , dr) and (1, . . . ,1) � j � (n, . . . , n).

This is ak[s]-submodule ofO . To see this it suffices to note thatEp(n) can be defined als
as the image of the canonical embedding

r⊗

l=1

sl

pn
l

k[sl]/slk[sl] → O.

SetEp = ⋃
Ep(n).

The module

E =
⊕

Ep,
p
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which is a submodule inO , will be of special significance for this paper. This module
been investigated comprehensively in [8]. In particular, it has been shown there that this
the minimal injective cogenerator overk[s]. For the sake of completeness, we include h
the following

Lemma 1. The moduleE is a cogenerator.

Proof. By [3, Theorem 19.8], we have to show that for each maximal idealm, E contains
a copy of the injective hull ofk[s]/m.

Let m be any maximal ideal ofk[s], and letp = (p1, . . . , pr ) be the associated poin
Consider the canonical homomorphism

r⊗

l=1

k[sl]/pn
l k[sl] → k[s]/In

p,

which clearly is injective. Because both of the modules have the same dimension overk it
must be an isomorphism. It follows that there is a canonical isomorphism

r⊗

l=1

Hom
(
k[sl]/pn

l k[sl], k
) � Hom

(
k[s]/In

p , k
)
.

Further, for each 1� l � r, there are canonical isomorphisms

sl

pn
l

k[sl]/slk[sl] � 1

pn
l

k[sl]/k[sl] � k[sl]/pn
l k[sl] � Homk

(
k[sl]/pn

l k[sl], k
)
,

and we see thatEp(n) is canonically isomorphic to Homk(k[s]/In
p, k). Thus, we have a

canonical isomorphism

Ep � lim−→
n

Homk

(
k[s]/In

p , k
)
.

The right-hand side represents the functor

M �→ lim−→
n

Homk

(
M/In

pM,k
)
,

which is exact by the Artin–Rees lemma (see [1, Chapter III, §3, Proposition 1]). H
the moduleEp is injective. Finally, sinceEp(1) is isomorphic tok[s]/Ip, which obviously
containsk[s]/m, we conclude thatEp contains the injective hull ofk[s]/m. (It can be
shown easily that, in fact,Ep coincides with this injective hull.) �
Remark. Forf ∈ k[s] andg ∈ O , define〈g,f 〉 to be the constant term offg ∈ k((t)). We
then get ak-bilinear form. Everyg ∈ O determines therefore a canonical linear functio
on k[s]. From the proof above we see thatEp consists of thoseg ∈ O for which the linear
functional〈g,−〉 vanishes on some power ofIp .



794 V. Lomadze / Journal of Algebra 275 (2004) 791–800

s as
s

.

as
Assume now we are given a triple(U,L,ev), whereU is ak[s]-module,L an injective
k[s]-homomorphism ofE into U andeva k-linear functional onU such that the diagram

E U

k

is commutative. (ByE → k we mean the canonicalk-linear functional onE determined
by

∑
bit

i �→ b0.)
We shall think of elements ofU as functions that we can differentiate as many time

we please. Multiplications bys1, . . . , sr in U will be interpreted as partial differentiation
and will be denoted byD1, . . . ,Dr , respectively. Ifh = (h1, . . . , hr ) is a multi-index, we
let Dh denote the partial differentiation operatorDh = D

h1
1 · · ·Dhr

r . We shall think ofL as
the (inverse) Laplace transform and of functions of the formLg as exponential functions
The mapevcan be viewed as the “evaluation map at 0”. Given a functionξ ∈ U , we shall
write ξ(0) for ev(ξ).

Here are examples that are of interest.

Example 1. Let k = R or C, and letΩ be a connected open subset inRr . (Without
loss of generality we may assume thatΩ contains the origin.) SetU = C∞(Ω). For
g = ∑

bit
i ∈ E, defineLg ∈ U by the formula

(Lg)(x) =
∑

i�0

bi
xi

i! , x ∈ Ω.

(Herei = (i1, . . . , ir ), x = (x1, . . . , xr), xi = x
i1
1 · · ·xir

r , i! = i1! · · · ir !.) Finally, for every
ξ ∈ U , put

ev(ξ) = ξ(0).

Example 2. Let U = kZ
r+ . Forg = ∑

bit
i ∈ E, defineLg ∈ U by the formula

(Lg)(i) = bi, i ∈ Z
r+.

For everyξ ∈ U , put

ev(ξ) = ξ(0).

Remark. In view of Example 2, all what follows isapplicable to difference equations
well, and this justifies the title of the paper.

For each multi-indexn and positive numberδ, define

Un,δ = {
ξ ∈ U

∣∣ ∣∣Diξ(0)
∣∣ < δ for all i � n

}
.
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We declare the setsUn,δ as a basis of neighbourhoods of 0 for a topology onU . Remark
that this topology, in general, is not separate. (This is the case in Example 1.) Note t

{
0̄
} = {

ξ ∈ U | Diξ(0) = 0 for all i � 0
}
.

Obviously, DhUn+h,δ ⊆ Un,δ . It immediately follows from this thatDh :U → U is
continuous, and hence all differential operators of the formR(D) :Uq → Up , whereR

is a polynomialp × q matrix, are continuous.
For each multi-indexn, set

U(n) = {
ξ ∈ U | Diξ(0) = 0 for all i � n

}
.

The Taylor polynomial of degreen of a functionξ ∈ U is defined to be

Tn(ξ) =
∑

i�n

Diξ(0)ti .

For a fixedn, ξ �→ Tn(ξ) is a k-linear map intok[t]�n, the space of polynomials int
of degree� n. BecauseE containsEs = k[t], this map must be surjective. The kern
obviously isU(n), and henceTn induces a canonicalk-linear isomorphism

U/U(n) � k[t]�n.

Given a topologicalk-linear spaceX , let us writeX ∗ for Homcont
k (X , k). Likewise, ifφ is

a continuous linear map of topologicalk-linear spaces, writeφ∗ to denote Homcont
k (φ, k).

Lemma 2. We have

U∗ = k[s] and
(
Dh

)∗ = sh.

Proof. One can see that a linear functional onU is continuous if and only if it vanishes o
someU(n). Linear functionals vanishing onU(n) can be identified with linear functiona
on U/U(n) and hence with linear functionals onk[t]�n. Linear functionals on this latte
can be identified with polynomials ink[s]�n, the space of polynomials ins of degree� n.
The union of allk[s]�n is k[s], and the first equality is shown.

Further, for eachn, we have a canonical linear map

Dh :U/U(n + h) → U/U(n),

which can be identified with

σh : k[t]�n+h → k[t]�n.

(Hereσh = σ
h1
1 · · ·σhr

r .) The dual of this latter can be identified with

sh : k[s]�n → k[s]�n+h.
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The direct limit of these linear maps issh : k[s] → k[s], and the proof of the second equal
is complete. �
Corollary 3. For each nonnegative integerl and for each polynomial matrixR we have

(
U l

)∗ = k[s]l and R(D)∗ = Rtr.

Lemma 4. LetX be a linear subspace inUq (equipped with the induced topology). Then

(
Uq

)∗ →X ∗

is surjective.

Proof. We have injective linear maps of finite dimensional linear spaces

X /
(
X ∩ Uq(n)

) → Uq/Uq(n).

Consequently, we have surjective linear maps

(
Uq/Uq (n)

)∗ → (
X /

(
X ∩ Uq(n)

))∗
.

Taking the direct limit, we complete the proof.�
We remark that there are sufficiently many continuous linear functionals onX ⊆ Uq (in

other words, for eachξ ∈ X that does not belong to{0̄}, there exists a continuous line
functionalf :X → k such thatf (ξ) �= 0).

LetX andY be topologicalk-linear spaces, and letφ1 andφ2 be two continuous linea
maps from the first one to the other. Let us say thatφ1 andφ2 are essentially equal (an
denote this byφ1 ≡ φ2) if

∀x ∈X , φ1(x) ≡ φ2(x) mod
{
0̄
}
.

Assuming thatY has sufficiently many continuous linear functionals, we have
following obvious

Lemma 5. φ1 ≡ φ2 if and only ifφ∗
1 = φ∗

2.

The ringk[s] can be viewed as a topological ring. (The topology onk[s] is the inductive
limit of the canonical topologies onk[s]�n, n ∈ Zr+.) One therefore has the notion
a topologicalk[s]-module. It is worth noting that giving a topologicalk[s]-module is
equivalent to giving a topologicalk-linear space together withr pairwise commuting
continuousk-linear endomorphisms.

LetR be a polynomial matrix, say, of sizep×q . Then, the solution set of the differenti
equation

R(D)ξ = 0, ξ ∈ Uq
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(together with the topology induced fromUq ) is a topologicalk[s]-module. We define a
linear (dynamical) system as a topologicalk[s]-module that is isomorphic to the solutio
set of a differential equation. (Warning: This definition is not exactly the same as that giv
in [7,9], since it takes into account a specific topology.) Define a differential operator
one linear system to another as an equivalence class of essentially equal continuok[s]-
homomorphisms. The set of all differential operators fromS to T denote by Diff(S,T ).
The following example, where differential operators fromUq to Up are described, ca
serve as a justification of this definition.

Example 3. Let φ be any continuousk[s]-homomorphism fromUq toUp . By Corollary 3,
there exists a polynomial matrixR such thatφ∗ = Rtr. We clearly haveR(D)∗ = φ∗ and,
using Lemma 5, we see thatφ ≡ R(D). Let nowR1 andR2 be polynomial matrices of siz
p × q such thatR1(D) ≡ R2(D). Then,R1(D)∗ = R2(D)∗. Applying again Corollary 3
we see thatRtr

1 = Rtr
2 . Hence,R1(D) = R2(D). We conclude that

Diff
(
Uq ,Up

) = {
R(D) | R ∈ k[s]p×q

}
.

One can define in an obvious way compositions of differential operators, and on
check easily that linear systems (together with differential operators) form a category. L
us denote this category by Syst.

Denote by Modthe category of finitely generatedk[s]-modules. We are going to sho
that Modand Systare dual to each other.

Let M ∈ Mod. Choose generatorsm1, . . . ,mq of M. It is easy to see that the sets

{
ϕ ∈ Hom(M,U) | ϕ(m1), . . . , ϕ(mq) ∈ Un,δ

}
,

wheren is a multi-index andδ a positive number, determine a topology on Hom(M,U)

for which they constitute a fundamentalsystem of neighbourhoods of 0. One can ch
easily that this topology does not depend on the choice of a set of generators a
module Hom(M,U) together with this topology is a topologicalk[s]-module. We call it
the behavior ofM and denote by Bh(M).

The following simple nice fact was observed by Malgrange (see [4]).

Lemma 6. Let R be a polynomial matrix. ThenKerR(D) is canonically isomorphic to
Bh(M), whereM denotes the cokernel ofRtr.

Proof. Let p × q be the size ofR. We then have an exact sequence

k[s]p Rtr

k[s]q M 0.

From this we obtain an exact sequence

0 Hom(M,U) Uq
R(D)

Up,
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which yields a canonical isomorphism

Hom(M,U) � KerR(D).

Taking the generators ofM determined by the epimorphismk[s]q → M, one can easily se
that the isomorphism is valid in the topological sense as well. The proof is complete�

The lemma above implies immediately that ifM is a finitely generatedk[s]-module,
then Bh(M) is a linear system. Given ak[s]-homomorphismf of finitely generated
modules, define Bh(f ) to be Homk[s](f,U). Clearly this is a continuous homomorphis
Thus Bh is a functor from Modto the category of topologicalk[s]-modules.

It is clear that ifX is a topologicalk[s]-module, thenX ∗ is ak[s]-module. Likewise, if
φ is a continuousk[s]-homomorphism, thenφ∗ is a k[s]-homomorphism. The following
says that the composition I= ∗ ◦ Bh is canonically isomorphic to the identity functor (
Mod).

Theorem 7. (a)If M is a finitely generatedk[s]-module, then the canonical homomorphi

M → I(M)

is an isomorphism.
(b) If f :M → N is a k[s]-homomorphism of finitely generated modules, then

canonical diagram

M

f

� I(M)

I(f )

N � I(N)

is commutative.

Proof. (a) By Corollary 3, the assertion is true whenM is of the formk[s]l . In the genera
case,M admits a finite presentation

k[s]p → k[s]q → M → 0.

Applying the functor I to this exact sequence (and using again Corollary 3), we
sequence

k[s]p → k[s]q → I(M) → 0.

This is a complex, of course. By Lemma 4, this complex is exact at I(M), and hence ou
homomorphism is surjective.

To show the injectivity, take any 0�= x ∈ M. BecauseE is a cogenerator we can fin
a homomorphismg :M → E such thatg(x) �= 0. At least one of the coefficients in th
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expansion ofg(x), say, the coefficient att i , is distinct from 0. Becausesig is also a
homomorphism ofM into E and(sig(x))(0) �= 0, we see that the image ofx under our
homomorphism is not zero.

(b) The homomorphismf can be included into a commutative diagram

k[s]p k[s]q M 0

k[s]l k[s]m N 0

with exact rows. From this we get a commutative diagram

k[s]p k[s]q I(M) 0

k[s]l k[s]m I(N) 0

also having exact rows. (The exactness is seen from the proof of (a).) This comple
proof. �

The following important result was obtained by Oberst (see [7, Theorem 2.61]).

Corollary 8. Let R1 and R2 be polynomial matrices with sizesm1 × q and m2 × q ,
respectively, and letS1 andS2 be the corresponding linear systems. ThenS1 ⊆ S2 if and
only if there is a polynomial matrixX such thatR2 = XR1.

Proof. The “if” part is obvious.
“Only if”. Let M1 = S∗

1 andM2 = S∗
2 . FromS1 ⊆ S2 ⊆ Uq , using the functoriality of∗

and Corollary 3, we see that the diagram

k[s]m2
Rtr

2
k[s]q M2 0

k[s]m1
Rtr

1
k[s]q M1 0

is commutative. By the theorem above, the rows in this diagram are exact. This impl
assertion. �

The following can be viewed as a generalization of Example 3.

Theorem 9. LetM andN be finitely generatedk[s]-modules.
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(a) Every continuousk[s]-homomorphismφ : Bh(N) → Bh(M) is essentially equal to
Bh(f ) for somek[s]-homomorphismf :M → N .

(b) If f1, f2 :M → N are two k[s]-homomorphisms, thenBh(f1) and Bh(f2) are
essentially equal if and only if they are equal.

Proof. The arguments are as in Example 3. (We need only apply Theorem 7 inste
Corollary 3.) �

The theorem above says that differential operators from Bh(N) to Bh(M) can be
identified with continuousk[s]-homomorphisms of the form Bh(f ).

We call an observable of a linear systemS any continuous linear functional on it. (Th
term is borrowed from [9].) Denote by Ob(S) the module of observables ofS (i.e., the
moduleS∗). Given a differential operatorΦ :S → T , define Ob(Φ) to beφ∗, whereφ is
a representative ofΦ.

Theorem 10. The functorsBh andObestablish a duality between the categoriesMod and
Syst.

Proof. By the Malgrange lemma, every object of Systis isomorphic to an object of th
form Bh(M) with M ∈ Mod. By the previous theorem, ifM,N ∈ Mod, then the canonica
map

Hom(M,N) → Diff
(
Bh(N),Bh(M)

)

is bijective. The proof is complete.�
An important consequence of this theorem is that the category Systis abelian. This

means, in particular, that one can speak about the kernels, images and coker
differential operators of linear systems.
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