

Journal of Algebra 275 (2004) 791-800

www.elsevier.com/locate/jalgebra

On duality for partial differential (and difference) equations $\stackrel{\text{\tiny{$\stackrel{l}{\sim}$}}}{\to}$

Vakhtang Lomadze

Institute of Mathematics, Tbilisi 0193, Republic of Georgia Received 25 April 2003 Communicated by Paul Roberts

Abstract

In this paper we provide a simple version of Oberst's duality between finitely generated polynomial modules and the solution sets of partial differential (and difference) equations. © 2004 Elsevier Inc. All rights reserved.

The space $C^{\infty}(\Omega)$, where Ω is a connected open subset of \mathbb{R}^r , can be viewed in an obvious way as a module over $\mathbb{R}[s] = \mathbb{R}[s_1, \ldots, s_r]$. If R is a matrix with entries in $\mathbb{R}[s]$, then the solution set of the associated partial differential equation $R(D)\xi = 0$ is equal (as noticed by Malgrange [4]) to $\operatorname{Hom}_{\mathbb{R}[s]}(M, C^{\infty}(\Omega))$ with $M = \operatorname{Coker} R^{\operatorname{tr}}$. One is led therefore to consider the functor $\operatorname{Hom}_{\mathbb{R}[s]}(-, C^{\infty}(\Omega))$ defined on finitely generated polynomial modules. It is a theorem of Ehrenpreis, Malgrange and Palamodov that this functor is exact, i.e., the module $C^{\infty}(\Omega)$ is injective. (For this deep result we refer the reader to Hörmander [2], for example.) As is well known (see Matlis [5]), every injective module over a commutative noetherian ring is a direct sum of indecomposable injective modules, which are classified via the prime ideals. In [7] Oberst has proved that $C^{\infty}(\Omega)$ is a "large" injective module (i.e., $C^{\infty}(\Omega)$ contains at least one indecomposable injective module of each type). From this (difficult) theorem, using the general duality theory developed in Oberst [6] and Roos [10], Oberst has obtained that the functor above establishes a duality between the category of finitely generated polynomial modules and the category of the solution sets of partial differential equations. Oberst has shown that

^{*} This research was supported in part by the INTAS grant 00-259. *E-mail address:* loma@rmi.acnet.ge.

^{0021-8693/\$ –} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2003.07.022

 $k^{\mathbb{Z}_{+}^{r}}$, where k is an arbitrary discrete field, also is a large injective module, and hence this function space also gives rise to a duality. (However, this case is considerably easier.)

The goal of this paper is to present a simple version of Oberst's duality.

Let k be an arbitrary field equipped with an absolute value || and complete with respect to this absolute value. (One may assume that k is either \mathbb{R} or \mathbb{C} , or an arbitrary discrete field.) Let r be an arbitrary positive integer, and let s_1, \ldots, s_r be indeterminates. Put $t_1 = s_1^{-1}, \ldots, t_r = s_r^{-1}$, and put $s = (s_1, \ldots, s_r)$ and $t = (t_1, \ldots, t_r)$. By a multi-index we mean any element of \mathbb{Z}_+^r . If $f = (f_1, \ldots, f_r)$ is any sequence of rational functions, then for each multi-index $i = (i_1, \ldots, i_r) \in \mathbb{Z}_+^r$, we write $f^i = f_1^{i_1} \cdots f_r^{i_r}$. The degree of a polynomial $f = \sum a_i s^i$, denoted by deg f, is the supremum of those multi-indices.) Following [7, 6.60], we call a rational function f/g proper, if deg $f \leq \deg g$ and the coefficient at $s^{\deg g}$ in g is distinct from 0. Let O denote the ring of proper rational functions. (It is interesting to note that O is the local ring of the "most infinite" point in $(\mathbb{P}^1)^r$.) Clearly, O is contained in the ring of formal series k[[t]]. On the latter one has left shift operators $\sigma_1, \ldots, \sigma_r$ making it a k[s]-module. Throughout, O will be regarded as a k[s]-submodule of k[[t]].

Call a (finite) point any sequence $p = (p_1, ..., p_r)$, where $p_1 \in k[s_1], ..., p_r \in k[s_r]$ are monic irreducible univariate polynomials. Let I_p denote the ideal in k[s] generated by the entries of p. By Hilbert's Nullstellensatz (see Proposition 2(iii) in [1, Chapter V]), points are in a canonical one-to-one correspondence with maximal ideals of k[s] (i.e., with closed points of the affine space \mathbb{A}^r).

Let $p = (p_1, ..., p_r)$ be a point, and let $d_1, ..., d_r$ be the degrees of the polynomials $p_1, ..., p_r$. For each nonnegative integer *n*, define

$$E_p(n) = \bigoplus_{i,j} k \cdot \frac{s^i}{p^j},$$

where

$$(1, ..., 1) \le i \le (d_1, ..., d_r)$$
 and $(1, ..., 1) \le j \le (n, ..., n)$.

This is a k[s]-submodule of O. To see this it suffices to note that $E_p(n)$ can be defined also as the image of the canonical embedding

$$\bigotimes_{l=1}^{r} \frac{s_l}{p_l^n} k[s_l] / s_l k[s_l] \to O.$$

Set $E_p = \bigcup E_p(n)$. The module

$$E = \bigoplus_{p} E_{p},$$

which is a submodule in O, will be of special significance for this paper. This module has been investigated comprehensively in [8]. In particular, it has been shown there that this is the minimal injective cogenerator over k[s]. For the sake of completeness, we include here the following

Lemma 1. The module E is a cogenerator.

Proof. By [3, Theorem 19.8], we have to show that for each maximal ideal \mathfrak{m} , *E* contains a copy of the injective hull of $k[s]/\mathfrak{m}$.

Let m be any maximal ideal of k[s], and let $p = (p_1, ..., p_r)$ be the associated point. Consider the canonical homomorphism

$$\bigotimes_{l=1}^{r} k[s_l]/p_l^n k[s_l] \to k[s]/I_p^n,$$

which clearly is injective. Because both of the modules have the same dimension over k it must be an isomorphism. It follows that there is a canonical isomorphism

$$\bigotimes_{l=1}^{r} \operatorname{Hom}(k[s_{l}]/p_{l}^{n}k[s_{l}],k) \simeq \operatorname{Hom}(k[s]/I_{p}^{n},k).$$

Further, for each $1 \leq l \leq r$, there are canonical isomorphisms

$$\frac{s_l}{p_l^n}k[s_l]/s_lk[s_l] \simeq \frac{1}{p_l^n}k[s_l]/k[s_l] \simeq k[s_l]/p_l^nk[s_l] \simeq \operatorname{Hom}_k(k[s_l]/p_l^nk[s_l], k),$$

and we see that $E_p(n)$ is canonically isomorphic to $\operatorname{Hom}_k(k[s]/I_p^n, k)$. Thus, we have a canonical isomorphism

$$E_p \simeq \varinjlim_n \operatorname{Hom}_k(k[s]/I_p^n, k).$$

The right-hand side represents the functor

$$M \mapsto \varinjlim_n \operatorname{Hom}_k(M/I_p^n M, k),$$

which is exact by the Artin–Rees lemma (see [1, Chapter III, §3, Proposition 1]). Hence, the module E_p is injective. Finally, since $E_p(1)$ is isomorphic to $k[s]/I_p$, which obviously contains k[s]/m, we conclude that E_p contains the injective hull of k[s]/m. (It can be shown easily that, in fact, E_p coincides with this injective hull.)

Remark. For $f \in k[s]$ and $g \in O$, define $\langle g, f \rangle$ to be the constant term of $fg \in k((t))$. We then get a *k*-bilinear form. Every $g \in O$ determines therefore a canonical linear functional on k[s]. From the proof above we see that E_p consists of those $g \in O$ for which the linear functional $\langle g, - \rangle$ vanishes on some power of I_p .

Assume now we are given a triple (\mathcal{U}, L, ev) , where \mathcal{U} is a k[s]-module, L an injective k[s]-homomorphism of E into \mathcal{U} and ev a k-linear functional on \mathcal{U} such that the diagram

is commutative. (By $E \to k$ we mean the canonical k-linear functional on E determined by $\sum b_i t^i \mapsto b_0$.)

We shall think of elements of \mathcal{U} as functions that we can differentiate as many times as we please. Multiplications by s_1, \ldots, s_r in \mathcal{U} will be interpreted as partial differentiations and will be denoted by D_1, \ldots, D_r , respectively. If $h = (h_1, \ldots, h_r)$ is a multi-index, we let D^h denote the partial differentiation operator $D^h = D_1^{h_1} \cdots D_r^{h_r}$. We shall think of L as the (inverse) Laplace transform and of functions of the form Lg as exponential functions. The map ev can be viewed as the "evaluation map at 0". Given a function $\xi \in \mathcal{U}$, we shall write $\xi(0)$ for $ev(\xi)$.

Here are examples that are of interest.

Example 1. Let $k = \mathbb{R}$ or \mathbb{C} , and let Ω be a connected open subset in \mathbb{R}^r . (Without loss of generality we may assume that Ω contains the origin.) Set $\mathcal{U} = C^{\infty}(\Omega)$. For $g = \sum b_i t^i \in E$, define $Lg \in \mathcal{U}$ by the formula

$$(Lg)(x) = \sum_{i \ge 0} b_i \frac{x^i}{i!}, \quad x \in \Omega.$$

(Here $i = (i_1, ..., i_r)$, $x = (x_1, ..., x_r)$, $x^i = x_1^{i_1} \cdots x_r^{i_r}$, $i! = i_1! \cdots i_r!$.) Finally, for every $\xi \in \mathcal{U}$, put

$$ev(\xi) = \xi(0).$$

Example 2. Let $\mathcal{U} = k^{\mathbb{Z}_+^r}$. For $g = \sum b_i t^i \in E$, define $Lg \in \mathcal{U}$ by the formula

$$(Lg)(i) = b_i, \quad i \in \mathbb{Z}_+^r.$$

For every $\xi \in \mathcal{U}$, put

$$ev(\xi) = \xi(0).$$

Remark. In view of Example 2, all what follows is applicable to difference equations as well, and this justifies the title of the paper.

For each multi-index n and positive number δ , define

$$\mathcal{U}_{n,\delta} = \left\{ \xi \in \mathcal{U} \mid \left| D^i \xi(0) \right| < \delta \text{ for all } i \leq n \right\}.$$

794

We declare the sets $U_{n,\delta}$ as a basis of neighbourhoods of 0 for a topology on U. Remark that this topology, in general, is not separate. (This is the case in Example 1.) Note that

$$\{\overline{0}\} = \{\xi \in \mathcal{U} \mid D^i \xi(0) = 0 \text{ for all } i \ge 0\}.$$

Obviously, $D^h \mathcal{U}_{n+h,\delta} \subseteq \mathcal{U}_{n,\delta}$. It immediately follows from this that $D^h: \mathcal{U} \to \mathcal{U}$ is continuous, and hence all differential operators of the form $R(D): \mathcal{U}^q \to \mathcal{U}^p$, where R is a polynomial $p \times q$ matrix, are continuous.

For each multi-index n, set

$$\mathcal{U}(n) = \{ \xi \in \mathcal{U} \mid D^i \xi(0) = 0 \text{ for all } i \leq n \}.$$

The Taylor polynomial of degree *n* of a function $\xi \in U$ is defined to be

$$T_n(\xi) = \sum_{i \leqslant n} D^i \xi(0) t^i.$$

For a fixed $n, \xi \mapsto T_n(\xi)$ is a k-linear map into $k[t]_{\leq n}$, the space of polynomials in t of degree $\leq n$. Because E contains $E_s = k[t]$, this map must be surjective. The kernel obviously is $\mathcal{U}(n)$, and hence T_n induces a canonical k-linear isomorphism

$$\mathcal{U}/\mathcal{U}(n) \simeq k[t]_{\leq n}.$$

Given a topological k-linear space \mathcal{X} , let us write \mathcal{X}^* for $\operatorname{Hom}_k^{\operatorname{cont}}(\mathcal{X}, k)$. Likewise, if ϕ is a continuous linear map of topological k-linear spaces, write ϕ^* to denote $\operatorname{Hom}_k^{\operatorname{cont}}(\phi, k)$.

Lemma 2. We have

$$\mathcal{U}^* = k[s]$$
 and $(D^h)^* = s^h$.

Proof. One can see that a linear functional on \mathcal{U} is continuous if and only if it vanishes on some $\mathcal{U}(n)$. Linear functionals vanishing on $\mathcal{U}(n)$ can be identified with linear functionals on $\mathcal{U}/\mathcal{U}(n)$ and hence with linear functionals on $k[t]_{\leq n}$. Linear functionals on this latter can be identified with polynomials in $k[s]_{\leq n}$, the space of polynomials in *s* of degree $\leq n$. The union of all $k[s]_{\leq n}$ is k[s], and the first equality is shown.

Further, for each n, we have a canonical linear map

$$D^h: \mathcal{U}/\mathcal{U}(n+h) \to \mathcal{U}/\mathcal{U}(n),$$

which can be identified with

$$\sigma^h: k[t]_{\leqslant n+h} \to k[t]_{\leqslant n}.$$

(Here $\sigma^h = \sigma_1^{h_1} \cdots \sigma_r^{h_r}$.) The dual of this latter can be identified with

$$s^h:k[s]_{\leqslant n}\to k[s]_{\leqslant n+h}.$$

The direct limit of these linear maps is $s^h : k[s] \to k[s]$, and the proof of the second equality is complete. \Box

Corollary 3. For each nonnegative integer l and for each polynomial matrix R we have

 $(\mathcal{U}^l)^* = k[s]^l$ and $R(D)^* = R^{\text{tr}}$.

Lemma 4. Let \mathcal{X} be a linear subspace in \mathcal{U}^q (equipped with the induced topology). Then

 $(\mathcal{U}^q)^* \to \mathcal{X}^*$

is surjective.

Proof. We have injective linear maps of finite dimensional linear spaces

$$\mathcal{X}/(\mathcal{X}\cap\mathcal{U}^q(n))\to\mathcal{U}^q/\mathcal{U}^q(n).$$

Consequently, we have surjective linear maps

$$\left(\mathcal{U}^q/\mathcal{U}^q(n)\right)^* \to \left(\mathcal{X}/\left(\mathcal{X}\cap\mathcal{U}^q(n)\right)\right)^*.$$

Taking the direct limit, we complete the proof. \Box

We remark that there are sufficiently many continuous linear functionals on $\mathcal{X} \subseteq \mathcal{U}^q$ (in other words, for each $\xi \in \mathcal{X}$ that does not belong to $\{\overline{0}\}$, there exists a continuous linear functional $f : \mathcal{X} \to k$ such that $f(\xi) \neq 0$).

Let \mathcal{X} and \mathcal{Y} be topological *k*-linear spaces, and let ϕ_1 and ϕ_2 be two continuous linear maps from the first one to the other. Let us say that ϕ_1 and ϕ_2 are essentially equal (and denote this by $\phi_1 \equiv \phi_2$) if

$$\forall x \in \mathcal{X}, \quad \phi_1(x) \equiv \phi_2(x) \mod \{0\}.$$

Assuming that \mathcal{Y} has sufficiently many continuous linear functionals, we have the following obvious

Lemma 5. $\phi_1 \equiv \phi_2$ if and only if $\phi_1^* = \phi_2^*$.

The ring k[s] can be viewed as a topological ring. (The topology on k[s] is the inductive limit of the canonical topologies on $k[s]_{\leq n}$, $n \in \mathbb{Z}_+^r$.) One therefore has the notion of a topological k[s]-module. It is worth noting that giving a topological k[s]-module is equivalent to giving a topological k-linear space together with r pairwise commuting continuous k-linear endomorphisms.

Let *R* be a polynomial matrix, say, of size $p \times q$. Then, the solution set of the differential equation

$$R(D)\xi = 0, \quad \xi \in \mathcal{U}^q$$

796

(together with the topology induced from \mathcal{U}^q) is a topological k[s]-module. We define a linear (dynamical) system as a topological k[s]-module that is isomorphic to the solution set of a differential equation. (*Warning*: This definition is not exactly the same as that given in [7,9], since it takes into account a specific topology.) Define a differential operator from one linear system to another as an equivalence class of essentially equal continuous k[s]-homomorphisms. The set of all differential operators from S to T denote by Diff(S, T). The following example, where differential operators from \mathcal{U}^q to \mathcal{U}^p are described, can serve as a justification of this definition.

Example 3. Let ϕ be any continuous k[s]-homomorphism from \mathcal{U}^q to \mathcal{U}^p . By Corollary 3, there exists a polynomial matrix R such that $\phi^* = R^{\text{tr}}$. We clearly have $R(D)^* = \phi^*$ and, using Lemma 5, we see that $\phi \equiv R(D)$. Let now R_1 and R_2 be polynomial matrices of size $p \times q$ such that $R_1(D) \equiv R_2(D)$. Then, $R_1(D)^* = R_2(D)^*$. Applying again Corollary 3, we see that $R_1^{\text{tr}} = R_2^{\text{tr}}$. Hence, $R_1(D) = R_2(D)$. We conclude that

$$\operatorname{Diff}(\mathcal{U}^{q},\mathcal{U}^{p}) = \{R(D) \mid R \in k[s]^{p \times q}\}.$$

One can define in an obvious way compositions of differential operators, and one can check easily that linear systems (together with differential operators) form a category. Let us denote this category by Syst.

Denote by <u>Mod</u> the category of finitely generated k[s]-modules. We are going to show that <u>Mod</u> and Syst are dual to each other.

Let $M \in \underline{Mod}$. Choose generators m_1, \ldots, m_q of M. It is easy to see that the sets

$$\{\varphi \in \operatorname{Hom}(M, \mathcal{U}) \mid \varphi(m_1), \ldots, \varphi(m_q) \in \mathcal{U}_{n,\delta}\},\$$

where *n* is a multi-index and δ a positive number, determine a topology on Hom(M, U) for which they constitute a fundamental system of neighbourhoods of 0. One can check easily that this topology does not depend on the choice of a set of generators and the module Hom(M, U) together with this topology is a topological k[s]-module. We call it the behavior of M and denote by Bh(M).

The following simple nice fact was observed by Malgrange (see [4]).

Lemma 6. Let R be a polynomial matrix. Then Ker R(D) is canonically isomorphic to Bh(M), where M denotes the cokernel of R^{tr} .

Proof. Let $p \times q$ be the size of *R*. We then have an exact sequence

nfr

$$k[s]^p \xrightarrow{R^u} k[s]^q \longrightarrow M \longrightarrow 0.$$

From this we obtain an exact sequence

$$0 \longrightarrow \operatorname{Hom}(M, \mathcal{U}) \longrightarrow \mathcal{U}^q \xrightarrow{R(D)} \mathcal{U}^p,$$

which yields a canonical isomorphism

$$\operatorname{Hom}(M, \mathcal{U}) \simeq \operatorname{Ker} R(D).$$

Taking the generators of *M* determined by the epimorphism $k[s]^q \to M$, one can easily see that the isomorphism is valid in the topological sense as well. The proof is complete. \Box

The lemma above implies immediately that if M is a finitely generated k[s]-module, then Bh(M) is a linear system. Given a k[s]-homomorphism f of finitely generated modules, define Bh(f) to be Hom_{k[s]}(<math>f, U). Clearly this is a continuous homomorphism. Thus Bh is a functor from Mod to the category of topological k[s]-modules.</sub>

It is clear that if \mathcal{X} is a topological k[s]-module, then \mathcal{X}^* is a k[s]-module. Likewise, if ϕ is a continuous k[s]-homomorphism, then ϕ^* is a k[s]-homomorphism. The following says that the composition I = $* \circ$ Bh is canonically isomorphic to the identity functor (of Mod).

Theorem 7. (a) If M is a finitely generated k[s]-module, then the canonical homomorphism

$$M \to I(M)$$

is an isomorphism.

(b) If $f: M \to N$ is a k[s]-homomorphism of finitely generated modules, then the canonical diagram

$$M \simeq I(M)$$

$$f \bigvee_{V} \qquad \qquad \downarrow I(f)$$

$$N \simeq I(N)$$

is commutative.

Proof. (a) By Corollary 3, the assertion is true when M is of the form $k[s]^l$. In the general case, M admits a finite presentation

$$k[s]^p \to k[s]^q \to M \to 0.$$

Applying the functor I to this exact sequence (and using again Corollary 3), we get a sequence

$$k[s]^p \to k[s]^q \to \mathbf{I}(M) \to 0.$$

This is a complex, of course. By Lemma 4, this complex is exact at I(M), and hence our homomorphism is surjective.

To show the injectivity, take any $0 \neq x \in M$. Because *E* is a cogenerator we can find a homomorphism $g: M \to E$ such that $g(x) \neq 0$. At least one of the coefficients in the

expansion of g(x), say, the coefficient at t^i , is distinct from 0. Because $s^i g$ is also a homomorphism of M into E and $(s^i g(x))(0) \neq 0$, we see that the image of x under our homomorphism is not zero.

(b) The homomorphism f can be included into a commutative diagram

with exact rows. From this we get a commutative diagram

also having exact rows. (The exactness is seen from the proof of (a).) This completes the proof. \Box

The following important result was obtained by Oberst (see [7, Theorem 2.61]).

Corollary 8. Let R_1 and R_2 be polynomial matrices with sizes $m_1 \times q$ and $m_2 \times q$, respectively, and let S_1 and S_2 be the corresponding linear systems. Then $S_1 \subseteq S_2$ if and only if there is a polynomial matrix X such that $R_2 = XR_1$.

Proof. The "if" part is obvious.

"Only if". Let $M_1 = S_1^*$ and $M_2 = S_2^*$. From $S_1 \subseteq S_2 \subseteq U^q$, using the functoriality of * and Corollary 3, we see that the diagram

is commutative. By the theorem above, the rows in this diagram are exact. This implies the assertion. \Box

The following can be viewed as a generalization of Example 3.

Theorem 9. Let M and N be finitely generated k[s]-modules.

- (a) Every continuous k[s]-homomorphism $\phi : Bh(N) \to Bh(M)$ is essentially equal to Bh(f) for some k[s]-homomorphism $f : M \to N$.
- (b) If $f_1, f_2: M \to N$ are two k[s]-homomorphisms, then $Bh(f_1)$ and $Bh(f_2)$ are essentially equal if and only if they are equal.

Proof. The arguments are as in Example 3. (We need only apply Theorem 7 instead of Corollary 3.) \Box

The theorem above says that differential operators from Bh(N) to Bh(M) can be identified with continuous k[s]-homomorphisms of the form Bh(f).

We call an observable of a linear system S any continuous linear functional on it. (The term is borrowed from [9].) Denote by Ob(S) the module of observables of S (i.e., the module S^*). Given a differential operator $\Phi : S \to T$, define $Ob(\Phi)$ to be ϕ^* , where ϕ is a representative of Φ .

Theorem 10. *The functors* Bh *and* Ob *establish a duality between the categories* <u>Mod</u> *and* Syst.

Proof. By the Malgrange lemma, every object of Syst is isomorphic to an object of the form Bh(M) with $M \in Mod$. By the previous theorem, if $M, N \in Mod$, then the canonical map

 $\operatorname{Hom}(M, N) \to \operatorname{Diff}(\operatorname{Bh}(N), \operatorname{Bh}(M))$

is bijective. The proof is complete. \Box

An important consequence of this theorem is that the category <u>Syst</u> is abelian. This means, in particular, that one can speak about the kernels, images and cokernels of differential operators of linear systems.

References

- [1] N. Bourbaki, Commutative Algebra, Hermann, Paris, 1972.
- [2] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1990.
- [3] T.Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1998.
- [4] B. Malgrange, Sur les systèmes différentiels à coefficients constants, Coll. CNRS, Paris, 1963, pp. 113-122.
- [5] E. Matlis, Injective modules over noetherian rings, Pacific J. Math. 8 (1958) 511-528.
- [6] U. Oberst, Duality theory for Grothendieck categories and linearly compact rings, J. Algebra 17 (1970) 473–542.
- [7] U. Oberst, Multidimensional constant linear systems, Acta Appl. Math. 20 (1990) 1–175.
- [8] U. Oberst, Variations on the fundamental principle for linear systems of partial differential and difference equations with constant coefficients, Appl. Algebra Engrg. Comm. Comput. 6 (1995) 211–243.
- [9] H. Pillai, J. Wood, E. Rogers, On homomorphisms of nD behaviors, IEEE Trans. Circuits Systems I, Fund. Theory Appl. 49 (2000) 732–743.
- [10] J.E. Ross, Locally noetherian categories and generalized strictly linearly compact rings. Applications, in: Lecture Notes in Math., vol. 92, Springer-Verlag, Berlin/New York, 1969, pp. 197–277.