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Abstract

In this paper we provide a simple version of Odt&rduality between finitely generated polynomial
modules and the solution sets of partial differential (and difference) equations.
0 2004 Elsevier Inc. All rights reserved.

The spaceC®>(£2), where 2 is a connected open subset Rf, can be viewed in
an obvious way as a module ovigfs] = R[s1,...,s,]. If R is a matrix with entries in
R[s], then the solution set of the associated partial differential equaiamé = 0 is
equal (as noticed by Malgrange [4]) to Hem(M, C*(£2)) with M = CokerR". One
is led therefore to consider the functor Hem(—, C*°(£2)) defined on finitely generated
polynomial modules. It is a theorem of Ehrenpreis, Malgrange and Palamodov that this
functor is exact, i.e., the modul€*°(£2) is injective. (For this deep result we refer
the reader to Hormander [2], for example.) As is well known (see Matlis [5]), every
injective module over a commutative noetherian ring is a direct sum of indecomposable
injective modules, which are classified via the prime ideals. In [7] Oberst has proved that
C>®(£2) is a “large” injective module (i.e°°(£2) contains at least one indecomposable
injective module of each type). From this (itilt) theorem, using the general duality
theory developed in Oberst [6] and Roos [10], Oberst has obtained that the functor above
establishes a duality between the category of finitely generated polynomial modules and
the category of the solution sets of partial differential equations. Oberst has shown that
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k%, wherek is an arbitrary discrete field, also is a large injective module, and hence this
function space also gives rise to a duality. (However, this case is considerably easier.)

The goal of this paper is to present a simple version of Oberst’s duality.

Let k be an arbitrary field equippewith an absolute valu¢ | and complete with
respect to this absolute value. (One may assumektligeitherR or C, or an arbitrary
discrete field.) Letr be an arbitrary positive integer, and kgt ... ., s, be indeterminates.
Putry =s7%,.... 1 =57, and puts = (s1, ..., s,) andr = (11, ..., #,). By a multi-index
we mean any element &', . If f = (f1,..., fr) is any sequence of rational functions,
then for each multi-index = (i1, ...,i,) € Z',, we write f = fit+-- f;". The degree
of a polynomialf =Y a;s’, denoted by deg, is the supremum of those multi-indices
i for which a; # 0. (We consider the componentwise order on the set of multi-indices.)
Following [7, 6.60], we call a rational functioni/g proper, if degf < degg and the
coefficient ats4e% in g is distinct from 0. LetO denote the ring of proper rational
functions. (It is interesting to note th& is the local ring of the “most infinite” point
in (P1)".) Clearly, O is contained in the ring of formal serig[¢]]. On the latter one has
left shift operatorsr, ..., o, making it ak[s]-module. Throughout) will be regarded as
ak[s]-submodule ofk[[]].

Call a (finite) point any sequenge= (p1, ..., pr), Whereps € k[s1], ..., pr € k[s,]
are monic irreducible univariate polynomials. Lit denote the ideal irt[s] generated
by the entries ofp. By Hilbert’s Nullstellensatz (seer&position 2(iii) in [1, Chapter V]),
points are in a canonical one-to-one correspondence with maximal idédlg @te., with
closed points of the affine spadé).

Let p = (p1,..., pr) be a point, and letls, ..., d, be the degrees of the polynomials
pi, ..., pr. FOr each nonnegative integerdefine

sl

Ep(n)z k;,

iJ
where
@,....)<i<(d,...,d) and (1,...,1)<j<(n,...,n).
This is ak[s]-submodule 0. To see this it suffices to note tha, (n) can be defined also
as the image of the canonical embedding
r Sl
Q) = klsil/siklsi] — O.
=1 P

SetE, =JE,n).
The module



V. Lomadze / Journal of Algebra 275 (2004) 791-800 793

which is a submodule i@, will be of special significance for this paper. This module has
been investigated comprehensively in [8]. Erficular, it has been shown there that this is

the minimal injective cogenerator ovilis]. For the sake of completeness, we include here
the following

Lemma 1. The moduleE is a cogenerator.

Proof. By [3, Theorem 19.8], we have to show that for each maximal idedl contains
a copy of the injective hull of[s]/m.

Let m be any maximal ideal of[s], and letp = (p1, ..., pr) be the associated point.
Consider the canonical homomorphism

Q) klsi1/ pp ks — kls1/1I;,
=1

which clearly is injective. Because bothtbe modules have the same dimension cvir
must be an isomorphism. It follows that there is a canonical isomorphism

&) Hom(k[s/1/ p}klsi]. k) ~ Hom(k[s]/1}:. k).
=1
Further, for each X [ < r, there are canonical isomorphisms
s, 1
p—l,,k[szl/51k[51] = Fk[sz]/k[n] ~ k[si1/ pj klsi] =~ Homy (k[s/1/ p} klsi1. k).
! !

and we see thak ,(n) is canonically isomorphic to Hoptk[s1/1}, k). Thus, we have a
canonical isomorphism
E, ~lim Homy (k[s1/1, k).

—
n

The right-hand side represents the functor

M+ lim Homy (M /I M, k),
n

which is exact by the Artin—Rees lemma (see [1, Chapter 1, 83, Proposition 1]). Hence,
the moduleE, is injective. Finally, sinceZ , (1) is isomorphic tck[s]/1,, which obviously
containsk[s]/m, we conclude tha¥, contains the injective hull ok[s]/m. (It can be
shown easily that, in fact, coincides with this injective hull.) O

Remark. For f € k[s] andg € O, define(g, f) to be the constant term gfg € k((¢)). We
then get &-bilinear form. Everyg € O determines therefore a canonical linear functional
onk[s]. From the proof above we see tha consists of thosg € O for which the linear
functional(g, —) vanishes on some power of.
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Assume now we are given a triplef, L, ev), wherel{ is ak[s]-module,L an injective
k[s]-homomorphism of into i/ andevak-linear functional ori/ such that the diagram

NS

k

E u

is commutative. (ByE — k we mean the canonicétlinear functional onE determined
by 3 b;t' > bo.)

We shall think of elements @f as functions that we can differentiate as many times as
we please. Multiplications by, ..., s, in U will be interpreted as partial differentiations
and will be denoted bys, ..., D,, respectively. Ith = (h1, ..., k) is a multi-index, we
let D denote the partial differentiation operatof = D’{1 ... D! . We shall think ofL as
the (inverse) Laplace transform and of functions of the fdrgnas exponential functions.
The mapevcan be viewed as the “evaluation map at 0”. Given a fundlieri/, we shall
write £(0) for ev(&).

Here are examples that are of interest.

Example 1. Let k = R or C, and lets2 be a connected open subsetRi. (Without

loss of generality we may assume th@t contains the origin.) Selt = C*(§2). For
g =) bit' € E, defineLg € U by the formula

(Lg) (x) = Zbi%, xen.

i>0
(Herei = (i1, ...,iy), x = (x1, ..., %), x! =xt-..x" il =i1!...i.1.) Finally, for every
Eel, put
ev§) =£(0).

Example2. Letf = k%+. Forg = Y b;t € E, defineLg € U by the formula
o)) =bi, ieZ.
For every¢ € U, put
ev§) =§(0).

Remark. In view of Example 2, all what follows iapplicable to difference equations as
well, and this justifies the title of the paper.

For each multi-index and positive numbet, define

Uns={6 €U ||D'EO)| <sforalli <n}.
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We declare the sefs, s as a basis of neighbourhoods of 0 for a topology6rRemark
that this topology, in general, is not separate. (This is the case in Example 1.) Note that

{0} ={& et | D'e(0)=0foralli >0}.

Obviously, D"U, s € Uy.5. It immediately follows from this thatD” :U — U is
continuous, and hence all differential operators of the f&w): /¢ — UP, whereR
is a polynomialp x ¢ matrix, are continuous.

For each multi-index, set

Un)= 1|t el | D'E0) =0foralli <n}.

The Taylor polynomial of degree of a functioné € U/ is defined to be

T.(§)=) D'EOF'.

i<n

For a fixedn, & — T,(&) is ak-linear map intok[t]<,, the space of polynomials in
of degree< n. BecauseE containsE; = k[¢], this map must be surjective. The kernel
obviously ist/(n), and hencd, induces a canonicatlinear isomorphism

UUn) ~ k[t] <.

Given a topologicat-linear spacet, let us writeX* for Hon£°"(x, k). Likewise, if ¢ is
a continuous linear map of topologidalinear spaces, writ¢* to denote HorﬁP”t(qb, k).

Lemma 2. We have
U*=kis] and (D")"=s".

Proof. One can see that a linear functionalldris continuous if and only if it vanishes on
somel{ (n). Linear functionals vanishing ad(n) can be identified with linear functionals
onU/U(n) and hence with linear functionals @ifir]<,. Linear functionals on this latter
can be identified with polynomials itis]<,, the space of polynomials inof degree< ».
The union of allk[s]<, is k[s], and the first equality is shown.

Further, for eacl, we have a canonical linear map

D" :UUn +h) — UUM0),
which can be identified with
oM k[t <nn = kltl<n.

(Hereo" = 0, ... 5/.) The dual of this latter can be identified with

" klsl<n — klsl<nsn-
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The direct limit of these linear mapssé: k[s] — k[s], and the proof of the second equality
is complete. O

Corollary 3. For each nonnegative integéiand for each polynomial matriR we have
U")* =kls)' and R(D)*=R".
Lemma 4. Let X be alinear subspace Y (equipped with the induced topoldgihen
W) - x*
is surjective.
Proof. We have injective linear maps of finite dimensional linear spaces
X/ (X NU(n)) — U U (n).
Consequently, we have surjective linear maps
Ui /U ()" — (X/(XNUL(n)))".
Taking the direct limit, we complete the proofo

We remark that there are sufficiently many continuous linear functionals ari/? (in
other words, for eacl € X that does not belong tf0}, there exists a continuous linear
functional f : X — k such thatf (¢) £ 0).

Let X and) be topologicak-linear spaces, and ey and¢, be two continuous linear
maps from the first one to the other. Let us say thyabnd¢, are essentially equal (and
denote this byp1 = ¢») if

VxeX, ¢1(x)=¢2(x) mod{0}.

Assuming that) has sufficiently many continuous linear functionals, we have the
following obvious

Lemmabs. ¢1 = ¢z if and only if¢] = ¢3.

The ringk[s] can be viewed as a topological ring. (The topologyfs] is the inductive
limit of the canonical topologies ok[s]<,, n € Z', .) One therefore has the notion of
a topologicalk[s]-module. It is worth noting that giving a topologicals]-module is
equivalent to giving a topological-linear space together with pairwise commuting
continuousk-linear endomorphisms.

Let R be a polynomial matrix, say, of sizex ¢. Then, the solution set of the differential
equation

R(D)E =0, &ecUf
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(together with the topology induced frobtif') is a topologicak[s]-module. We define a
linear (dynamical) system as a topologigfd]-module that is isomorphic to the solution
set of a differential equationWarning This definition is not exactly the same as that given
in [7,9], since it takes into account a specific topology.) Define a differential operator from
one linear system to another as an equivalence class of essentially equal corntinltous
homomorphisms. The set of all differential operators fiSrto 7 denote by DiftS, 7).

The following example, where differential operators froffi to /7 are described, can
serve as a justification of this definition.

Example 3. Let ¢ be any continuouk[s]-homomorphism frond/? to/”. By Corollary 3,
there exists a polynomial matri® such thap* = R". We clearly haveR(D)* = ¢* and,
using Lemma 5, we see that= R(D). Let nowR; and R, be polynomial matrices of size
p x g such thatR1(D) = Ra(D). Then,R1(D)* = Ra(D)*. Applying again Corollary 3,
we see thaRY = RY. Hence,R1(D) = R2(D). We conclude that

Diff (U7, UP) = {R(D) | R € k[s]"*9}.

One can define in an obvious way compositions of differential operators, and one can
check easily that linear systems (together wittfiedential operators) form a category. Let
us denote this category by Syst

Denote by Modhe category of finitely generatédls]-modules. We are going to show
that Modand Sysftre dual to each other.

Let M € Mod. Choose generators, ..., m, of M. Itis easy to see that the sets

{@ e Hom(M, U) | p(m1), ..., ¢(mg) €Uns},

wheren is a multi-index and a positive number, determine a topology on Hafm/)
for which they constitute a fundamentjistem of neighbourhoods of 0. One can check
easily that this topology does not depend on the choice of a set of generators and the
module HoniM, I/) together with this topology is a topologicils]-module. We call it
the behavior oY and denote by BtM).

The following simple nice fact was observed by Malgrange (see [4]).

Lemma 6. Let R be a polynomial matrix. TheKer R(D) is canonically isomorphic to
Bh(M), whereM denotes the cokernel &'.

Proof. Let p x g be the size oR. We then have an exact sequence

tr

k[s]P — = k[s]9 M 0.

From this we obtain an exact sequence

R(D)
0—— HomWM,U) —— 9 —— UP,
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which yields a canonical isomorphism
Hom(M,U) ~ KerR(D).

Taking the generators @f determined by the epimorphisifis]? — M, one can easily see
that the isomorphism is valid in the topological sense as well. The proof is complate.

The lemma above implies immediately thatMf is a finitely generated[s]-module,
then BRM) is a linear system. Given &[s]-homomorphismf of finitely generated
modules, define Bty') to be Homy, (f, U). Clearly this is a continuous homomorphism.
Thus Bh is a functor from Motb the category of topologicals]-modules.

Itis clear that ifX’ is a topologicak[s]-module, thent™ is ak[s]-module. Likewise, if
¢ is a continuou%[s]-homomorphism, thep* is a k[s]-homomorphism. The following
says that the compositiond * o Bh is canonically isomorphic to the identity functor (of
Mod).

Theorem 7. (a)If M is a finitely generatef[s]-module, then the canonical homomorphism
M — (M)
is an isomorphism.

(b) If f:M — N is a k[s]-homomorphism of finitely generated modules, then the
canonical diagram

<
12

(M)

||

[(N)

=
[

is commutative.

Proof. (a) By Corollary 3, the assertion is true whihis of the formk[s]’. In the general
case,M admits a finite presentation

k[s]” — k[s]? = M — 0.

Applying the functor | to this exact sequence (and using again Corollary 3), we get a
sequence

k[s]? — k[s]? = (M) — 0.

This is a complex, of course. By Lemma 4, this complex is exaotd) | and hence our
homomorphism is surjective.

To show the injectivity, take any £ x € M. BecauseE is a cogenerator we can find
a homomorphismy : M — E such thatg(x) # 0. At least one of the coefficients in the
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expansion ofg(x), say, the coefficient at’, is distinct from 0. Because' g is also a
homomorphism ofV/ into E and (s’ g(x))(0) # 0, we see that the image ofunder our
homomorphism is not zero.

(b) The homomorphisnf can be included into a commutative diagram

k[s]? k[s]? M 0

L]

k[s]! ——=k[s]" ——= N ——0

with exact rows. From this we get a commutative diagram

k[s]? — k[s] (M) 0
ksl — k[sI" I(N) 0

also having exact rows. (The exactness is seen from the proof of (a).) This completes the
proof. O

The following important result was obtained by Oberst (see [7, Theorem 2.61]).
Corollary 8. Let R1 and R> be polynomial matrices with sizes1 x ¢ and mz x ¢,
respectively, and lef; and S, be the corresponding linear systems. Tisarc S; if and
only if there is a polynomial matriX such thatR, = X R1.

Proof. The “if” part is obvious.
“Only if”. Let M1 =S5 andM; = S5. FromS; € Sp € U4, using the functoriality of

and Corollary 3, we see that the diagram

RU

K[s]"2 — = k[s]4 M 0
RY l
k[s]™t k[s]? My 0

is commutative. By the theorem above, the rows in this diagram are exact. This implies the
assertion. O

The following can be viewed as a generalization of Example 3.

Theorem 9. Let M and N be finitely generated[s]-modules.
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(a) Every continuoug[s]-homomorphisny :Bh(N) — Bh(M) is essentially equal to
Bh( f) for somek[s]-homomorphisny : M — N.

(b) If f1, fo:M — N are two k[s]-homomorphisms, theBh(f1) and Bh(f2) are
essentially equal if and only if they are equal.

Proof. The arguments are as in Example 3. (We need only apply Theorem 7 instead of
Corollary 3.) O

The theorem above says that differential operators froniABhto Bh(M) can be
identified with continuous[s]-homomorphisms of the form RBIf).

We call an observable of a linear systéhany continuous linear functional on it. (The
term is borrowed from [9].) Denote by @) the module of observables &f (i.e., the
moduleS*). Given a differential operatap : S — 7, define Ol§d) to be¢p*, whereg is
a representative ab.

Theorem 10. The functord8h and Ob establish a duality between the categoiiésd and
Syst

Proof. By the Malgrange lemma, every object of Systisomorphic to an object of the
form Bh(M) with M € Mod. By the previous theorem, i/, N € Mod, then the canonical
map

Hom(M, N) — Diff (Bh(N), Bh(M))
is bijective. The proof is complete.O

An important consequence of this theorem is that the categoryiSydielian. This
means, in particular, that one can speak about the kernels, images and cokernels of
differential operators of linear systems.
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