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a b s t r a c t

The properties of relative completeness and specifiedness are introduced for (continuous) linear
dynamical systems. It is shown then that having these two properties and the differentiation-invariance
property is necessary and sufficient for a (continuous) linear dynamical system to be represented by
means of a linear constant coefficient differential equation.
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0. Introduction

In [1,2] Willems introduced for dynamical systems an impor-
tant new concept of completeness. A dynamical system S, defined
on a time axis T, is said to be complete if

w ∈ S ⇔ w|[t1,t2] ∈ S|[t1,t2], ∀t1, t2 ∈ T, t1 ≤ t2.

In the discrete-time case this definition leads to an interesting
result: A discrete dynamical system is represented as the solution
set of a linear constant coefficient difference equation if and only if
it is linear, shift-invariant and complete. (See Theorem 5 in [1] and
Theorem III.1 in [2].)

In order to extend this result to the continuous-time case,
Willems introduced also the notion of local specifiedness. In the
discrete-time case one has ‘‘complete ⇔ closed (in the point-
wise topology)’’. And it was conjectured by Willems that the
continuous-time analog of ‘‘linear, shift-invariant and closed’’ is
‘‘linear, time-invariant, closed and locally specified’’ (see [2]).
However, it turned out that the conjecture failed to be true.
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In this paper we suggest a different approach to the problem
that is based on different interpretations of ‘‘completeness’’ and
‘‘specifiedness’’.

Let k be the field of real or complex numbers. We shall
assume, without loss of generality, that T contains 0 (which will
be regarded as an initial time). By a flat function we shall mean
any function f ∈ C∞(T, k) such that f (n)(0) = 0 for all n ≥ 0.
A function a ∈ C∞(T, k) will be said to be analytic if the series∑

(a(n)(0)/n!)xn converges uniformly to a on every compact subset
of T. (Flat functions are ‘‘bad’’, analytic functions are ‘‘good’’!)

Let S ⊆ C∞(T, kq) be a dynamical system. Let t be an indeter-
minate, and for each n ≥ 0, define S|n to be the image of S under
themapping sending everyw ∈ C∞(T, kq) to its Taylor polynomial
of degree n, i.e., the mapping

w → w(0) + w′(0)t + · · · + w(n)(0)tn, w ∈ C∞(T, kq).

We call S|n the nth truncation of S. We suggest to consider the
spaces S|n instead of the spaces S|[t1,t2]. The spaces S|n seem to
be quite interesting invariants, and it should be natural to try to
derive information about S looking at them. A priori is clear how-
ever that (S|n)n≥0 is not sufficient to recover S. This is because they
contain no information about the flat trajectories of S. Therefore,
one can only expect recovering of S modulo flat trajectories. When
this happens, we say that S is relatively complete.
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We do need an extra property of S in order to overcome the
insufficiency of (S|n)n≥0. Recall that

(∗) Once the transfer matrix of a classical linear system is
known the set of all its zero initial condition trajectories is known
and modulo this set every trajectory of the system is congruent to
an analytic (even exponential) one.

One can easily axiomatize (∗). Given a linear dynamical system
S, say that w ∈ S has zero initial condition, if all its integrals
belong to S. Further, define a transfer matrix as any left invertible
proper rational matrix. (Example of such a matrix is


I
G


, where G

is a proper rational matrix.)
Based on (∗) we give the following formulation of what we

call specifiedness. A linear system is specified if its zero initial
condition trajectory set is ‘‘generated’’ by a transfer matrix and if
its every trajectory is congruent with an analytic one, modulo the
zero initial condition trajectory set. (The meaning of ‘‘generated’’
will be explained, of course.)

The goal of this paper is to demonstrate that the continuous-
time analog of ‘‘linear, shift-invariant and complete’’ can be ‘‘linear,
differentiation-invariant, relatively complete and specified’’.

The paper is organized into seven sections, of which the first
two are preliminary. There are four appendices, where overviews
of some basic topics are presented.

Throughout, k and T are as above, s is an indeterminate and q is
a positive integer.

We letUdenote the space C∞(T, k). The symbol ∂ will stand for
the differentiation operator and the symbol


for the integration

operator. (For w ∈ U,


w is the primitive of w that is 0 at the
initial time.)

The space Uq will be our ‘‘universum’’. (See Willems [2]
about this concept.) Following Polderman and Willems [3], by
a (continuous) linear dynamical system (with signal number q)
we understand a k-linear subspace of Uq. A basic example is a
linear (time-invariant) differential system whose trajectories are
the solutions of a differential equation of the form

R(∂)w = 0,

where R ∈ k[s]•×q.
We let O be the ring of proper rational functions (in s) and t the

‘‘uniformizer’’ s−1
∈ O. The ring O is very nice; this is a principal

ideal domain with a unique nonzero prime ideal. (In commutative
algebra such a ring is called a discrete valuation ring (see [4]).)
Every f ∈ k(s) \ {0} has the form

g = tne,

where n ∈ Z and e is a unit of O. The representation is unique; the
number n is the order of f at infinity and is denoted by ord∞(f ).

As is known, every proper rational function can be viewed as
a formal power series in t . Recall (see [5]) that a formal power
series

∑
n≥0 ant

n is called convergent if there is a positive number
r such that

∑
n≥0 |an|rn converges. We denote by k{{t}} the ring of

convergent formal power series. It is an elementary fact that every
formal power series with nonzero free coefficient is invertible.
Theorem on units in [5, Chapter 4, Section 4] states that if a formal
power series with nonzero free coefficient is convergent, then so
is its inverse. Making use of this theorem, one can easily see that
O ⊆ k{{t}}. (Indeed, let g be a proper rational function, and let

g =
a0sn + · · · + an
b0sn + · · · + bn

,

with b0 ≠ 0. Rewrite this as

g =
a0 + · · · + antn

b0 + · · · + bntn
.

Certainly, b0 + · · · + bntn ∈ k{{t}}, and therefore (b0 + · · · +

bntn)−1
∈ k{{t}}).
There is exactly one (continuous) action of O on U for which

tw =

∫
w.

It is defined as follows. If g = b0+b1t+b2t2+· · ·+bntn+· · · ∈ O
and w ∈ U, then

gw = b0w + b1

∫
w + b2

∫ 2

w + · · · + bn

∫ n

w + · · · .

(The reader can easily prove that the series converges uniformly on
every compact neighborhood of 0 (see also [6]).) This actionmakes
U a module over O. From the fact that


is an injective operator

and the fact that any g ∈ O has the form g = tnewith n ≥ 0 and a
unit e, it immediately follows that this module is without torsion.

We let } denote the function that is identically 1 in T, and we
let L be the unique homomorphism O → U for which

L(1) = }.

The homomorphism is injective; it should be interpreted as the
(inverse) Laplace transform. Notice that the functions L(g) with
g ∈ O are exponential functions.

If R is a full row rank polynomial matrix of size p × q, then
clearly ROq is a torsion free O-submodule in k(s)q of rank p. Hence,
there exists a nonsingular rational matrix D such that DOp

= ROq.
(Notice that saying that DOp

= ROq is equivalent to saying that
D−1R is a right invertible proper rational matrix.) The matrix D
is uniquely determined up to right multiplication by a biproper
rational matrix. Every such a matrix will be called a denominator
of R.

For any R ∈ k[s]•×q, Bh(R) will denote the behavior of R, i.e., the
kernel of the operator R(∂).

We shall denote by F the space of flat functions, and by A the
space of analytic functions. For every n ≥ 0, we shall write Ωn and
Γn to denote the spaces of polynomials in s and t , respectively, of
degree less than or equal to n.

1. Operational calculus

Operational calculus is an algebraic method for solving linear
constant coefficient differential equations, which was invented
by Heaviside. One rigorous foundation of Heaviside’s operational
calculus was given by Mikusinski (see [7]). Mikusinski’s idea is to
use the quotient field construction (from commutative algebra) in
order to define generalized functions.

In this section we describe a simplified version of Heavi-
side–Mkusinski’s theory.

We know how to multiply functions by proper rational
functions. Butwewant to be able tomultiply functions by arbitrary
rational functions as well. Commutative algebra suggests to take
the quotient space of U. Denote this quotient space by M and
call its elements generalized (or Mikusinski) functions. By the very
definition, a generalized function is a ratio of the form w/g , where
w ∈ U and g ∈ O, g ≠ 0. Two ratios w1/g1 and w2/g2 represent
the same generalized function, if g2w1 = g1w2. An example of
generalized function is δ = }/t , which may be interpreted as the
Dirac delta-function. We identify U with its image in M under the
canonical map w → w/1. Certainly, every generalized function
(and, in particular, every usual one) can be multiplied by a rational
function.

It is interesting to note that every generalized function can be
written as w/tn, where w ∈ U and n ≥ 0. (Indeed, if w/g is a
generalized function and if g = tne with invertible e, then w/g
= (e−1w)/tn.) Note also that w/tn = snw. (This is due to the
identification above.)

The functions f δ with f ∈ k[s] will be called (purely) impulsive
functions. We denote by ∆ the space of all such functions.
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Lemma 1. M = U ⊕ ∆.

Proof. As we said just now, any Mikusinski function has the form
snw with n ≥ 0 and w ∈ U. By the Taylor formula,

w = (w(0) + w′(0)t + · · · + w(n−1)(0)tn−1)} + tnw(n).

Multiplying this by sn, we get

snw = w(n)
+ snL(w(0)) + · · · + sL(w(n−1)(0)).

Thus, M = U + ∆.
Suppose that U ∩ ∆ ≠ {0}. We then have

w = (c0sn + · · · + cn)δ,

where w ∈ U, n ≥ 0, c0, . . . , cn ∈ k and c0 ≠ 0. Multiplying this
by tn+1, we get

tn+1w = (c0 + · · · + cntn)}.

But this is a contradiction: The left function is zero at 0, while the
right one is c0. �

In the behavioral linear system theory one is interested in linear
differential equations of the form

R(∂)w = 0,

where R is an arbitrary (not necessarily square) polynomial matrix.
To treat such ‘‘rectangular’’ differential equations we need the
notion of transfer module.

By a transfer module (with signal number q), we mean
any submodule T ⊆ Oq for which Oq/T is torsion free. If T is a
transfer module, then it has a representation T = AOm, where m
is a uniquely determined nonnegative integer and A is a transfer
matrix of size q × m. (We remind that a transfer matrix is a left
invertible proper rational one.) The integer m is called the rank.
Every such amatrix A is called amatrix representation. Twomatrix
representations are equivalent in the sense that one is obtained
from the other by multiplication from the right by a biproper
rational matrix.

If A is a transfer matrix of size q × m, then clearly it contains
a nonsingular square submatrix of size m × m. It follows that A
is equivalent to a transfer matrix containing the identity matrix
of size m × m. And we see that a transfer module after possible
permutation of the components in kq can be represented by a
matrix of the form


I
G


, where G is a proper rational matrix.

(Transfer modules are substitutes in the behavioral framework for
classical transfer matrices.)

Given a transfer module T , we let TU ⊆ Uq be the set of all
finite sums of products gu with g ∈ T and u ∈ U. Clearly, TU is
an O-submodule of Uq. If A is a matrix representation of T andm is
the rank, then clearly

TU = AUm.

We shall need the following

Lemma 2. Let T be a transfer module. Then

T = L−1(TU ∩ L(Oq)).

Proof. Without loss of generality, we may assume that T has the
form

T =

[
I
G

]
Om,

where G is a proper rational matrix. Clearly,


u
Gu


with u ∈ Um is

exponential if and only if u is exponential. Hence[
I
G

]
Um

∩ L(Oq) =

[
I
G

]
L(Om).
The assertion follows. �

Corollary 1. The mapping T → TU is one-one.

Assume now we are given a full row rank polynomial matrix R
of size p × q, say. We can consider the operator

R : Uq
→ Mp, w → Rw.

Composing this with the canonical projection Π : Mp
→ Up, we

get the operator

Π ◦ R : Uq
→ Up.

It is not surprising that Π ◦ R = R(∂). From this we get that

R(∂)w = 0 ⇔ Rw ∈ ∆p, (1)

and thus

Bh(R) = {w ∈ Uq
| Rw ∈ ∆p

}.

We see that the operator R : Uq
→ Mp induces a canonical linear

map

Bh(R)
R

→ ∆p. (2)

Let us find the kernel and the image of this map.

Define T to be the kernel of Oq R
→ k(s)p, i.e.,

T = {g ∈ Oq
| Rg = 0}.

Due to the embedding Oq/T → k(s)p, T is a transfer module. We
call it the transfer module of R. Choose a denominator D and
consider the exact sequence

0 → T → Oq D−1R
→ Op

→ 0.

Applying ⊗U to this sequence, we get an exact sequence

T ⊗ U → Uq D−1R
→ Up

→ 0.

(We remind the reader that tensoring is a right exact functor
(see [4]). It should be noted that in fact we have more. The module
U, being a torsion freemodule over a principal ideal domain, is flat,
and therefore we have an exact sequence

0 → T ⊗ U → Uq D−1R
→ Up

→ 0.)

The image of T ⊗ U → Uq is just TU, and so, by the above exact
sequence,

TU = {w ∈ Uq
| D−1Rw = 0} = {w ∈ Uq

| Rw = 0}.

Certainly, everyw with Rw = 0 belongs to Bh(R). Andwe conclude
that the kernel of (2) coincides with TU.

The image of (2) is equal to ∆p
∩ RUq

= ∆p
∩ DUp. (Because

D−1ROq
= Op, we have D−1RUq

= Up; whence RUq
= DUp.) We

find that

∆p
∩ DUp

= ∆p
∩ k(s)p} ∩ DUp

= ∆p
∩ D(k(s)p} ∩ Up)

= ∆p
∩ DOp} = Xδ,

where X = k[s]p ∩ tDOp.
We call X the initial condition space of R.
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2. ‘‘Algebraic geometry over a projective line’’

We have seen that the space k[s]p ∩ tDOp is relevant. (Long
ago this was observed by Fuhrmann [8].) Soon we shall see that
k(s)p/(sk[s]p +DOp) also is relevant. These should be given names,
andwe call them cohomologies (as they indeed are cohomologies).

Remark. One can associate a vector bundle over a projective line
with every nonsingular rational matrix D, and every vector bundle
(up to isomorphism) can be obtained this way. The spaces above
are respectively 0-dimensional and 1-dimensional cohomology
spaces of the vector bundle associated with D. (The interested
reader is referred to [9], where an algebraic definition of vector
bundles is provided and the link between nonsingular rational
matrices and vector bundles is described.)

For a nonsingular rationalmatrixD, we thusmake the following
definition:

H0(D) = k[s]p ∩ tDOp and H1(D) = k(s)p/(sk[s]p + DOp),

where p is the size of D.

Example. If n is an arbitrary integer, then

H0(sn) = Ωn−1 and H1(tn) = Γn−1.

IfD1 andD2 are twononsingular rationalmatrices, thenone says
that they are Wiener–Hopf equivalent if there exist a unimodular
matrix U and a biproper rational matrix V such that D2 = UD1V .
If this is the case, then D1 and D2 have isomorphic cohomologies.
(The isomorphisms

H0(D1) ≃ H0(D2) and H1(D1) ≃ H1(D2)

are established via the left multiplication by U .)
The well-known Wiener–Hopf theorem states that every

nonsingular rational matrix D is Wiener–Hopf equivalent to
a diagonal matrix of the form diag{sn1 , . . . , snp}. The integers
n1, . . . , np are uniquely determined (up to order) and are called
the Wiener–Hopf indices.

Lemma 3. Let D be a nonsingular rational matrix with Wiener–Hopf
indices n1, . . . , np. Then

dimH0(D) =

p−
i=0

max{ni, 0} and

dimH1(D) =

p−
i=0

max{−ni, 0}.

Proof. In view of the example above, this is obvious when
D = diag{sn1 , . . . , snp}. The general case follows immediately from
this special one by the Wiener–Hopf theorem. �

If D is a nonsingular rational matrix, we define the Chern
number to be

ch(D) = −ord∞(detD).

It is clear that the Chern number is equal to the sum of the
Wiener–Hopf indices.

Lemma 4 (‘‘Riemann–Roch theorem’’). If D is a nonsingular rational
matrix, then

dimH0(D) − dimH1(D) = ch(D).

Proof. The same as that of the previous lemma. �

Let p ≥ 0. There is a canonical k(s)-bilinear form

k(s)p × k(s)p → k(s)
taking a pair (f , g) to f trg . (‘‘tr’’ stands for the transpose).
Composing this standard bilinear form with the k-linear map
k(s) → k taking

∑
ait i to a0, we get a canonical k-bilinear form

⟨−, −⟩ : k(s)p × k(s)p → k. (3)

This clearly is non-degenerate, and we have

(k[s]p)⊥ = sk[s]p and (Op)⊥ = tOp.

Let D be a nonsingular rational matrix of size p. We define the
dual of D as D∗

= (D−1)tr. From the second orthogonality relation
above, we get

(tD∗Op)⊥ = DOp.

Using the relation X⊥
+ Y⊥

⊆ (X ∩ Y )⊥, we see that

sk[s]p + DOp
⊆ (k[s]p ∩ tD∗Op)⊥.

Therefore, (3) induces a canonical pairing

(k[s]p ∩ tD∗Op) × k(s)p/(sk[s]p + DOp) → k,

which can be rewritten as

H0D∗
× H1D → k.

Lemma 5 (‘‘Serre’s Duality Theorem’’). The pairing above is non-
degenerate.

Proof. This is non-degenerate from the left, of course, since so is
(3). To prove the non-degeneracy it suffices therefore to show that
H0D∗ and H1D have the same dimension. But this is immediate
from Lemma 3. �

Let R be a full row rank polynomial matrix with denominator
D. We define the McMillan degree of R to be the Chern number
of D, and we define the lag indices as the Wiener–Hopf indices of
D. These indices are nonnegative necessarily (because R has full
row rank). It follows that the 1-dimensional cohomologies of D are
trivial. From this, by the Riemann–Roch formula, it is immediate
that dimH0(D) = ch(D). In other words, the dimension of the
initial condition space of R is equal to its McMillan degree.

3. Three properties of a linear dynamical system

For every w ∈ Uq and every n ≥ 0, we set

w|n = w(0) + w′(0)t + · · · + w(n)(0)tn.

It is a trivial remark thatw is flat if and only ifw|n = 0 for all n ≥ 0.
Assume we are given a linear dynamical system S.
For each n ≥ 0, let S|n denote the image of S under themapping

w → w|n. We call S|n the nth truncation of S.

Definition 1. We say that S is relatively complete, if

w ∈ S + F q
⇔ ∀n ≥ 0, w|n ∈ S|n.

Comment. The family (S|n) contains no information about the
flat trajectories of S. So, S + F q is the maximum that can
be recovered from knowledge of (S|n). Relative completeness
guarantees this maximum.

We say that w ∈ S is a zero initial condition trajectory if all its
n-fold integrals also are trajectories of S. Let us denote by S0 the
set of all such trajectories. So,

S0 =


w ∈ S | ∀n ≥ 0,

∫ n

w ∈ S


.

The quotient space S/S0 should be thought of as the initial condi-
tion space. If x is an initial condition and if w ∈ S is a trajectory
representing it, we shall say that x is the initial condition of w.
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Definition 2. We say that S is specified, if there is a transfer
module T such that S0 = TU and if S ⊆ S0 + Aq. By Corollary 1,
the ‘‘T ’’ is uniquely determined. It is called the transfer module.

Comment. Specifiedness means that the zero initial condition
trajectory set has a very special simple structure (that it is
generated by a transfer module). It means also that there are
sufficiently many analytic trajectories (that there always exists an
analytic trajectory with any given initial condition).

Lemma 6. Suppose that S is relatively complete and specified. If w ∈

Aq, then

w ∈ S ⇔ ∀n ≥ 0, w|n ∈ S|n.

Proof. Let T be the transfer module.Without loss of generality, we
may assume that

T =

[
I
G

]
Om,

where G is a proper rational matrix.
Suppose that w|n ∈ S|n for every n ≥ 0. By the hypotheses,

w ∈ S + F q
⊆ S0 + Aq

+ F q.

Hence, we have

w =

[
u
Gu

]
+ a +

[
f1
f2

]
,

where u ∈ Um, a ∈ S ∩ Aq, f1 ∈ F m and f2 ∈ F q−m. Rewrite this
equality as

w =

[
u + f1

G(u + f1)

]
+ a +

[
0

f2 − Gf1

]
.

Replacing u + f1 by u and f2 − Gf1 by f2, we get

w =

[
u
Gu

]
+ a +

[
0
f2

]
.

We can see that u is analytic, and consequently so is Gu. It follows
that f2 must be analytic. On the other hand, f2 is a flat function.
Hence, f2 = 0.

It follows that w is a trajectory of S. �

The following says that
relative completeness + specifiedness ⇒ ‘‘completeness’’.

Lemma 7. If S is relatively complete and specified, then it is possible
to recover S from its truncations.
Proof. Let T denote the transfer module. By Lemma 2,

T = {g | L(g) ∈ S0 ∩ L(Oq)).

From this and from the previous lemma, follows that T can be
determined by means of (S|n). Namely, we have

T = {g ∈ Oq
| (t lL(g))|n ∈ S|n ∀l, n ≥ 0}.

From T we immediately arrive at S0 = TU.
Now, we claim that

S = {w ∈ S0 + Aq
| ∀n ≥ 0, w|n ∈ S|n}.

Indeed, let w = w0 + a, where w0 ∈ S0 and a ∈ Aq, and assume
that w|n ∈ S|n for every n ≥ 0. Clearly, a|n ∈ S|n for every n ≥ 0.
By the previous lemma, a ∈ S. Hence, w also is a trajectory of S.

Thus, knowledge of (S|n) implies knowledge of S.
The proof is complete. �

Closing the section, we introduce the third property, which is
standard.

Definition 3. We say that S is differentiation-invariant, if ∂(S)
⊆ S.
4. Linear differential systems have the three properties

Let R be a full row rank polynomial matrix of size p × q, and let
D be a denominator of R. Put m = q − p and B = Bh(R).

Proposition 1. B is relatively complete.

Proof. After reordering the components in kq (if necessary), our
behavior can be described by the familiar equation
x′

= Ax + Bu
y = Cx + Du

with state space X and ‘‘observable pair’’ (A, C). Let G = C(sI −

A)−1B + D. As one knows,

(u, x0) →

[
u

Gu + C(I − tA)−1x0

]
is a bijective map from Um

× X onto B.

Let w =


u
y


∈ Uq, and suppose that

∀ n ≥ 0, w|n ∈ B|n.

Because


u
Gu


is a trajectory of B,

w ∈ B + F q
⇔ w −

[
u
Gu

]
∈ B + F q.

Therefore, we may assume that w =


0
y


.

Let n be any nonnegative integer. By the hypothesis, there is a
pair (u, x0) with u ∈ Um and x0 ∈ X such that[
0
y|n

]
=

[
u|n

(Gu)|n + (C(I − tA)−1x0)|n

]
.

From u|n = 0 we get that u ∈ tn+1Um. This yields that Gu ∈

tn+1Up, and consequently (Gu)|n = 0.
It follows that[
0
y|n

]
=

[
0

(C(I − tA)−1x0)|n

]
.

Thus, for every n ≥ 0, there exists x0 ∈ X such that

y|n = Cx0 + CAx0t + · · · + CAnx0tn.

Because the pair (A, C) is observable, the linear map
C
CA
...

CAn

 : X → kp(n+1)

is injective for every n ≥ dim(X) − 1. It follows that for the ‘‘n’’-s
that are large enough the ‘‘x0’’ must be the same.

Thus, there exists x0 such that

y|n = (C(I − tA)−1x0)|n

for all sufficiently large n, and therefore for all n ≥ 0. We get

y ≡ C(I − tA)−1x0 modF p.

This completes the proof. �

Proposition 2. B is specified.
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First Proof. We claim that B0 = TU, where T is the transfer
module of R. Indeed, we saw that TU = {w ∈ Uq

|Rw = 0}, and
hence the inclusion ‘‘⊇’’ is obvious. To show the inclusion ‘‘⊆’’, take
any w ∈ B0. Then

∀n ≥ 0, tnRw ∈ ∆p.

From this it is immediate that Rw = 0. But then w ∈ TU, as
desired.

Take now any trajectory w ∈ B. Then Rw ∈ L(sk[s]p ∩ DOp).
Because DOp

= ROq, we have Rw = RL(g) for some g ∈ Oq. It
follows that R(w − L(g)) = 0, and hence w − L(g) ∈ TU.

The proof is complete.

Second Proof. Let X, A, B, C and D be as in the proof of Proposi-
tion 1. For u ∈ Um and x0 ∈ X , set

wu,x0 =

[
u

Gu + C(I − tA)−1x0

]
.

For u ∈ Um and n ≥ 0, we clearly have∫ n

wu,0 = wtnu,0.

Hence, all wu,0 belong to B0.
Conversely, suppose that wu,x0 ∈ B0. Take any integer n ≥ 0.

We must have∫ n

wu,x0 = wu1,x1

for some u1 ∈ Um and x1 ∈ X . This equality can be rewritten as[
tnu

Gtnu + C(I − tA)−1tnx0

]
=

[
u1

Gu1 + C(I − tA)−1x1

]
,

yielding

C(I − tA)−1tnx0 = C(I − tA)−1x1.

The left side belongs to tnUp, and consequently

Cx1 + CAx1t + · · · + CAn−1x1tn−1
= 0.

Require now that n be sufficiently large. Since (A, C) is an
observable pair, we get from this that x1 = 0. This in turn implies
that

C(I − tA)−1x0 = 0;

whence x0 = 0.
Thus,

B0 = {wu,0 | u ∈ Um
} =

[
I
G

]
Um.

It is obvious that B contains sufficiently many analytic
trajectories. Indeed, for u ∈ Um and x0 ∈ X , we have

wu,x0 = wu,0 + w0,x0 .

Here wu,0 is a zero initial condition trajectory and w0,x0 is an
exponential trajectory.

The proof is complete. �

The following is obvious and well-known.

Proposition 3. B is differentiation-invariant.

For later use we shall prove the following

Lemma 8. Let n ≥ 0. There is a canonical exact sequence

B → Γ q
n → H1(tn+1D) → 0.
Proof. Define the first map and the second map to be

w → w|n and u → (Ru)mod(sk[s]p + tn+1DOp),

respectively.
Let w be any trajectory in B. By the Taylor formula,

w = (w|n)} + tn+1w(n+1).

We therefore have

R(w|n)} = Rw − tn+1Rw(n+1)
∈ ∆p

+ tn+1RUq.

Since RUq
= DUp, there is w1 ∈ Up such that Dw1 = Rw(n+1).

The function w1 is uniquely determined, and our claim is that it is
exponential. Indeed, because (R(w|n))} and Rw belong to k(s)p},
so is Dw1. It follows thatw1 itself belongs to k(s)p}. This proves the
claim because Up

∩ k(s)p} = Op}. Thus w1 = g} with g ∈ Op, and
we obtain

R(w|n) ∈ sk[s]p + tn+1DOp.

So, the map Γ
q
n → H1(tn+1D) sends w|n to 0.

Assume now that u ∈ Γ
q
n goes to 0 under the map Γ

q
n →

H1(tn+1D). Then Ru = f + tn+1Dg with f ∈ sk[s]p and g ∈ Op.
Since ROq

= DOp, there exists v ∈ Oq such that Rv = Dg . Putting

w = u} − tn+1v},

we have

Rw = Ru} − tn+1Rv} = Ru} − tn+1Dg} = f }.

Hence, by (1), w ∈ S. It is clear that w|n = u.
Finally, Γ q

n → H1(tn+1D) is surjective in view of the following
commutative diagram

k(s)q → k(s)p

↓ ↓

k(s)q/(sk[s]q + tn+1Oq) → k(s)p/(sk[s]p + tn+1DOp)

Indeed, the top arrow R : k(s)q → k(s)p is surjective, so must be
the bottom arrow as well. This latter is just our map.

The proof is complete. �

5. Formal languages and convolutional codes

This section deals with two kinds of objects which will prove
very helpful in the next section. They will be referred to as ‘‘formal
languages’’ and ‘‘convolutional codes’’. (We hope that the reader
will be willing to excuse using this terminology.)

By a (linear) formal language (on kq) we understand a family
(Bn)n≥0 of linear subspaces Bn ⊆ Γ

q
n satisfying the following two

conditions:

(i) b0 + b1t + · · · + bntn ∈ Bn ⇒ b1 + b2t + · · · + bntn−1, b0 +

b1t + · · · + bn−1tn−1
∈ Bn−1;

(ii) b0 + b1t +· · ·+ bn−1tn−1
∈ Bn−1 ⇒ ∃b ∈ kq, b0 + b1t +· · ·+

bn−1tn−1
+ btn ∈ Bn.

Remark. The polynomials in Γ
q
n can be viewed in an obvious way

as words of length n + 1 (with letters in kq). The first condition
means that the words of a language are invariant with respect to
the left and right ‘‘deletion’’ operators; the second one means that
every word of a language has a continuation to the right. Formal
languages of the above kind are very special, of course. (By a formal
language, we remind, one understands an arbitrary set of words.)

The notion is motivated by the following

Example. Let S be an arbitrary differentiation-invariant linear
dynamical system (in Uq). Then (S|n) is a formal language.
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By a convolutional code (on kq) we understand a family
(Cn)n≥0 of linear subspaces Cn ⊆ Ω

q
n satisfying the following two

conditions:

(i) Cn−1 ⊆ Cn and sCn−1 ⊆ Cn;
(ii) Cn−1 = Cn ∩ Ω

q
n−1.

Remark. In [10] a convolutional code is defined to be a submodule
of k[s]q. The two definitions clearly are equivalent: If C is a
submodule in k[s]q, then the family (C ∩ Ω

q
n) is a convolutional

code; conversely, if (Cn) is a convolutional code, then C =


Cn is
a submodule in k[s]q.

There is an obvious orthogonality relation between formal
languages and convolutional codes. Indeed, for each n ≥ 0, there
is a canonical non-degenerate pairing

Ωq
n × Γ q

n → k,

which is given by

⟨a0sn + · · · + an, b0 + · · · + bntn⟩ = atr0 bn + · · · + atrn b0.

(The pairing is a special case of the pairing in Lemma 5.) It is not
difficult to see that if (Bn) is a formal language, then (B⊥

n ) is a
convolutional code. Conversely, if (Cn) is a convolutional code, then
(C⊥

n ) is a formal language.
Let now R be a full row rank polynomial matrix of size p × q,

and let D be its denominator.
Associated with R there are a canonical formal language and a

canonical convolutional code. Indeed, for each n ≥ 0, we have two
canonical maps

γn : Γ q
n → H1(tn+1D) and ωn : H0(sn+1D∗) → Ωq

n .

The first one is given by R and is surjective; the second is given by
Rtr and is injective. Let Bn denote the kernel of the first map, and
let Cn denote the image of the second one. One can check without
difficulty that (Bn) is a formal language and (Cn) is a convolutional
code.

There are alternative ways for obtaining the same formal
language and the same convolutional code. Indeed, if B is the
behavior of R, then, by Lemma8, (Bn) is exactly the formal language
(B|n). Next, it is easily seen that k[s]p =


H0(sn+1D∗), and, letting

C denote the submodule Rtrk[s]p, we have (Cn) = (C ∩ Ω
q
n).

Lemma 9. The formal language and the convolutional code con-
structed above are orthogonal to each other; that is, for each n ≥ 0,
we have

(Cn)
⊥

= Bn and (Bn)
⊥

= Cn.

Proof. It suffices, of course, to show, say, the first relation only.
For any u ∈ H0(sn+1D∗) and any v ∈ Γ

q
n , we have

⟨ωn(u), v⟩ = ⟨u, γn(v)⟩.

Using this formula and Lemma 5, we get

(Cn)
⊥

= {v | ∀u, ⟨ωn(u), v⟩ = 0} = {v | ∀u, ⟨u, γn(v)⟩ = 0}
= {v | γn(v) = 0} = Bn. �

We shall denote by FL(R) the formal language associated
with R.

6. Equivalence theorem and kernel representation theorem

Recall that two full row rank polynomial matrices R1 and R2 are
said to be equivalent if R2 = UR1 for some unimodular matrix U .
Theorem 1 (Equivalence Theorem). Let R1 and R2 be two full row
rank polynomial matrices. Then

R1 ∼ R2 ⇔ Bh(R1) = Bh(R2) ⇔ FL(R1) = FL(R2).

Proof. With evident notations we have

R1 ∼ R2 ⇒ B1 = B2 ⇒ (B1,n)n = (B2,n)n

⇒ (C1,n)n = (C2,n)n ⇒ C1 = C2 ⇒ R1 ∼ R2.

The proof is complete. �

Theorem 2. The mapping

S → (S|n)

establishes a bijective correspondence between linear differential
systems and formal languages.

Proof. The injectivity is immediate by the equivalence theorem.
To prove the surjectivity, take any formal language (Bn). For

each n ≥ 0, put Cn = (Bn)
⊥. Define C =


Cn. As already

remarked, C is a submodule in k[s]q. We can choose a full row rank
polynomial matrix R so that C = ImRtr. In view of Lemma 9, FL(R)
is orthogonal to (Cn). But (Bn) is orthogonal also to (Cn); hence,
FL(R) = (Bn). Letting B = Bh(R), we have

(B|n) = (Bn).

The proof is complete. �

Corollary 2 (Kernel Representation Theorem). Every relatively
complete, specified, differentiation-invariant linear dynamical system
is differential.

Proof. Let S be a relatively complete, specified, differentiation-
invariant linear dynamical system. By Example 2, (S|n) is a
formal language. And, by the previous theorem, there is a linear
differential system B for which

(B|n) = (S|n).

Using Lemma 7, we have S = B. �

7. Concluding remarks

Let σ denote the backward shift operator, and let t be an
indeterminate. For every function w defined on Z+ and for every
integer n ≥ 0, define

w|n = w(0) + (σw)(0)t + · · · + (σ nw)(0)tn.

Given a linear dynamical system S ⊆ C(Z+, kq), set

S|n = {w|n | w ∈ S}.

Identifying C(Z+, kq) with kq[[t]], we clearly have, S|n = S|[0,n].
So, Willems’ definition of completeness for discrete-time linear
dynamical systems can be formulated as follows: A linear
dynamical system S ⊆ C(Z+, kq) is complete if

w ∈ S ⇔ ∀n ≥ 0, w|n ∈ S|n.

The continuous-time analog of σ is the differentiation operator,
and the definitions of w|n and S|n can be extended to the
continuous-time case in an obvious way. However, the above
definition cannot be translatedword for word. The reason is that in
the continuous-time case taking (S|n) ‘‘kills’’ the flat trajectories of
S. We can speak only about relative completeness (completeness
modulo flat functions). LettingF denote the space of flat functions,
the definition above is modified as follows: A (continuous-time)
linear dynamical system S is relatively complete if

w ∈ S + F q
⇔ ∀n ≥ 0, w|n ∈ S|n.
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In order to be able to learn everything about S while knowing
(S|n), one has to impose some additional condition on S.

Our choice in this paper is specifiedness. (The term is borrowed
from Willems [2]; however our interpretation is very much
different.)

A (continuous-time) linear dynamical system S is specified if its
zero initial trajectory set is determined by a transfer matrix and if
it has sufficiently many analytic trajectories. (Remark that taking
(S|n) one loses no information about the analytic trajectories.)

The main result of the paper claims that the properties of rel-
ative completeness, specifiedness and differentiation-invariance
characterize linear differential systems among all linear dynami-
cal systems.
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Appendix A. State representations

We would like to recall here the construction of state
representations given in [11], which is very natural (in our
opinion).

Assume we have a linear differential system S with transfer
function T . Set S0 = TU, which, as we know, is the set of trajec-
tories of S that have zero initial condition. The ingredients for the
construction are also the following two linear spaces

Sa
= tS + kq and S0

0 = TU ∩ tUq.

The first is the space of all primitives (antiderivatives) of trajecto-
ries in S; the second is the space of all trajectories in S that have
zero initial condition and zero initial value.

There is a canonical short exact sequence

0 → S → S ⊕ S ⊕ kq → Sa
→ 0,

where the second and the third arrows are given by

w → (w′, w,w(0)) and (w1, w2, c) → tw1 − w2 + c.

(The exactness at the middle term is immediate by the New-
ton–Leibniz formula; the exactness at the other terms is evident.)
There is also the following obvious exact sequence

0 → S0
0 → S0 ⊕ S0 → S0 → 0,

where the second and third arrows are defined respectively by

w → (w′, w) and (w1, w2) → tw1 − w2.

Combining these two exact sequences, we get the following
commutative diagram

0 → S0
0 → S0 ⊕ S0 ⊕ {0} → S0 →0

↓ ↓ ↓

0 → S → S ⊕ S ⊕ kq → Sa
→0

,

where the vertical arrows represent the inclusion maps. Applying
the snake lemma (see [4, Proposition 2.10]), we obtain an exact
sequence

0 → Y


F
G
H


→ X ⊕ X ⊕ kq


K −L M


→ Z → 0,

where

Y = S/S0
0 , X = S/S0 and Z = Sa/S0,
the linear maps F ,G : Y → X , H : Y → kq are defined by the
formulas
F(wmodS0

0) = w′modS0, G(wmodS0
0) = wmodS0,

H(wmodS0
0) = w(0)

and the linear maps K , L : X → Z , M : kq → Z by the formulas
K(wmodS0) = twmodS0, L(wmodS0) = wmodS0,

M(c) = cmodS0.

One can show (see [11]) that the equations
Gy′

= Fy
w = Hy and Kx′

− Lx + Mw = 0

represent S.
Thus,S has twodifferent canonical state representations,which

however are closely related.

Appendix B. Controllability

There are several definitions of controllability. One possible
definition that was given in [12] is as follows.

A linear differential system S is controllable if every its
trajectory can be obtained from a zero initial condition trajectory
using a finite number of differentiations. In other words, S is
controllable if
S =


n≥0

(TU)(n),

where T is the transfer module of the system.
Put V =


snT . This is the least k(s)-linear subspace of k(s)q

containing T . By the Taylor formula, Π(snTU) = (TU)(n) for each
n ≥ 0. We therefore have

(TU)(n) =


Π(snTU) = Π(VU).

The following implies that the above definition agreeswith that
of Willems [2,3].

Theorem 3. S is controllable if and only if it has an image
representation, i.e., there is a polynomial matrix M such that

S = ImM(∂).

Proof. Suppose that the system is controllable. Choose a polyno-
mial matrix M so that Mk[s]l = V ∩ k[s]q, where l is the column
number of M . Using the equality above, we have

S = Π(VU) = Π(MMl) = Π(MUl
+ M∆l) = Π(MUl)

= M(∂)Ul
= ImM(∂).

Suppose now thatS has an image representation viaM .We then
have

S = ImM(∂) = Π(MUl) = Π(MUl
+ M∆l) = Π(MMl)

= Π((Mk(s)l)U),

where again l is the column number of M . It remains to see that
Mk(s)l = V . Letting R be a kernel representation of S, we have an
exact sequence

Ul M(∂)
→ Uq R(∂)

→ Up,

where p is the row rank of R. This yields the following exact
sequence

k[s]p
Rtr
→ k[s]q

Mtr
→ k[s]l.

It follows that the sequence

k(s)l
M
→ k(s)q

R
→ k(s)l

is exact; whence Mk(s)l = {f ∈ k(s)q|Rf = 0} = V . �

In [12] the reader can found another proof for the ‘‘if’’ part of
the theorem.
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Appendix C. Integer invariants

Let S be a linear differential system.
The most important integer invariants of S (after the signal

number) are the input number and the McMillan degree. If T is a
transfer module, then the input number of S is the rank of T and
the Mcmillan degree is the dimension of S/TU.

Of great importance are the lag indices, which are defined to
be the lag indices of any minimal kernel representation. (By the
equivalence theorem, these indices are well-defined.)

We introduce the complexity of S in the same manner as in
Willems [2, Chapter X]:

c(S) = (c0(S), c1(S), . . .)

with

cn(S) = dim S|n.

The following implies that knowledge of the complexity is
equivalent to that of the lag indices.

Theorem 4. Let l1, . . . , lp be the lag indices of S. Then

cn(S) = q(n + 1) −

p−
i=1

max{n + 1 − li, 0}.

Proof. Let R be a kernel representation of S, and let D be its
denominator. By Lemma 8, we have a short exact sequence

0 → S|n → Γ q
n → H1(tn+1D) → 0.

TheWiener–Hopf indices of tn+1D are li−n−1. So that, the formula
follows from Lemma 3. �

Corollary 3. Let d be the McMillan degree of S and m the input
number. For n ≥ d − 1, we have

cn(S) = m(n + 1) + d.

Appendix D. Modelling from data

Here we indicate how the theory of modelling as developed by
Willems in [2, Chapter XIV] can be extended to the continuous-
time case.
By a model let us mean any linear differential system (with
signal number q). The set of models is partially ordered by the
inclusion order.

Consider any data set D ⊆ Uq. A model S is unfalsified by D if
D ⊆ S. The set of models unfalsified by D is nonempty. (This set
obviously contains Uq.) An interesting question is whether there
exists the most powerful unfalsified model (MPUM).

Theorem 5. The MPUM exists.

Proof. Let H denote the ‘‘Hankelization’’ of D , i.e. the set of
all trajectories of the form w(n), where w ∈ D and n ≥ 0. (This
is the least differentiation-invariant dynamical system containing
D .) For each n ≥ 0, set

Cn = (H |n)
⊥.

Clearly, the collection (Cn) is a convolutional code (notwithstand-
ing (H |n) is not, in general, a formal language). For each n ≥ 0, set
Bn = C⊥

n . The model corresponding to (Bn) is the MPUM. �

Remark. The algorithm defined in [2, Chapter XIV] can be
applied without changes to obtain a kernel representation of the
MPUM.
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