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Abstract. The paper presents the recent results concerning boundedness

criteria in weighted Banach function spaces with non-standard growth both
for classical integral operators and integral transforms defined, generally
speaking, on metric spaces with measure.

1. Introduction

It is a great pleasure for me to take this opportunity and pay a tribute
to Professor Alois Kufner for his outstanding mathematical abilities and
exceptional personal quality. In a series of books and papers Alois Kufner
has given comprehensive treatment of the weight theory and its application
to harmonic analysis, partial differential equations. He was an inspirer of
my long-standing and very fruitful collaboration with the Function Spaces
group in Prague. Our contacts gave a profound impact on my subsequent
scientific activity.
I would like to thank the organizers of the conference “Function Spaces,

Differential Operators and Nonlinear Analysis” FSDONA 2004, and espe-
cially Professors Pavel Drábek and Jǐŕı Rákosńık for this opportunity, for
their warm hospitality and creating friendly atmosphere in the meeting.
The present paper is a survey of the very recent results in the theory of

integral operators in weighted Banach functional spaces. For the consider-
able achievement in this area we refer to [GR], [K1], [OK], [GGKK], [BK],
[KP], [GM], [EKM]. The latter book focuses our attention on boundedness
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(compactness) criteria of integral operators arising naturally in boundary
value problems for PDE, the spectral theory of differential operators, con-
tinuum and quantum mechanics, stochastic processes, etc. This monograph
was published in 2002. Various new results in weighted theory were obtained
later on. The exposition of the present paper is based on the recent results
of the author, his pupils and co-authors. The results collected here are scat-
tered with proofs through various journals, some of them are announced
quite recently. A characteristic feature of the statements presented here is
that most of them are given in the form of criteria.

The survey deals with the boundedness (compactness) criteria for a large
class of classical integral operators (or their generalizations) in Banach func-
tion spaces with non-standard growth. The latter have been studied inten-
sively by many mathematicians (see, e.g., [Sh], [S1]–[S7], [P1], [P2], [KR],
[ELN], [EN], [EM], [ER1], [ER2], [D1]–[D3], [DR1], [DR2], [FSZ], [F], [H1],
[H2], [KS1]–[KS5], [CFN], [CCF], [PR], [CFMP]) and references therein).
The study of these spaces has been stimulated by various problems of elastic-
ity, fluid mechanics, calculus of variation and differential equations with non-
standard growth conditions (see, e.g., [Z1], [Z2], [Z3], [AM], [Ma], [FZhang],
[R], [ADS]). The impulse to the intensive development of the theory of in-
tegral operators in variable exponent Lebesgue spaces has been given by
L.Diening’s [D2] pioneering paper on the boundedness of maximal func-
tions in the Lp(·) space on a bounded subset of R

n. Then he has also
proved that the boundedness holds in the case of an unbounded set in R

n

if the exponent is constant outside of some ball (see [D2]). Similar results
for Riesz potentials and singular integrals have been obtained in [D1] and
[DR1]. In the case of unbounded domains for the exponent not necessarily
constant at infinity the boundedness of maximal functions was obtained in-
dependently by A.Nekvinda [Ne], and D.Cruz-Uribe, A.Fiorenza and
C. J.Neugebauer [CFN1], [CFN2]. The latter paper proves the bound-
edness for more general fractional maximal functions and, consequently, for
the Riesz potentials in R

n. In all the above-mentioned papers the exponent
should satisfy the weak Lipschitz condition, except the paper [Ne] in which
the result was obtained with the condition replaced by somewhat general
integral condition at infinity.

Recently, Diening discovered the necessary and sufficient condition on
the exponent function p(·) for the maximal operator to be bounded in Lp(·).

Applying the techniques of the theory of weighted norm inequalities and
extrapolation, it has recently been shown in [CFMP] that the boundedness
in unweighted variable exponent Lebesgue spaces of a wide class of classical
operators (potentials, singular integrals, etc.) defined in the Euclidean space



154 VAKHTANG KOKILASHVILI

with Lebesgue measure follows from that of a maximal operator on the vari-
able Lp(·) space and from the known weighted inequalities in the Lebesgue
space with a constant exponent.

Following another approach, the present paper focuses on weighted esti-
mates in variable Lebesgue spaces for integral transforms defined both in the
Euclidean space with Lebesgue measure and on the spaces of homogeneous
type (quasi-metric space with doubling measure).

The study of integral operators in weighted Lp(·) spaces was started by
the author jointly with S. Samko. The boundedness criteria for the maximal
functions, singular integral operators and Riesz potentials in weighted Lp(·)

spaces with power-type weight is proved in [KS1]–[KS3]. The application of
the above-mentioned results for the singular integrals to the Fredholm crite-
ria for singular operators in Lp(·) is given in [KS4] and [Ka]. Quite recently
the boundedness of the Cauchy-type singular integral operator in weighted
Lp(·) spaces has been applied in [KPS] to the solution of the Riemann prob-
lem for analytic functions in the class of the Cauchy-type integrals with the
densities of the spaces mentioned above.

The comprehensive survey on the progress in the theory of integral op-
erators in the variable exponent Lebesgue spaces is given in [S8]. Lately
there appeared a vast number of new results concerning integral operators
in weighted Lebesgue spaces for weights, more general than power ones.
Note that not long ago the necessary condition for the boundedness of the
Hardy-Littlewood operator in Musielak-Orlicz spaces has been established
in [D3]. In the special case this condition was found to be sufficient. By this
an attempt to generalize the concept of Muckenhoupt class was made. How-
ever, it is still not clear to what extent the above-mentioned result covers
the case of power weights.

In the present paper, along with the power-type weights we discuss more
general cases. In this direction we can point out the weight estimates for
Hardy operators, trace inequalities for generalized Riesz potentials and the
Helson-Szegö-type results for singular integrals. In addition to what we said
above, it should be emphasized that in Sections 3 and 4 we present the
results for a much more general variable exponent p(x) than the functions
with the weak Lipschitz condition.

The paper is organized as follows. In Section 3 we develop the study of
the weight theory for Hardy-Littlewood maximal functions and Riesz poten-
tials in variable exponent Lebesgue spaces. Section 4 deals with maximal
functions and fractional integrals defined on the spaces of homogeneous type
(SHT). In Section 5, trace inequalities for generalized potentials defined on
SHT in the weighted Lp(·) spaces are treated under a very general condi-
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tion for the variable exponent. The necessary conditions and the sufficient
boundedness/compactness conditions for the Hardy-type operators are es-
tablished in Section 6. In Section 7 we concentrate our attention on the
conditions which govern the boundedness of singular integral operators in
weighted variable exponent Lebesgue spaces. Along with the power-type
weights, we can cover more oscillating weights. For the Cauchy singular in-
tegrals in variable Lp spaces the extensions of the well-known Helson-Szegö
theorem are treated.

2. Preliminaries

Let X be a space with a complete measure µ. Suppose that w is a non-
negative locally µ-integrable function on X. Such functions are called weight
functions. By Lp

w(X) (1 ≤ p < ∞) we denote a set of all µ-measurable
functions f for which the norm

‖f‖p,w =

(∫

Ω

|f(x)|pw(x)p dx

)1/p

< ∞.

Given a measurable set in Ω ⊂ X, and a measurable function p : Ω→ [1,∞),
let Lp(·)(Ω) denote the Banach space of measurable functions f on Ω such
that ρp(f/λ) < ∞ for some λ > 0, where

ρp(f) =

∫

Ω

|f(x)|p(x) dx < ∞,

with the norm

‖f‖p(·) = inf

{
λ > 0 :

∫

Ω

ρp(f/λ) ≤ 1

}
. (2.1)

These spaces are referred to as Nakano spaces [Na] or variable Lp spaces.
They are the special case of the Musielak-Orlicz spaces (cf. [Mu], [MO])
and generalize the classical Lebesgue spaces: when p(x) = p is constant,
Lp(·) = Lp(Ω).
The weighted variable exponent Lebesgue space is defined as the set of

all µ-measurable functions f , for which

‖ · ‖p(·),w = ‖fw‖p(·) < ∞.

The set of all measurable functions p : Ω→ [1,∞), for which

p = ess inf
x∈Ω

p(x) > 1 and p = ess sup
x∈Ω

p(x) < 1, (2.2)

is denoted by P.
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Let (X, d, µ) be a measure space with a quasi-metric d and let Ω be an
open set in X. The class of p ∈ P satisfying the condition

|p(x)− p(y)| ≤
c

− log d(x, y)
, x, y ∈ Ω, d(x, y) ≤ 1/2, (2.3)

will be denoted by V(Ω). The condition (2.3) is sometimes referred to as the
weak Lipschitz, w-Lip or the log-Hölder condition.
By V∞(Ω) we denote the set of functions p ∈ P which along with (2.3)

satisfy the condition

|p(x)− p(y)| ≤
c

log(e+ d(x, x0))
, x, y ∈ Ω, (2.4)

where d(y, x0) ≥ c d(x, x0).
Let Γ be a simple, closed, rectifiable curve, Γ = {t ∈ C : t = t(s), 0 ≤

s ≤ ℓ}, where ℓ = ν(Γ) and ν is an arc-length measure on Γ. Let p be a
measurable function on Γ such that p : Γ → [1,∞). By analogy with the
above definition the space Lp(·)(Γ) is defined through the modular

Ip(f/λ) =

∫ ℓ

0

(
|f(t(s))|

λ

)p(t(s))

dν < ∞

by the norm
‖f‖p(·) = inf{λ > 0 : Ip(f/λ) ≤ 1}.

By L
p(·)
w (Γ) we denote the Banach space of measurable functions f : Γ→ C

for which
‖f‖p(·),w = ‖fw‖p(·) < ∞.

The classes V(Γ) and V([0, ℓ]) are then defined in a natural way. The latter
is defined for the functions s 7→ p(t(s)). Since |t(s1)− t(s2)| ≤ |s1 − s2|, we
have V(Γ) ⊂ V([0, ℓ]). The inverse inclusion holds, for instance, if there
exists a γ > 0 such that |s1 − s2| ≤ c |t(s1)− t(s2)|

γ with some c > 0 or if Γ
satisfies the so called arc-chord condition.

3. Weighted inequalities for maximal functions,

potentials and singular integrals in Lp(·)(Rn)

This section is devoted to the classical integral transforms in the Euclidean
space. We present the necessary and sufficient conditions ensuring the
boundedness of the Hardy-Littlewood maximal operator, the Riesz poten-
tials and singular integrals in weighted Lebesgue spaces.
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Theorem 3.1 [KS1]. Let Ω be an open bounded set in R
n. Let p ∈ V(Ω) and

let α : Ω→ R
1 satisfy the w-Lip condition. Then the Hardy-Littlewood max-

imal operator M , Mf(x) = supr>0 |B(x, r)|−1
∫

B(x,r)
|f(y)|dy, is bounded

in L
p(·)
w with w(x) = |x − x0|

α(x), x0 ∈ Ω if and only if

−
n

p(x0)
< α(x0) <

n

q(x0)
.

For unbounded sets the following assertion holds true.

Theorem 3.2 [Kh1]. Let Ω be an open set in R
n. Let p ∈ V(Ω). If p(x) =

p∞ outside some ball then the operatorM is bounded in L
p(·)
w (Ω) with w(x) =

|x − x0|
β if and only if

−
n

p0
< β <

n

q0
and −

n

p∞
< β <

n

q∞
.

Given a measurable function f : R
n → R

1 let us consider the Calderón-
Zygmund operator

Kf(x) =

∫

Rn

K(x − y)

|x − y|n
f(y) dy,

where K : R
n → R

1 is homogeneous of degree 0, does not vanish on the
sphere Sn−1, satisfies the Dini condition on Sn−1 and

∫

Sn−1

K(x′) dx′ = 0.

Theorem 3.3. Let p ∈ P be constant outside some ball and let w(x) =
|x − x0|

α, x0 ∈ R
n. Then the inequality

‖Kw‖p(·),w ≤ c ‖fw‖p(·),w

with the constant c independent on f holds if only if conditions (2.3) and
(2.4) are fulfilled.

In particular, this statement holds for the Riesz transforms Rj which are
defined by

Rjf(x) = lim
ε→0

∫

|y|>ε

yj

|y|n+1
f(x − y) dy, x ∈ R

n, j = 1, 2, . . . , n,
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for measurable functions f : Rn → R
1 satisfying the condition

∫

Rn

f(x) dx

(1 + |x|)n
< ∞.

If the inequalities
‖Rjfw‖p(·) ≤ c ‖fw‖p(·)

hold for all j = 1, 2, . . . , n then the conditions for the weight from Theo-
rem 3.2 are satisfied. See [KS2] for the case n = 1.
Theorem 3.3 in its sufficiency part holds true for more general Calderón-

Zygmund operators.
For the generalized Riesz potential

Iα(x)f(x) =

∫

Ω

f(y)

|x − y|n−α(x)
dy, x ∈ Ω,

over bounded domain Ω in R
n the following extension of the Stein-Weiss

theorem (see [ST]) holds.

Theorem 3.4 [S7]. Let Ω be a bounded domain in R
n and x0 ∈ Ω, let

p ∈ V(Ω) and let α satisfy the conditions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x)p(x) < n,

|α(x)− α(y)| ≤
A

log 1
|x−y|

, |x − y| ≤
1

2
, x, y ∈ Ω.

Then the generalized Riesz potential operator Iα(·) satisfies the estimate

‖Iα(·)f‖q(·),|x−x0|µ ≤ C ‖f‖p(·),|x−x0|γ , (3.1)

where
1

q(x)
≡
1

p(x)
−

α(x)

n
, (3.2)

α(x0)p(x0)− n < γ < n[p(x0)− 1] (3.3)

and

µ =
q(x0)

p(x0)
γ. (3.4)

Now we shall deal with Ω = R
n and a constant α, 0 < α < n. Consider

the weight fixed to the origin and to infinity:

ρ(x) = ργ0,γ∞
(x) = |x|γ0(1 + |x|)γ∞−γ0 .
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Theorem 3.5 [SV]. Let p ∈ V∞(R
n). Let ρ1 = ργ0,γ∞

and ρ2 = ρµ0,µ∞
,

where

µ0 =
q(0)

p(0)
γ0, µ∞ =

q(∞)

p(∞)
γ∞.

Then the operator Iα is bounded from L
p(·)
ρ1 (R

n) into the space L
q(·)
ρ2 (R

n) if

αp(0)− n < γ0 < n[p(0)− 1], αp(∞)− n < γ∞ < n[p(∞)− 1],

and the exponents γ0 and γ∞ are related to each other by the equality

q(0)

p(0)
γ0 +

q(∞)

p(∞)
γ∞ =

q(∞)

p(∞)

[
(n+ α)p(∞)− 2n

]
.

In [SV] the spherical potential operators were treated as well. Certain
Hardy-type inequality for the Riesz potential was proved in [S6].

4. Maximal functions on L
p(·)
w (X)

In this section we present results concerning weight estimates in variable
exponent Lebesgue spaces for maximal functions and generalized potentials
defined in the spaces of homogeneous type (SHT). These are spaces (X, d, µ)
defined in Section 2 satisfying in addition the following so called doubling
condition: There exists a positive constant c > 0 such that

µB(x, 2r) ≤ cµB(x, r)

for any x ∈ X and r > 0.
Let M be the maximal operator defined by

Mf(x) = sup
r>0

1

µB(x, r)

∫

B(x,r)

|f(y)|dµ.

Theorem 4.1 [Kh2]. Let p ∈ V(X) and p(x) = p∞ outside some ball. Then
the maximal operator M is bounded in Lp(·)(X).

Theorem 4.2 [KS5]. Let Ω be an open bounded set in X and let

µB(x, r) ∼ rs, s > 0.

Let p ∈ V(Ω) and let w(x) = d(x0, x)
α, x0 ∈ X. Then M is bounded in L

p(·)
w

if and only if

−
s

p(x0)
< α <

s

p′(x0)
. (4.1)



160 VAKHTANG KOKILASHVILI

It should be mentioned that for the unweighted Lp(·) spaces the bound-
edness of the maximal operator on a bounded set in a metric space with
doubling measure has been independently proved in [HHP]. In the same pa-
per it is shown that the maximal operator may be bounded even though the
variable exponent is not weak Lipschitz continuous.
Given 0 < α < 1, define the fractional maximal operator on SHT by

Mαf(x) = sup
r>0

1

µ(B(x, r)1−α

∫

B(x,r)

|f(y)|dy.

Theorem 4.3 [K3]. Let 0 ≤ α < 1, 1 < p ≤ p < 1/α and let p ∈ V∞(X).
Define q : X → (1,∞) by

1

p(x)
−
1

q(x)
= α, x ∈ X. (4.2)

Then the fractional maximal operator Mα is bounded from Lp(·)(X) to
Lq(·)(X).

5. Trace inequalities for generalized potentials

In this section we shall deal with the generalized potential operators defined
as follows:

Iα(x)f(x) =

∫

X

d(x, y)α(x)−sf(y) dµ(y), 0 < α(x) < s. (5.1)

Our goal is to present two statements for this operator. The first one con-
cerns criteria for a two-weights inequality for the operator Iα(·) in weighted
Lebesgue spaces with constant exponents. The second one establishes the
trace inequality for Iα(·) in variable exponent Lebesgue spaces.
In the sequel we always assume that µX < ∞, that α satisfies the

w-Lip(X) condition and that there exist positive constants c0, s > 0 such
that

µB(x, r) ≤ c rs

for all x ∈ X and r > 0. We set

l := diamX = sup{d(x, y) : x, y ∈ X}.
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Theorem 5.1 [EKM2]. Let 1 < γ < λ < ∞, 0 < α(x) < s and let α satisfy
the w-Lip(X) condition. Let ρ and w be weights.
Then the operator Iα(·) is bounded from Lγ

w(X) to Lλ
ρ(X) if and only if

sup
x∈X
0<r<l

ρB(x,Nr)1/λ

×

(∫

X\B(x,r)

w(y)−γ′

d(x, y)(α(x)−s)γ′

dµ(y)

)1/γ′

< ∞

(5.2)

and

sup
x∈X,
0<r<l

w(x)−1B(x,Nr)1/γ′

×

(∫

X\B(x,r)

ρ(y)λd(x, y)(α(x)−s)λ dµ(y)

)1/λ

< ∞,

(5.3)

where N = 2a1(1+2a0). The constants a0 and a1 are from the definition of
the quasi-metric (see, e.g., [GGKK, p. 1]).

This theorem extends the results of [GGK] in the case of an open bounded
set Ω.

Corollary 5.1. Let 1 < γ < λ < ∞. Let α satisfy the w-Lip(X) condition
and let sup

x∈X
α(x) < s/γ. Then

(i) the operator Iα(·) acts boundedly from Lγ(X) into Lλ
ρ(X) if

sup
x∈X
0<r<l

rλ(α(x)−s/r)

∫

B(x,r)

ρλ(y) dµ(y) < ∞; (5.4)

(ii) if X is compact and

b1r
s ≤ µB(x, r) ≤ b2r

s (5.5)

for some positive constants b1 and b2, then the condition (5.4) is also nec-
essary for the boundedness of Iα(·) from Lγ(X) to Lλ

ρ(X).

Now we return to the variable exponent Lebesgue spaces and give a trace
inequality for Iα(·). By this we present some extensions of the well-known
theorems of Adams and Sobolev type.
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Theorem 5.2 [EKM2]. Let p(·) and q(·) be measurable functions on X
with 1 < p ≤ q̄ < ∞, let α satisfy the w-Lip(X) condition and suppose that
supx∈X α(x) < s/p. Let v be a weight. Then the condition

sup
x∈X
0<r<l

rq̄(α(x)−s/p)

∫

B(x,r)

v(y)q(y)(y) dµ(y) < ∞ (5.6)

implies the boundedness of Iα(·) from Lp(·)(X) to L
q(·)
v (X).

From this theorem a statement of the Sobolev type follows for Iα(·).

Corollary 5.2. Let p(·) and q(·) be measurable functions on X such that
1 < p ≤ q̄ < ∞. Let α satisfy the w-Lip(X) condition and suppose that
s(1/p−1/q̄) ≤ infx∈X α(x) ≤ supx∈X α(x) < s/p. Then Iα(·) acts boundedly

from Lp(·)(X) into Lq(·)(X).

Theorems 5.1 and 5.2 together with Corollaries 5.1 and 5.2 are new even
for Euclidean spaces. From these results several special cases can be indi-
cated, such as potentials on thin sets. Let Γ be a subset of R

n which is an
s-set (0 < s ≤ n) in the sense that there is a Borel measure µ in R

n such that
suppµ = Γ and there are positive constants c1, c2 such that for all x ∈ Γ
and r ∈ (0, 1),

c1r
s ≤ µ(B(x, r) ∩ Γ) ≤ c2r

s. (5.7)

It is known (see [T]) that µ is equivalent to the restriction of the Hausdorff
s-measureHs; we shall thus identify µ withHs|Γ. Given x ∈ Γ, put Γ(x, r) =
B(x, r) ∩ Γ.
Let us indicate some examples of SHT for which the condition (5.7) is

satisfied. Let Γ ⊂ C be a connected rectifiable curve and let ν be an arc-
length measure on Γ. By definition, Γ is Carleson (regular) if

ν(Γ ∩ B(z, r)) ≤ c r

for every z ∈ C and r > 0.
For r < diamΓ, the reverse inequality

ν(Γ ∩ B(x, r)) ≥ r

holds for all z ∈ Γ. Equipped with ν and the Euclidean metric, the regular
curve becomes an SHT . Now let

Tα(t)f(t) =

∫

Γ

f(τ)

|t − τ |1−α(t)
dτ (5.8)

be an integral with weak variable singularities.
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The Cantor set in R
n is an s-set, where

s =
log(3n − 1)

log 3
.

Consider the following potential-type integral transform on a bounded Can-
tor set F :

Jα(x)f(x) =

∫

F

f(y)

|x − y|s−α
dHs, 0 < α(x) < s. (5.9)

From the previous results we can derive trace inequalities for the operators
Tα(·) and Jα(·). In some cases the statements have the form of criteria.

Let us illustrate it by the case of Jα(·).

Theorem 5.3 [EKM2]. Let 1 < γ < λ < ∞, let α satisfy the w-Lip(X)
condition and let supx∈F < s/γ. Then the operator Jα(·) acts boundedly

from Lγ(F ) into Lλ
ρ(F ) if and only if

sup
x∈F

0<r<diamF

rλ(α(x)−s/γ)

∫

Γ(x,r)

ρλ(y) dHs(y) < ∞.

Theorem 5.4 [KS6]. Let Γ be a closed regular curve with finite length
ℓ < ∞. Let p(t) satisfy conditions (2.2), (2.3) on Γ and α(t) satisfy the
assumptions

inf
t∈Γ

α(t) > 0, sup
t∈Γ

α(t)p(t) < 1, |α(t)− α(τ)| ≤
A

log 2ℓ
|t−τ |

for all t, τ ∈ Γ with A > 0 independent of t and τ . Then the operator Tα(·)

is bounded from Lp(·)(Γ) into Lq(·)(Γ) where 1/q(t) = 1/p(t)− α(t).

Theorem 5.5 [KS6]. Let Γ be an arbitrary infinite regular curve in C. Let
p ∈ V(Γ) be constant on Γ outside some circle in C. Then the operator
Tα with a constant α is bounded from Lp(·)(Γ) into Lq(·)(Γ) with 1/q(t) =
1/p(t)− α.

6. Two-weight problem for the Hardy operators in Lp(·)

During the last 30 years a vast amount of research has been carried out on
the boundedness/compactness of the weighted Hardy operator

Hv,wf(x) = v(x)

∫ x

0

f(t)w(t) dt.
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In the present section we expose integral-type necessary conditions and
sufficient conditions on measurable almost everywhere positive functions
(weights) v and w governing the boundedness/compactness of the operator
Hv,w from Lp(x)(I) to Lq(x)(I), where p(x) and q(x) are continuous functions
and I = [0, 1] or I = R+ ≡ [0,∞). We also investigate the corresponding
problems for the dual operators

Hv,wf(x) = v(x)

∫ 1

x

f(t)w(t) dt, x ∈ (0, 1),

and

H̃v,wf(x) = v(x)

∫ ∞

x

f(t)w(t) dt, x ∈ R+.

From the beginning we should emphasize that in the sequel we shall not need
the condition

ess sup
x∈I

p(x) ≤ ess inf
x∈I

q(x).

Under this heavy restriction it is possible to get the boundedness of H̃v,w

from Lp(·) to Lq(·) using the standard methods of BFS (see, for example, [Be],
[K]). It should be noted that all conditions derived in the present section
are simultaneously necessary and sufficient in the case of classical Lebesgue
spaces. The distance of Hv,w from the space of finite rank operators is esti-

mated as well. Finally, we mention that the boundedness of Hv,w and Hv,w

in weighted Lp(x) spaces for some power weights v and w was established in
[KS1].
Let I ≡ [0, 1] or I ≡ R+. Suppose that a is a fixed number in I. We shall

need the following notation:

p̄ := ess sup
x∈I

p(x), p := ess inf
x∈I

p(x),

p0(x) := ess inf
y∈[0,x]

p(y), p1,a(x) := ess inf
y∈[x,a]

p(y),

p1(x) := p1,a(x) for a = 1,

p̃(x) :=

{
p(x) if x ∈ [0, a]

p2 ≡ const if x ∈ [a,∞),

p̃0(x) :=

{
p0(x) if x ∈ [0, a]

p2 ≡ const if x ∈ [a,∞),

P̃ (x) :=

{
p̄ if x ∈ [0, a]

p2 ≡ const if x ∈ [a,∞),

p̃1(x) :=

{
p1,a(x) if x ∈ [0, a]

p2 ≡ const if x ∈ [a,∞),
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q := ess inf
x∈I

q(x), q̄ := ess sup
x∈I

q(x),

g′(x) :=
g(x)

(g(x)− 1)

for measurable g with g(x) ∈ (1,∞).
We begin with the following statement:

Theorem 6.1. Let p(x) and q(x) be measurable functions on I ≡ [0, 1] with
1 < p ≤ p0(x) ≤ q(x) ≤ q̄ < ∞ for a.a. x ∈ I. If

B ≡ sup
0<t<1

B(t)

≡ sup
0<t<1

∫ 1

t

v(x)q(x)
(∫ t

0

wp′

0
(x)(τ) dτ

)q(x)/p′

0
(x)

dx < ∞,

(6.1)

then the operator Hv,w is bounded from Lp(·)(I) to Lq(·)(I).

Theorem 6.2. Let p(x) and q(x) be measurable functions on R+ with 1 <
p ≤ p0(x) ≤ q(x) ≤ q̄ < ∞ for a.a. x ∈ I. Then the condition

B∞ ≡ sup
t>0

∫ ∞

0

v(x)q(x)

×

(∫ t

0

w(τ)p
′

0
(x)(1 + τ)2(p

′(x)/p′

0
(τ)−1) dτ

)q(x)/p′

0
(x)

dx < ∞

guarantees the boundedness of Hv,w from Lp(·)(R+) to Lq(·)(R+).

Under additional assumptions the following rather simpler sufficient con-
dition for boundedness of Hv,w can be obtained.

Theorem 6.3. Let p(x) and q(x) be measurable functions on I ≡ R+ with
1 < p ≤ p0(x) ≤ q(x) ≤ q̄ < ∞ for a.a. x ∈ I. Suppose that there exists a
positive number a such that p(x) ≡ p2 ≡ const and q(x) ≡ q2 ≡ const when
x > a. Assume also that p2 ≤ q2. If

A ≡ sup
t>0

A(t)

≡ sup
t>0

∫ ∞

t

v(x)q(x)
(∫ t

0

w(τ)p̃
′

0
(x) dτ

)q(x)/p̃ ′

0
(x)

dx < ∞,

(6.2)

then the operator Hv,w is bounded from Lp(·)(I) to Lq(·)(I).
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Theorem 6.4. Let Let p(x) and q(x) be measurable functions on I ≡ [0, 1]
with 1 < p ≤ p̄ < ∞, 1 < q ≤ q̄ < ∞. If Hv,w is bounded from Lp(·)(0, 1) to

Lq(·)(0, 1) and ρp′(w) < ∞, then

B ≡ sup
0<t<1

B(t)

≡ sup
0<t<1

(∫ 1

t

v(x)q(x)
(∫ t

0

w(τ)p
′(τ) dτ

)q(x)/p̄ ′

dx

)1/q

< ∞.

(6.3)

Theorem 6.5. Let p(x) and q(x) be measurable functions on I ≡ R+ with
1 < p ≤ p̄ < ∞, 1 < q ≤ q̄ < ∞. Suppose that there exists a positive number
a such that p(x) ≡ p2 ≡ const and q(x) ≡ q2 ≡ const when x > a. Assume

that
∫ a

0
wp′(τ)(τ) dτ < ∞ and Hv,w is bounded from Lp(·)(R+) to Lq(·)(R+).

Then

A∞ ≡ sup
t>0

A∞(t)

≡ sup
t>0

(∫ ∞

t

v(x)q(x)
(∫ t

0

w(τ)p̃
′(τ) dτ

)q(x)/P̃ ′(x)

dx

)1/q2

< ∞.

(6.4)

Now we turn to the dual operators

Hv,wf(x) = v(x)

∫ 1

x

f(t)w(t) dt

for measurable f : (0, 1)→ R.

Theorem 6.6. Let p and q be measurable functions on I ≡ [0, 1] with 1 <
p ≤ p1(x) ≤ q(x) ≤ q̄ < ∞ for a.a. x ∈ I. If

G ≡ sup
0<t<1

G(t)

≡ sup
0<t<1

∫ t

0

v(x)q(x)
(∫ 1

t

wp ′

1
(x)(τ) dτ

)q(x)/p ′

1
(x)

dx < ∞,

(6.5)

then the operator Hv,w is bounded from Lp(·)(I) to Lq(·)(I).

For the operator

H̃v,wf(x) = v(x)

∫ ∞

x

f(t)w(t) dt, x ∈ (0,∞),

we have:
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Theorem 6.7. Let p and q be measurable functions on I ≡ R+. Suppose
that there exists a positive number a such that p(x) ≡ p2 ≡ const, q(x) ≡
q2 ≡ const for x > a, and 1 < p2 ≤ p̃1(x) ≤ q(x) ≤ q̄ < ∞ for a.a. x ∈ I. If

G ≡ sup
t>0

G(t)

≡ sup
t>0

∫ t

0

v(x)q(x)
(∫ ∞

t

wp̃ ′

1
(x)(τ) dτ

)q(x)/p̃ ′

1
(x)

dx < ∞,

(6.6)

then the operator H̃v,w is bounded from Lp(·)(I) to Lq(·)(I).

Theorem 6.8. Let p and q be measurable functions on I ≡ [0, 1]. Suppose
that 1 < p ≤ p̄ < ∞, 1 < q ≤ q̄ < ∞. Then from the boundedness of Hv,w

from Lp(·)(0, 1) to Lq(·)(0, 1) it follows that

F ≡ sup
0<t<1

F (t)

≡ sup
0<t<1

∫ t

0

v(x)q(x)
(∫ 1

t

wp′(τ)(τ) dτ

)q(x)/P̃ ′(x)

dx < ∞,

(6.7)

provided that ρp′(w) < ∞.

Theorem 6.9. Let p and q be measurable functions on I ≡ R+ with 1 <
p ≤ p̄ < ∞, 1 < q ≤ q̄ < ∞. Suppose that there exists a positive number a
such that p(x) ≡ p2 ≡ const and q(x) ≡ q2 ≡ const when x > a. Then from

the boundedness of H̃v,w from Lp(·)(R+) to Lq(·)(R+) it follows that

F∞ ≡ sup
t>0

F∞(t)

≡ sup
t>0

∫ t

0

v(x)q(x)
(∫ ∞

t

w(p̃)
′(τ)(τ) dτ

)q(x)/P̃ ′(x)

dx < ∞,

(6.8)

provided that
∫ a

0
wp′(τ)(τ) dτ < ∞.

Now we deal with compactness properties of the operators Hv,w, Hv,w

and H̃v,w.

Theorem 6.10. Let p and q satisfy the conditions of Theorem 6.1.

(i) If (6.1) holds and lim
t→0

B(t) = 0, then Hv,w is compact from Lp(·)(0, 1)

to Lq(·)(0, 1).

(ii) Let ρp′(w) < ∞. If Hv,w : L
p(·)(0, 1)→ Lq(·)(0, 1) is compact then (6.3)

holds and lim
t→∞

B(t) = 0, where B(t) is from (6.3).

Analogously we have:
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Theorem 6.11. Let p and q satisfy the conditions of Theorem 6.3. Then
the following statements hold:

(i) If (6.4) holds and lim
t→0

A(t) = lim
t→∞

A(t) = 0, then Hv,w is compact from

Lp(·)(R+) to Lq(·)(R+).

(ii) Let
∫ a

0
wp′(τ)(τ)dτ < ∞. If Hv,w : L

p(·)(R+) → Lq(·)(R+) is compact,

then (6.4) holds and lim
t→0

A∞(t) = lim
t→∞

A∞(t) = 0, where A∞(t) is from

(6.4).

Theorem 6.12. Let p and q satisfy the conditions of Theorem 6.6. Then
the following statements hold:

(i) If (6.5) holds and lim
t→0

G(t) = 0, then the operator Hv,w : L
p(·)(0, 1) →

Lq(·)(0, 1) is compact.

(ii) If ρp′(w) < ∞ and if Hv,w : L
p(·)(0, 1) → Lq(·)(0, 1) is compact, then

(6.7) holds and lim
t→0

F (t) = 0.

Theorem 6.13. Let p(x) and q(x) satisfy the conditions of Theorem 6.7.
Then the following statements hold:

(i) If (6.7) holds and lim
t→0

G(t) = lim
t→∞

G(t) = 0 then the operator H̃v,w is

compact from Lp(·)(R+) to Lq(·)(R+).

(ii) Let
∫ a

0
wp′(τ) dτ < ∞. If H̃v,w : L

p(·)(R+)→ Lq(·)(R+) is compact then
(6.8) holds and lim

t→0
F∞(t) = lim

t→∞
F∞(t) = 0.

The next statement gives the estimate of the distance of Hv,w from the

space of finite rank operators acting from Lp(·) to Lq(·). We denote this
distance by α(Hv,w).

Theorem 6.14. Let functions p and q satisfy the conditions of Theorem
6.1. Suppose that cB ≤ 1, where B is from (6.1) and c = 22q̄+q̄/p. Then

lim
a→0

A
1/q

a ≤ α(Hv,w) ≤ c1/q̄ lim
a→0

B1/q̄
a ,

where

Ba ≡ sup
0<t<a

∫ a

t

v(x)q(x)
(∫ t

0

wp′

0
(x)(τ) dτ

)q(x)/p′

0
(x)

dx,

Aa ≡ sup
0<t<a

Aa(t) ≡ sup
0<t<a

∫ a

t

v(x)q(x)
(∫ t

0

wp′(τ)(τ) dτ

)q(x)/p̄ ′

dx.

In the lower estimate we assume that ρp′(w) ≤ 1.
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E x a m p l e 6.1. Let w(x) = xβ and v(x) = xα/p(x), where either β ≥ 0
and −βp̄ ′(p − 1) − p ≤ α < −1 or −1/p′ < β < 0 and −p − βp ≤ α < −1.

Then Hv,w is bounded in L(p(·)(0, 1). If either β ≥ 0 and −βp̄ ′(p− 1)− p <
α < −1 or −1/p′ < β < 0 and −p − βp− < α < −1, then Hv,w is compact

in Lp(·)(0, 1).

E x a m p l e 6.2. If w(x) = xβ , v(x) = xα/p(x), where either β < −1/p′−
and α > −1 or β > 0 and α > −1, then Hv,w is compact in Lp(·)(0, 1).

All the results presented in this section are contained in [EKM2].

At last we note that the Hardy inequalities with power weights in Lp(·)

were treated in [KS1], [S6], [S7], [HHP].

7. Weighted inequalities

for the Cauchy singular integral operator

One of the main goal of our investigation is the Cauchy singular integral

(SΓf)(t) =
1

πi

∫

Γ

f(τ) dτ

τ − t
, t ∈ Γ, f ∈ L1(Γ).

In the case that the operator SΓ : f → SΓf is bounded in Lp(·)(Γ) we denote
its norm as ‖S‖p(·). Recall that Γ is called the Lyapunov curve if t

′ ∈ Lipβ,
0 < β ≤ 1, and it is called the curve of bounded curvature (Radon curve)
if t′ is a function of bounded variation on [0, l]. The definition of a regular
(Carleson) curve was given in Section 5.

Theorem 7.1 [KS6]. Let Γ be a bounded Carleson curve and let p ∈ V(Γ).

Then SΓ is bounded in L
p(·)
w (Γ) with

w(t) =

n∏

k=1

|t − tk|
αk ,

where tk are distinct points of Γ, if and only if

−
1

p(tk)
< αk <

1

q(tk)
, q(t) =

p(t)

p(t)− 1
.

This result can be obtained in a more general form.
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Theorem 7.1’. Let Γ be a bounded Carleson curve and let p ∈ V(Γ). Sup-
pose that α and β are real-valued functions satisfying the w-Lip condition
on Γ. Let w(t) = |t − t0|

α(t) and w1(t) = |t − t0|
β(t), t0 ∈ Γ. Then the

operator SΓ is bounded from L
p(·)
w (Γ) into L

p(·)
w1 (Γ) if and only if

−
1

p(t0)
< α(t0) ≤ β(t0) <

1

p′(t0)
.

Via the solution of boundary value problems for analytic functions in the
class of the Cauchy-type integrals with a density in Lp(·) we are able to obtain
the weight results for SΓ in Lp(·)-space when the weight is not necessarily of
power type. We use the following notation:

Rp(·) = {Γ : SΓ is bounded in Lp(·)(Γ)}

and
W p(·)(Γ) = {σ : σSΓ

1
σ is bounded in Lp(·)(Γ)}.

Theorem 7.2 [KPS]. Let p ∈ V(Γ), let Γ ∈ Rp(·) and let ϕ be a real-valued
function in C(Γ). Then the function σ,

σ(t) =

∣∣∣∣ exp
(
1

2π

∫

Γ

ϕ(τ) dτ

τ − t

)∣∣∣∣ ,

belongs to the class W p(·)(Γ).

Theorem 7.3. Let p and ϕ satisfy the assumptions of Theorem 7.2. Let
α : Γ→ R

1 satisfy the w-Lip(Γ) condition. Then the function σ1,

σ1(t) = |t − t0|
α(t)

∣∣∣∣ exp
(
1

2π

∫

Γ

ϕ(τ) dτ

τ − t

)∣∣∣∣ , t0 ∈ Γ,

belongs to W p(·) if

−
1

p(t0)
< αk(t0) <

1

q(t0)
.

Theorem 7.4 [KPS]. Let Γ be a Lyapunov curve or a Radon curve and let
p ∈ V(Γ). Assume that

ess sup
τ∈Γ

|α(τ)| < min
{
2 arcctg ‖SΓ0‖p(t(·)), π/q

}
.



INTEGRAL OPERATORS IN WEIGHTED BANACH FUNCTION SPACES 171

Then the function σ,

σ(t) =

∣∣∣∣ exp
(
1

2π

∫

Γ

α(τ)

τ − t
dτ

)∣∣∣∣ ,

belongs to W p(·)(Γ).

Theorem 7.4 contains the sufficient part of the well-known Helson-Szegö
result. The following example given on the basis of Theorem 7.3 is of interest,
in our opinion. Let tk, k = 1, 2, . . . , be arbitrary distinct points on Γ. Then
the function

ρ(t) =

n∏

k=1

|t − tk|
βk

belongs to W p(·)(Γ) under the conditions

−
1

p(tk)
< βk <

1

q(tk)
, k = 1, 2, . . . ,

and ∣∣∣∣∣

n∑

k=1

βk

∣∣∣∣∣ < ∞.

Finally, it should be emphasized that the results presented in the survey
turned out to be for us an important tool for solving a variety of problems
in several areas of analysis and its application. Namely, in the development
of the theory of function spaces (Triebel-Lizorkin, Bessel, etc.) generated by
the norm of variable exponent Lebesgue spaces, in BVP in general setting
for the elliptic partial differential equations in “bad” domains, generalized
analytic functions, and so on. To keep the length of this paper reasonable,
we will not discuss these topics here.

Acknowledgment. It is a great pleasure to express my gratitude to Prof.
S.G. Samko and Prof. A.Meskhi for their kind assistance, remarks and com-
ments during the preparation of the present survey.
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[HHP] P. Harjulehto, P. Hästö and M. Pere, Variable exponent Lebesgue spaces on

metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exch. 30
(2004/2005) (to appear).

[H1] H. Hudzik, On generalized Orlicz-Sobolev space, Funct. Approx. Comment.
Math. 4 (1976), 37–51.

[H2] H. Hudzik, The problems of separability, duality, reflexivity and comparison
for generalized Orlicz-Sobolev space W k

M
(Ω), Comment. Math. Prace Mat. 21

(1979), 315–324.
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