
ZAMM · Z. Angew. Math. Mech. 96, No. 7, 780–790 (2016) / DOI 10.1002/zamm.201500187

Relationship between the effective thermal properties of linear
and nonlinear doubly periodic composites

D. Kapanadze1, W. Miszuris2, and E. Pesetskaya1,∗

1 A. Razmadze Mathematical Institute, Tbilisi State University, Georgia
2 Department of Mathematics, Aberystwyth University, UK

Received 11 July 2015, revised 3 October 2015, accepted 5 October 2015
Published online 9 November 2015

Key words Nonlinear doubly periodic composite material, effective conductivity.

Classcode: 34B15, 35B27, 74Q20

The present paper is devoted to the study of the effective properties of 2D unbounded composite materials with temperature
dependent conductivities. We consider a special case of nonlinear composites, when the conductivity coefficients of the
matrix and the composite constituencies are proportional. This allows us to transform the problem for the nonlinear
composite to a problem for an equivalent linear composite and then to find a solution of the nonlinear type. Analyzing
the effective properties of the composites we derive relationships between their average properties. We show that, when
computing the effective properties of the representative cell of the nonlinear composite, the result may depend not only
on the temperature but also on its gradient.
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1 Introduction

Composite models with constant conductivities (linear models) have been exhaustively investigated by many authors,
using various methods dependent on the composite structures. In the case of randomly distributed components, effective
properties of such composites were successfully studied, for example, in [8, 10, 11, 13, 14, 29–31], while analytical and
numerical results for composites with periodic structure can be found in [4, 12, 15, 16, 32, 33]. An extensive and complete
overview of the methods employed can be found in the fundamental work [17].

The results for both types of the composite materials can be compared to each other in the case of small concentrations
of the components, when the interactions between them do not play an essential role (cf. [15, 19]). The upper and lower
bounds are extremely useful tools for practical evaluation of the effective constants (cf. [20–22]). One of the important
features of the linear problems (composites with constant physical properties) is the fact that, although the temperature can
be defined here with an accuracy up to a constant, the effective properties are independent of the applied external field (cf.
[4]).

Nonlinear models of the components can be divided into two major classes. The first class, when the material properties
depend on the gradient of the temperature, has been discussed in many works. The respective mathematical methods are
well developed and can be found in [2, 23–27].

The second class of nonlinear composites corresponds to the case when the material properties depend only on
the solution and is less developed in the literature. The probable first fundamental theoretical result concerning the
homogenization problem for nonlinear composites of that type was published in [3]. In [7], the elementary and Hashin-
Shtrikman type bounds were extended for nonlinear models and further analyzed in [28]. The prevailing conclusion is that
homogenisation of nonlinear composites with temperature dependent components can be treated in the same manner as the
linear ones. Unfortunately, there are few examples when the solution can be found effectively. In the one dimensional case
such results can be found in [1], while in the two dimensional case such results have been recently obtained for composites
with the component conductivities proportional to that in the matrix in [2] for random composites, and in [6] for periodic
composites. However, even in this rather special case, the Eshelby approach that is so effective for linear composites is not
applicable (cf. [2]).

This paper is devoted to further analysis of nonlinear composites of periodic structure, when material characteristics
depend on the temperature and are proportional to each other. Specifically, using the fact that the solution can be obtained
analytically, we compute the effective conductivity of a separate cell of the nonlinear composites and establish a relationship
between its average properties and the corresponding model of a linear composite.
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We show that, even for this very specific case of nonlinear composites, the theory is much more complex than for the
linear equivalent. For instance, formally computed effective properties may depend not only on temperature but also on its
gradient. An exact solution to the problem allows us to evaluate a formula relating effective properties of the representative
cells of linear and nonlinear composites and to demonstrate that the conclusions reached on the average properties discussed
in [2, 7, 28] are valid only when the heat flux is negligibly small. We also deliver an estimate of those properties when the
difference between those results and the exact value is small.

The paper is organized as follows. In Sect. 2, we describe a geometry for the considered periodic composite materials,
and formulate the nonlinear boundary value problem and its linear equivalent. In Sect. 3, we establish a relationship
between the effective conductivity tensors of the representative cells of the linear and nonlinear composites. We then give
and discuss numerical examples in Sect. 4. The paper then closes with the Conclusion.

2 Statement of the problem and preliminary results

We consider a lattice defined by the two fundamental translation vectors 1 and ı (where ı2 = –1) in the complex plane
C ∼= R

2 of the complex variable z = x + ıy. The representative cell is the unit square

Q(0,0) :=
{
z = t1 + ıt2 ∈ C : −1

2
< tp <

1

2
, p = 1, 2

}
.

Let E := ⋃
m1,m2

{m1 + ım2} be the set of the lattice points, where m1,m2 ∈ Z. The cells corresponding to the points of

the lattice E are denoted by

Q(m1,m2) = Q(0,0) + m1 + ım2 := {
z ∈ C : z − m1 − ım2 ∈ Q(0,0)

}
.

Mutually non-overlapping disks (inclusions) of different radii Dk := {z ∈ C : |z − ak| < rk} with boundaries ∂Dk := {z ∈
C : |z − ak| = rk} (k = 1, 2, . . . , N) are located inside the cell Q(0,0) and periodically repeated in all cells Q(m1,m2) . Let

D0 := Q(0,0) \
(

N⋃
k=1

Dk ∪ ∂Dk

)
be the connected domain obtained by removal of the inclusions from the cell Q(0,0) . We consider the situation when the
matrix and inclusions occupy domains

Dmatrix =
⋃

m1,m2

((D0 ∪ ∂Q(0,0)) + m1 + ım2)

and

Dinc =
⋃

m1,m2

N⋃
k=1

(Dk + m1 + ım2)

with thermal-sensitive conductivities λm = λm(T ) and λk = λk(T ), respectively. Here, temperature T is defined in the
whole of R

2. In general, the conductivities λm, λk (k = 1, . . . , N) are continuous bounded positive functions on R.
The purpose of this paper is to investigate properties of the effective conductivity tensor for steady-state distribution of

the temperature and heat flux within such a nonlinear composite when the temperature function T = T (x, y) satisfies the
nonlinear differential equations

∇(λm(T )∇T ) = 0, (x, y) ∈ Dmatrix, (1)

∇(λk(T )∇T ) = 0, (x, y) ∈ Dinc. (2)

We assume that the perfect (ideal) contact conditions on the boundaries between the matrix and inclusions hold:

T (s) = Tk(s), s ∈
⋃

m1,m2

(∂Dk + m1 + ım2), (3)

λm(T (s))
∂T (s)

∂n
= λk(Tk(s))

∂Tk(s)
∂n

, s ∈
⋃

m1,m2

(∂Dk + m1 + ım2). (4)

www.zamm-journal.org C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



782 D. Kapanadze et al.: Effective thermal properties of linear and nonlinear doubly periodic composites

Here, the vector n is the outward unit normal vector to ∂Dk . According to the formulation, the flux and the temperature
are continuous functions in the entire structure. The average flux vector of intensity A is directed at an angle θ to axis Ox

which does not coincide, in general, with the orientation of the periodic cell:∫
∂Q

( top)
(m1 ,m2)

λm(T )Tyds = −A sin θ, (5)∫
∂Q

( right)
(m1 ,m2)

λm(T )Txds = −A cos θ. (6)

2.1 Linear composite

Note that, if the conductivities λm and λk are constants, we have the linear partial differential equation

�T = 0, (x, y) ∈ Dmatrix ∪ Dinc, (7)

with linear boundary conditions

T (s) = Tk(s), s ∈
⋃

m1,m2

(∂Dk + m1 + ım2), (8)

λm

∂T (s)
∂n

= λk

∂Tk(s)
∂n

, s ∈
⋃

m1,m2

(∂Dk + m1 + ım2), (9)

λm

∫
∂Q

( top)
(m1 ,m2)

Tyds = −A sin θ, λm

∫
∂Q

( right)
(m1 ,m2)

Txds = −A cos θ. (10)

As we discussed in the introduction, such a problem can be completely solved by various methods. Here, we present
only some results important for the nonlinear composite considered below.

Theorem 2.1. For any given data θ and A the linear boundary value problem (7)–(10) with ideal (perfect) contact
conditions has a unique (modulo real constants) real analytic solution.

For the proof cf. [4, 5].
Note that an additional condition on the temperature T such as

T (x0, y0) = t0, (x0, y0) ∈ Dmatrix ∪ Dinc, (11)

where t0 is a given value of the temperature at any point (x0, y0), will give us a unique solvability result. Specifically, the
following corollary holds true.

Corollary 2.2. The boundary value problem (7)–(11) has a unique real analytic solution.

Remark 2.3. Note that the calculation of the effective conductivity tensor � defined by the formula

〈λ∇T 〉 = �〈∇T 〉, (12)

where

λ = λ(z) =
{

λm, z ∈ Dmatrix,

λk, z ∈ Dinc,

does not depend on the chosen cell, cf. [4, 8]. Moreover, since the constants disappear in the expression ∇T , the effective
properties of the linear composites are independent of the additional condition (11) and, crucially, of the applied flux A.

2.2 Nonlinear composite with proportional components

In this section, investigation of the effective conductivity tensor �n corresponding to the nonlinear boundary value problem
(1)–(6) is carried out under the assumption that the ratio of the component conductivities is a given constant C:

λm(T )
λk(T )

= C for all k = 1, . . . , N. (13)

In this case, the problem (1)–(6) is linearized and solved in [6].

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM · Z. Angew. Math. Mech. 96, No. 7 (2016) / www.zamm-journal.org 783

Theorem 2.4 (cf. [6]). The boundary value problem (1)–(6), (11) has a unique real analytic solution.

Let us recall that we have established in [6] a bijection between solutions of the linear and nonlinear boundary value
problems via the Kirchhoff transformation (cf. [9] and (26), (27) below). This fact, together with Theorem 2.1, allows
us to describe a solution of the boundary value problem (1)–(6) complemented by the condition (11), and to prove the
effectiveness of the numerical algorithm for evaluation of the effective properties of the composite.

Let us denote by Tn a solution to the nonlinear boundary value problem (1)–(6), and

λn(Tn(z)) =
{

λm(Tn(z)), z ∈ Dmatrix,

λk(Tn(z)), z ∈ Dinc.
(14)

Following [6], we define the effective conductivity tensor �n of the representative cell of a nonlinear composite by the
same formula (12):

〈λn(Tn)∇Tn〉 = �n〈∇Tn〉. (15)

It was shown in [6] that, in contrast to the linear composites, the effective conductivity tensor �n varies from cell to cell
and thus represents a function of the problem solution. The question arises: what would be a minimal set of variables that
defines this function uniquely? For a chosen example of the nonlinear composite and the averaged flux flowing through it,
it was shown in [6] that the effective properties of the composite can be attributed to the average temperature:

�n = �n(〈Tn〉). (16)

Note that in case of holes (λk(T ) = 0), this paper’s assumption (13) is satisfied automatically, with 1/C = 0. This
special case was considered in [18] where, when considering average properties, an alternative reference parameter to the
average temperature 〈T 〉 was utilized. Specifically, the author considered the jump of the temperature over the unit cell as
the parameter.

Below we will show that the tensor of the effective properties, �n, defined according to (14), may depend not only on
the average temperature, 〈Tn〉, but also the flux intensity, A,

�n = �n(〈Tn〉, |A|). (17)

The natural question may then be asked of whether such a periodic structure can be represented as a composite material
possessing average properties, or whether it is only the nonlinear periodic structure and the respective physical problems
that should be considered in the original formulation, without reference to its effective properties.

3 Relationship between the effective conductivity tensors of non linear and
respective linear models

We denote by Tl = Tl(λk, λm) and �l = �l(λk, λm) a temperature and the effective conductivity tensor for the respective
linear problem (7)–(10), respectively. Here, we establish the relationship between �n and the effective conductivity tensor
�l for the linear problem with the same ratio of constant conductivities λm and λk:

λm

λk

= C for all k = 1, . . . , N. (18)

In this section, we assume that data rk, ak, C, θ,A defined in Sect. 2 are given and fixed.
Let λl = λl(z) and λ0 = λ0(z) be piecewise constant functions defined as follows

λl(z) =
{

λm, z ∈ Dmatrix,

λk, z ∈ Dinc,
λ0(z) =

{
1, z ∈ Dmatrix,

1
C
, z ∈ Dinc.

Lemma 3.1. Let λk , k = 1, . . . , N , and λm be arbitrary positive constants satisfying the condition (18). Then, we have

�l(λk, λm) = λm�l

(
C−1, 1

)
. (19)

Lemma 3.1 is an immediate consequence of the definition of the effective conductivity and Theorem 2.1.
For further references, we recall the representation of the solution in terms of complex potentials. The linear boundary

value problem (7)–(10) can be equivalently reduced to the corresponding R-linear conjugation problem on each contour
|t − ak| = rk ,

ϕ(t) = ϕk(t) − ρkϕk(t) − Bt, (20)
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for unknown complex analytic functions ϕ, ϕ1, . . . , ϕN connected with the function Tl by the following equality (cf. [4]):

Tl(λk, λm; z) =
{

Re (ϕ(z) + Bz), z ∈ Dmatrix,

2λm

λm+λk
Re ϕk(z), z ∈ Dinc.

(21)

Here, ρk = λk−λm

λk+λm
= 1−C

1+C
, B = 1

λm
B̃, where

B̃ = −A cos θ

I + 1
− A cos θ

I⊥ − 1
i, (22)

is a constant complex number with some real constants I and I⊥ uniquely determined by rk, ak, C (cf. [4]). Note that the
constant B̃ does not depend on λm or λk but does depend on C. Then, from (20) we get

ϕ̃(t) = ϕ̃k(t) − ρkϕ̃k(t) − B̃t,

where ϕ̃(t) = λmϕ(t), ϕ̃k(t) = λmϕk(t), and

T0(z) =
{

Re (ϕ̃(z) + B̃z), z ∈ Dmatrix,

2C
C+1 Re ϕ̃k(z), z ∈ Dinc.

(23)

Thus, we have

λmTl(λk, λm; z) = T0(z). (24)

Lemma 3.2. Let the functions λm and λk satisfy the condition (13). Then

〈λn(Tn)∇Tn〉 = 〈λ0∇T0〉. (25)

P r o o f . Using the same ideas as in [4], the nonlinear boundary value problem under the condition (13) can be reduced
to the boundary R-linear conjugation problem on each contour |t − ak| = rk:

2

C + 1
ϕ(t) = ϕk(t) + C − 1

C + 1
ϕk(t) − 2B̃

C + 1
t,

where B̃ is defined in (22). Denoting C+1
2 ϕk(t) = ϕ̃k(t) and ϕ(t) = ϕ̃(t), we get

ϕ̃(t) = ϕ̃k(t) − ρkϕ̃k(t) − B̃t,

where ρk = λk(T )−λm(T )
λk(T )+λm(T ) = 1−C

1+C
(cf. (20)).

Following [4] and [6], a solution of the nonlinear problem (1)–(6) can be found in the form

u(z) =
{

Re (ϕ(z) + B̃z), z ∈ Dmatrix,

Re ϕk(z), z ∈ Dinc,

where

fm(T ) =
T∫

0

λm(ξ) dξ, fk(T ) =
T∫

0

λk(ξ) dξ, (26)

and

u(x, y) = fm(T (x, y)), uk(x, y) = fk(Tk(x, y)). (27)

Or, in terms of ϕ̃ and ϕ̃k , we can rewrite

u(z) =
{

Re (ϕ̃(z) + B̃z), z ∈ Dmatrix,

2
C+1 Re ϕ̃k(z), z ∈ Dinc.

(28)

Comparing equalities (23) and (28), we get

u(z) = T0(z), for z ∈ Dmatrix, uk(z) = 1

C
T0(z), for z ∈ Dinc.
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For a solution Tn of the nonlinear boundary value problem (1)–(6), we have

Tn(z) = f −1
m (u(z)) = f −1

m (T0(z)), for z ∈ Dmatrix, (29)

Tn(z) = f −1
k (uk(z)) = f −1

k (C−1T0(z)), for z ∈ Dinc, (30)

or

fm(Tn(z)) = T0(z), for z ∈ Dmatrix, Cfk(Tn(z)) = T0(z), for z ∈ Dinc. (31)

Since f ′
m(T ) = λm(T ) and f ′

k(T ) = λk(T ), after differentiating the equalities (31) by x and y, and taking into account
condition (13), we arrive at

λm(Tn)∇Tn = ∇T0, for z ∈ Dmatrix,

λk(Tn)∇Tn = 1

C
∇T0, for z ∈ Dinc, (32)

which imply (25). �
We can now establish a relation between the effective conductivity tensors of the linear and nonlinear models.

Theorem 3.3. If the conditions (13) and (18) are fulfilled then the effective conductivity tensor �n of a nonlinear model
is related to the effective conductivity tensor �l of a linear model by the following equality:

�n〈∇Tn〉 = �l(C−1, 1)〈∇T0〉. (33)

P r o o f . Using equality (25) from Lemma 3.2, definition (15) can be rewritten as

�n〈∇Tn〉 = 〈λ0∇T0〉 = �l(C−1, 1)〈∇T0〉.
�

Taking (13) into account, the equalities (32) give

λm(Tn)∇Tn = ∇T0. (34)

Thus, equality (33) can be rewritten as

�n

〈 ∇T0

λm(Tn)

〉
= �l(C−1, 1)〈∇T0〉. (35)

Here, it is worth mentioning that in some practical problems we may have sufficiently small |λm(Tn(z)) − λm(〈Tn(z)〉)|
for all z ∈ Q(0,0) . In this case we can substitute λm(〈Tn(z)〉) for λm(Tn(z)) in (34), which gives

〈∇Tn(z)〉 ≈ 1

λm(〈Tn(z)〉) 〈∇T0(z)〉,

where the latter becomes

�n ≈ λm(〈Tn(z)〉)�l(C−1, 1). (36)

A similar relation can be obtained for an arbitrary cell Q(m1,m2) . This relation was first obtained in [2] for random composites
without discussion on its applicability.

Theorem 3.4. Let the functions fm defined in (26) and λm be Lipschitz continuous with Lipschitz constants Cf and
Cλ, respectively. Then for any arbitrarily small value ε > 0, there exists A∗ > 0, (A∗ = A∗(ε)) such that for any intensity
satisfying an equality |A| < A∗ the following estimate holds,∣∣(�n)ij − λm(〈Tn(z)〉)�l(C−1, 1)ij

∣∣ < ε, (37)

for all i, j = 1, 2.

P r o o f . Let us denote by T0,1(z) a solution T0(z) in (23) when A = −1, then we have

T0(z) = |A| T0,1(z),

for any A < 0. Further, let us note that

|T0,1(z) − 〈T0,1(z)〉| ≤ M, (38)
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for any z ∈ Q(m1,m2) , where < · > is taken with respect to the cell Q(m1,m2) and for some positive constant M > 0 which
is independent of the chosen cell Q(m1,m2) . Note that the constant M depends on the contrast parameter C as well as the
specific distribution of the inclusions within the unit cell for the respective linear composite.

Since the function f −1
m is Lipschitz continuous with a Lipschitz constant Cf , we get

|f −1
m (|A| T0,1(z)) − f −1

m (〈|A| T0,1(z)〉)| ≤ Cf

∣∣|A| T0,1(z) − 〈|A| T0,1(z)〉
∣∣ ≤ Cf |A|M.

Thus,

|f −1
m (|A| T0,1(z))| ≤ |f −1

m (〈|A| T0,1(z)〉)| + Cf |A|M,

and, obviously,

|〈f −1
m (|A| T0,1(z))〉| ≤ 〈|f −1

m (|A| T0,1(z))|〉

≤ 〈|f −1
m (〈|A| T0,1(z)〉)|〉 + 〈Cf |A| M〉

= |f −1
m (〈|A| T0,1(z)〉)| + Cf |A| M.

Further, using the Lipschitz continuity of the function λm, together with (29) and the estimates obtained above, we get

|λm(Tn(z)) − λm(〈Tn(z)〉)| ≤ Cλ|Tn(z) − 〈Tn(z)〉)|

= Cλ|f −1
m (T0(z)) − 〈f −1

m (T0(z))〉|

= Cλ|f −1
m (|A| T0,1(z)) − f −1

m (〈|A| T0,1(z)〉)

+ f −1
m (〈|A| T0,1(z)〉) − 〈f −1

m (|A| T0,1(z))〉|

≤ 2CλCf |A| M.

Let us set

λmin := inf
ξ∈R

{λm(ξ)},

λmax := sup
ξ∈R

{λm(ξ)},

λk,max := sup
ξ∈R

{λk(ξ)},

�max := max{λmax, λk,max}.
Since ∣∣∣∣ 1

λm(Tn(z))
− 1

λm(〈Tn(z)〉)
∣∣∣∣ = |λm(〈Tn(z)〉) − λm(Tn(z))|

λm(Tn(z))λm(〈Tn(z)〉)

≤ |λm(〈Tn(z)〉) − λm(Tn(z))|
λ2

min

≤ 2CλCf |A| M
λ2

min

,

we obtain ∣∣∣∣〈 (∇T0)j

λm(Tn(z))
− (∇T0)j

λm(〈Tn(z)〉)
〉∣∣∣∣ ≤ 2CλCf |A| M

λ2
min

|〈(∇T0)j 〉|

and, consequently,∣∣∣∣〈 (∇T0)j

λm(Tn(z))

〉
− 〈(∇T0)j 〉

λm(〈Tn(z)〉)
∣∣∣∣ ≤ 2CλCf |A| M

λ2
min

|〈(∇T0)j 〉|.
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Further, we have∣∣∣∣(�l(C−1, 1))ij 〈(∇T0)j 〉 − (�n)ij

〈(∇T0)j 〉
λm(〈Tn(z)〉)

∣∣∣∣
=

∣∣∣∣(�n)ij

〈
(∇T0)j

λm(Tn)

〉
− (�n)ij

〈(∇T0)j 〉
λm(〈Tn(z)〉)

∣∣∣∣
≤ �max

∣∣∣∣〈 (∇T0)j

λm(Tn)

〉
− 〈(∇T0)j 〉

λm(〈Tn(z)〉)
∣∣∣∣

≤ 2CλCf |A| M�max

λ2
min

|〈(∇T0)j 〉|,

and we finally obtain∣∣(�l(C−1, 1))ij λm(〈Tn(z)〉) − (�n)i,j

∣∣ ≤ |A|
a∗

(39)

for all i, j = 1, 2, where

a∗ := λ2
min

2λmax�maxCλCf M
.

Thus, we have (37) provided |A| ≤ A∗ = εa∗. �
One can also conclude that for small values of ε � 1 (or equivalently for small values of the heat flux |A| � 1, the

following estimate holds true

δ�(A) = |A|−1 max
z∈Q( 0,0)

∣∣(�l(C−1, 1))ij λm(〈Tn(z)〉) − (�n)i,j

∣∣ = O(1), A → 0. (40)

lim
|A|→0

δ�(A) = δ∗
� ≤ 1/a∗.

Analogously to (39), we define

δM(A) = |A|−1 max
z∈Q( 0,0)

∣∣〈Tn(z)〉 − Tn(z)
∣∣ ≤ 2Cf M, lim

|A|→0
δM(A) = δ∗

M. (41)

4 Numerical examples

In this section, we analyze the nonlinear composite considered in the paper [6] for various values of the flux intensity A.
Specifically, we will show that in the case when the temperature changes dramatically within cells, the average properties
formally defined by (35) will be different depending not only on the average temperature but on the flux intensity, A, which
contradicts the statements in [2, 7] and [28].

We choose for calculations the representative cell Q(0,0) , with one central inclusion of the radius rk = R = 0.29, i.e.
the volume fraction of the inclusion is 0.2642. We consider the same material properties, as discussed in [6], where the
material conductivities are characterized by identical pike shapes satisfying the condition (13), and defined in the following
form:

λ(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α1, T < β1,

α2 + α1 − α2

β1
T , β1 ≤ T ≤ 0,

α2 + α1 − α2

β2
T , 0 ≤ T ≤ β2,

α1, T > β2,

(42)

where β1 = −2, β2 = 2, α1 = 4.5, α2 = 13.5 for the matrix conductivity, λm, α1 = 50, α2 = 150 for the inclusion con-
ductivities, λk , and C = 0.09. We will examine the cases of flux intensities |A| = 0.01; 0.1; 30; 100.

The effective conductivity tensor �l(C−1, 1) of the corresponding linear problem is

�l(C−1, 1) = 1.56676 I, (43)

where I is the unit tensor.
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In Figs. 1 and 2, we present the temperature distributions within one cell for three values of the flux intensity. It is
clearly seen that the gradient of the temperature within the cell is closely correlated to the average heat flux intensity and
essentially depends on the latter.

Fig. 1 Temperature distribution in the cell Q(0,0) , with flux intensity |A| = 1,
for the nonlinear composite.

In Fig. 3 we show the properties of the nonlinear composite as evaluated by the formula (37) for 3 different values of the
average heat flux intensity: |A| = 1, 30, 100. Since, according to the composite geometry, we always obtain the unit tensor,
only the diagonal component of the tensor �n is presented, (�n(〈Tn〉))11. For comparison, we also depict the value λm(〈Tn〉) ·
�l(C−1, 1) corresponding to the model from [2]. Note that, for the smaller values of the average heat flux intensity, the
difference between those solutions and the result obtained by the model from [2] is invisible in the scale of the graph.

Finally, we can evaluate the constants from the estimates (39) and (41) in order to determine the accuracy of the
inequalities. For this reason, let us note that for the composite under consideration the functions λm and f −1

m are characterized
by their Lipschitz constants Cλ = 4.5, Cf = 2/9, while the constant M seen in inequality (38) can be estimated as
M ≈ 0.077. As a result, the constant A∗ = εa∗ in Theorem 3.4 can be computed to give a∗ ≈ 0.06. Additionally, we
calculate constants δ∗

� ≈ 16.67 and δ∗
M ≈ 0.034.

We can expect that those two important estimates, (39) and (41), are rather conservative. Our computations confirm this at
least for the chosen configuration of the composite. Indeed, the values of the constants from the estimate are given in Fig. 4.

Moreover, as a result of the computations we can suggest more accurate and even double-sided inequalities for this
particular composite

δ� ≤ δ�(A) ≤ δ�, δM ≤ δM(A) ≤ δM, (44)

where δ� ≈ 0.09, δ� ≈ 4.46 and δM ≈ 0.0195, δM ≈ 0.0242.

Fig. 2 Temperature distribution in the cell Q(0,0) for the nonlinear composite, with the average flux intensities |A| = 30
and |A| = 100.
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Fig. 3 Comparison of the diagonal components of the tensor
λm(〈Tn〉) · �l(C−1, 1) corresponding to the respective linear com-
posite to the diagonal components of the effective conductivity
tensors �n of the nonlinear model, for different intensities of the
flux.
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Fig. 4 Constants calculated from the estimates (39) and (41), for different values of the heat flux in the chosen geometry.

5 Conclusions

In the special case of proportional conductivities, we have shown that the effective properties of the representative cell
of a nonlinear temperature dependent composite computed by the standard definition (15) may essentially depend on the
intensity of the flux penetrating the composite. We have proved that, for a sufficiently small flux intensity, the result for such
a nonlinear composite is indistinguishable from another obtained in [2]. However, if the flux intensity becomes sufficiently
large, the result developed for the periodic model differs from the corresponding result obtained in [2], where the classic
homogenization methods were utilised. In other words, if we use the simplest formula from [2] to solve a boundary value
problem for the respective composite, it is of crucial importance to analyse at the postprocessing stage the level of heat
flux locally developed in different parts of the nonlinear composite. In those parts of the composite where the flux is high
enough, the average properties cannot be assumed without taking into account a specific structure of the composite and the
flux level.
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