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Abstract
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1. Introduction and formulation of the problems
1.1. Boundary-contact problems

Boundary-contact problems for partial differential equations appear in many areas of
physics, elasticity theory and the applied sciences. The domains may consist of different
components with some common parts of their boundaries (here called interfaces) with
contact conditions for the solutions. It is a natural assumption in such situations that
the interfacesS have conical, edge, or other singularities. The simplest case 8hen
is smooth is well known, cf. Picongl6], Lions [14], Schechte18], Hérmander[8],
Kupradze et al[11], Myshkis [15].

Problems with singularities at the interfaces have been studied by several authors,
partly focused on special systems, under extra assumptions on the geometry or the
underlying dimensions, cf. Escauriaza et [8], Torres and Welland22], Li and Vo-
gelius[13], Li and Nirenberg12] (the latter paper studies the case when the interfaces
subdivide the medium in a way that there are touching points).

Boundary-contact problems for elliptic systems in a dom@irc R"*! refer to a
subdivision of the formQ = Q, U Q_ U S for open subdomain€. of Q such that
Q. NQ_ = S is an ‘interface’ of codimension 1. More precisely, we assume that
024 =8, SN o2 = ¢, which has the consequence tli&@_ = S U 0Q. Starting from
a pair of elliptic systems of differential operatoss. of order i in Q. (with smooth
coefficients up to the respective boundaries) our problems have the form

Ajuy = fr in Qy, (1)
Tu_=h on 09, 2)
Tiuy +T_u_=g on S. 3)

Here T is (Shapiro—Lopatinskij) elliptic with respect to the operatbr, and 7. are
trace operators of the foriy = (T ;);j=1...N,

Ty jus = (B+ ju+)ls 4)

for differential operatorsB. ; of order m; with smooth coefficients, defined in a
tubular neighbourhood’ of Sin Q. The restriction toS refers to the corresponding
plus or minus side. The trace operatbr= (T1,..., Ty’) is given in an analogous
form, i.e., Tru_ = Bju_|,;o for smooth differential operators of order; in a collar
neighbourhood 06Q. The numberdN and N" are known from the context. For instance,
if AL areL x L-systems of operators of ordem2then we haveV = 2mL and N’ =

mL (under some standard conditions on the principal symbols of the operator§ near
and 09, respectively, see Agmon et 4L]).
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The behaviour of solutions far fror8 is known from the standard theory of elliptic
boundary value problems when we assuff to be smooth, and, for instanc&
bounded.

The main focus of the present paper is the case wBiena manifold with finitely
many conical singularities. Also other properties are of interest, e.g., edge singularities.
The applications often refer to systems rather than operdterdHowever, the essential
parts of our methods do not depend on that aspect. So, for simplicity, from now on
we consider the casé = 1.

First, note that whei®2. are bounded an8is smooth the problemlf—(3) represents
continuous operators

H7H(Qy)
®
AO+ | e HHE-)
A= I, T : ® — ® 1 (5)
. HY(Q-) @ HTMTA(S)
®

/

/ 1
@9}21 Hs_mj_? (69)

for arbitrary s > max{m; + % m’j + %} (in the system case we would have everywhere

Cr-valued analogues of the Sobolev spaces).

If S has a conical singularity (or finitely many, where the considerations are
then analogous) it is adequate to replace the standard Sobolev spaces by weighted
Sobolev spaces and subspaces with asymptotics in corresponding stretched domains.
To have more convenient notation we skt = Q.; then § = X, (= 0X_\0Q)
and the stretched regions are defined by replacing conical neighbourhoogse of
S (v € X1) by cylinders[0,1) x ¥ ([0,1) x Z1), wherer € [0,1) is the axial
variable of the respective cones with (£1) as the base manifolds. In the present
situation 2 is C*, compact and closed?,. are C*, compact, and with common
boundary 2. The global stretched ‘domains’ which include their boundary will be
denoted byX.; the stretched ‘surfaceéS obtained fromS by blowing up the singularity
nearv (similarly as the blowing up the domains as mentioned before) then has the
property

5X+,reg = Sreg, 5X—,reg = §reg U 0,

where subscript ‘reg’ denotes the stretched spaces minus the botten@sof the corre-
sponding local cylinders (more details will be explained below). There are now weighted
Sobolev space$(®’(X1) and H*7(S) of smoothness and weighty (and subspaces
with asymptotics forr — 0, also to be introduced below). Then our boundary-contact
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problem in the conical situation represents continuous operators

HIIITH(X )
®
T (Xy) HITIITIX )
A ® - 691« 1 (6)
HIOC) @ W2 TTA(S)
2]

/ o 1
D H T TR0Q)

for arbitrary s > max{m; + %m’j + %} andy € R. The operatorsA. nearr = 0 are
assumed to be of Fuchs type. Moreover, the trace operator@n (4)) have the form
of a composition of a Fuchs-type differential operator with the restriction t&,irdf.
the formulas 12), (13) below.

The programme of this paper is to solve problems of the tyipe(3) in terms of
parametrix construction under a natural condition of ellipticity (referring to the weights)
and then to obtain regularity and asymptotics of solutions. Our technique from a suitably
adapted cone algebra approach is completely general and does not specifically refer to
special elliptic operators. The necessary material will be given in Se8tidrhis will
be applied to some categories of examples where we explicitly determine admissible
weights and express asymptotics, cf. SectoB

1.2. The symbolic structure

For the case thaG is smooth the ellipticity of.A refers to a principal symbolic
hierarchy

J(A) = (Gl//(A+)’ O—lﬁ(Af)v O—tr(A)v 0—6(-’4))7

where A is regarded as an operatd).(Here,oy (A1) € C*°(T*X4\0) are the standard
homogeneous principal symbols of the operatéssover intX, (smooth up to respec-
tive boundaries)s,(A_)(y, n) is the boundary symbol of_ with respect taQ, as is
common in the standard calculus of boundary value probiem;) € 7*(02)\0. Recall
that when(y, r) is a local splitting of variables in a collar neighbourho@@ x [0, 1)

of the boundary, with(n, ) as the covariables, then the boundary symbol of the entry
A_ is defined by

0o(A)(y,m) =0y (A)(y, 0,0, Dy),

interpreted as an operator famiky,(A_)(y,n) : H*(Ry) — H*"H(Ry) (or, alter-
natively, S(Ry) — S(Ry) for S(Ry) := S(R)|g, with S(R) being the Schwartz
space). Moreover, ifT = '(Ty,...,Ty/) is given in terms of expressions
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Tiu_ = Bru_|,o, see the notation before, we set

oo (T f = (g (B, 0.1, D) )],

and

a5(T) == "(65(Ti)k=1,...n"-

This gives us altogether a column matrix

H7H(Ry)
5o (A1) = ("gf(AT‘))) G HE) > 8 ™)
¢ C

(which also makes sense for Schwartz spaces rather than Sobolev spaces).

In order to fix notation for the principal transmission symbol we choose a tubular
neighbourhoodv ¢ Q of S i.e., an open submanifold of the forri>~S x (-1, 1)
with a global normal variables € (—1, +1) to S with respect to a fixed Riemannian
metric (here the metric induced By ). Let V. := VN X4, and lets : V_ — V,
be defined by (y, ) = (v, —t). Then we can pass to the operator

Aylintv, 0
Ay, = 0  ex(A_lintv) |- (8)
T+ S*T,
Here
ex(A_linty. ) == (") HA_|inty e 9)

(with &* being the function pull back undef) and

(exT)u := (xB_ jlintv_)ulg (10)

for a functionu on V. The operatotdy, then represents a boundary value problem
on V, with a boundary symbol

H7H(Ry)
H'(R) B
A B — HTHR)
H*(Ry) @

([:N
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which is the analogue7f, here for (y,n) € T*S\0. This gives rise to our so-called
principal transmission symbol ofl, nhamely

H7H(Ry)
H*(Ry) @
oar(ADy,m: & — HTHR-), (11)
H*(R-) )
CN

(y,n) € T*S\0, obtained froms,(Ay,)(y,n) by push forward(s 1), to the operators
of the second column fromR, to R_, similarly as the relation between the operators
(9), (10) (in the scalar case , i.el, = 1, we haveN = p).

The transmission problend)is called elliptic if the symbolsr, (A+)(x, ) are non-
vanishing for all(x, &) € T*X+\0 and if the other components are bijective operators
for all sufficiently larges and all (y,n) € T*0Q\0 as well as(y,n) € T*S\O (if
we refer to Schwartz spaces the condition ©disappears). Clearly, the definition of
the principal symbols and of ellipticity does not employ the fact tkiat (and S are
compact. If, for instanceS has a conical singularity we can restrict the operato6)(
to Sobolev distributions of support disjoint {@}. Let A;eg denote the corresponding
operator in this case. Then we haw@Aeg) as before, i.e., the above symbols for the
configuration consisting ok \{v}, X_\{v} and the interface§\{v}. We then have to
add the corresponding principal symbols close to the conical singulariys noted
before we pass to the stretched domains by inserting polar coordinates centeted at
After a translation of2 we assume = 0. The following considerations are relevant only
in a small neighbourhood of 0. Lét(¢) denote the ball of radius > 0 centered at O in
R™+1. Assume that the intersection&+\{0}) N B(¢) for a sufficiently smalle > 0 are
conical in the sense that we hat® L \{0})NB(e) ={Ix : 0 < 1 < ¢e,x € X1 NIB(e))}.
Then also(S\{0}) N B(g) is conical in an analogous sense. This assumption simplifies
the formulations though it is completely superfluous; our approach is valid for the
general case as well. Let us also fixand then omit it in the notation, i.eB = B(s).

The operatorsA. in polar coordinateqr, ¢) near 0 have the form of operators of
Fuchs type which means

n
rY as j(r)(—rdy) (12)

Jj=0

with coefficientsat ; € C*°([0, ¢), Diff F=i(Z1)) (here Diff’(-) denotes the space of
all differential operators of order on the manifold in the brackets). For our methods
it is not essential that1@) comes from a smooth operator in the neighbouring space.
Similarly as @) for the trace operators we assume

my

Tyjus = FintS(fm’ D biy (r)(—rﬁr)jui)- (13)
Jj=0
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Here ks denotes the operator of the restrictiqn to $ntand the operator-valued
coefficientsb,. ;; are elements o€°°([0, ¢), Diff "'~/ (Z4)). Trace operators of such a

form are induced, for instance, by the Neumann conditio®, ate., u — rSa%”’ with
i being the differentiation in outer (with respect #.) normal direction toS Since

S has a conical singularity at G@ is discontinuous near 0, and the transformation in
stretched coordinate@, ¢) just glves the right expression. To see this we assume, for
simplicity, that S is a conical surface. There is thengae C>(R"t1\{0}), such that
S\{0} = {x € R™1: po(x) = 0}, 9=0 in Q1 and ¢(dx) = do(x) for all § € Ry,

0 _yontl e o
x #0. Then- = 205 2 %) is exactly of the form

1
Pty b=y (14)

with coefficientsb; e Diff 1=/ (Z).

The representation of the operators in Fuchs-type form is just the reason for the
continuity of @) in weighted Sobolev spaces. Multiplying thedependent coefficients
by a cut-off functionw(r) supported in[0, ¢) and denoting the new coefficients as
before, up to the weight factors our operator takes the form of a Mellin operator with
operator-valued symbol. Mellin operators are motivated by the identity = M~1zM
with the Mellin transformMu(z) = f r*~Lu(r) dr. The complex covariable is often
considered on the ‘weight line’

I'p={ze€C:Rez=f}

for some realB. The Mellin transform will also be applied to vector-valued functions
on R, first with compact support (which gives us holomorphyzirand then extended
to various function and distribution spaces (which is the moment to pa&&ut@)|r,).

A Mellin pseudo-differential operator with respect to a weight R is defined by the
expression

B 2 —y+igQ ) 1 ‘ ) dr’
opy, (Mu(r) = (2m) // () h(r,r,z—y—f-lQ)u(r)ng

with a(r, r’, z) belonging to Hérmander's clas.ﬂ{t:l)(lRJr x Ry x Ry) in the scalar case
and otherwise with values in differential (or pseudo-differential) boundary or transmis-
sion problems. In the operator-valued case the covariabielm z plays the role of a
parameter. In our case the Mellin amplitude functions have the form

I3 my
ha(r,2) =) ax ;N or Wy () =15 by,

j=0 j=0
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,,,,,

diag(r‘””)op}’;,l_%(h’i). Thus the operatod close to 0 has the form

A =m(r)oply 2 (h) (15)

for a matrixm(r) of weight factors, namely(r) := diag(r—#, r—#, diag(r—"™)), and
the matrix of Mellin amplitude functions

hy(r, z) 0
h(r,z) = 0O h_(ro|. (16)
W, (r,z) h_(r,2)

The functionh(r, z) is smooth inr up to zero and takes values in the space of trans-
mission problems ors” ! with respect to the subdivisios” ! = 5, U Z_ with the
interfaceX = £, NZ,. The covariablez varies on the weight Iine“n%lfy and is inter-
preted as a parameter. Adequate choiceg dépend on the behaviour of the so-called
conormal symbolsy, (A)(z) := h(0, z) which is also a parameter-dependent family of
transmission problems of*~1, regarded as continuous operators

HS~K(int Z,)

H(int5,) ®
GM(-A)(Z) : ® — H““(int ) (17)
H(int=_) o

BiLy H T2 (2)

for real s > maxim;} + 3.
Summing up a boundary-contact operatby With an interfaceS with conical sin-
gularity has a principal symbolic hierarchy

o(A) = (oy(Ay), oy (A-), o (Areg), 0,5(A), om (A)),
where gy (Areg) Was defined before.
1.3. Outline of the results
A boundary-contact operatob)(is said to be elliptic with respect tp if
() ay(Ay) is elliptic as usual,
(i) o,(A) is elliptic in the sense of the Shapiro—Lopatinskij condition,

(i) oy (Areg) Is elliptic as a transmission condition,
(iv) ap(A) is elliptic with respect to the weight.
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More precisely, in (i) the principal symbotg; (A1) (x, ¢) do not vanish for alkk € X4,

¢ e R"1\{0}. In (ii) we mean the bijectivity of the family of mapg) for all (y, ) €
T*(02)\0 (which is also standard). The ellipticity in (iii) first means the bijectivity of

ot (Areg) (v, ) as a family of mapsi(1) for all (y,n) € T*(S\{v})\O; in addition, ex-
pressing the involved operators in polar coordinates we obtain the transmission symbol
in the variablesy = (r, x’) and covariables; = (o, &) with (x’, &) belonging toT*X,

and then

G (A, X', 0, &) == m(r) Low(Areg (r, x', r 10, &)

(which is smooth inr up to zero) is required to define a family of isomorphisms

H7H(Ry)
H*(Ry) @

(A (r.x", 0.8 ® — HTHR)
H*(R-) @
(DN

up tor =0, for anys € R sufficiently large. In (iv) the ellipticity ofss;(A)(z) means
the bijectivity of (17) for all z € F%l_}, and anys € R sufficiently large.

The conditions (iii) and (iv) are natural; we will return to more details below.

The Section2 will contain the necessary material on weighted cone Sobolev spaces
with asymptotics. In SectioB, we describe a pseudo-differential analogue of boundary-
contact operators. In Sectiof, we construct parametrices of elliptic elements (cf.
Theorem4.3) and obtain regularity and asymptotics of solutions (cf. Theode@h

This will be done under some natural weight conditions which ensure elliptic reg-
ularity of solutions in weighted spaces and asymptotics in a general qualitative form.
Sectiort.3 is devoted to examples with explicit information on admissible weights and
exponents, logarithmic terms and coefficients of asymptotics of solutions.

Our approach to boundary-contact problems for conical singularities can be gener-
alised to a calculus with parameters. Those parameters may be variables and covariables
on an edge. In a future we intend to apply the present results to boundary-contact prob-
lems when the interface has edges.

2. Cone Sobolev spaces with asymptotics
2.1. The Mellin contribution to parametrices in weighted spaces

The regularity of solutions to our boundary-contact problems refers to a category
of weighted Sobolev spaces as they are known from Kondratyev's ydk Let us
briefly recall the definition. By assumption our subdomaihs c R"*! have aC™®
boundary, except for the conical singularity 0. Let us omit for the moment subscripts
‘+’ and simply write Q.
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For the construction we refer to polar coordinatesp) € Ry x S" in R"\{0}. First
let s € N, and let

HOR, x §™)
denote the subspace of allr, ¢) € r*%LZ([Ru x §™) such that
(ro)* DYur, ¢) € r 2 L2(Ry x ")

for all k + || <s. Here, D; denotes an arbitrary differential operator of order on

the sphereS”. Then, by duality with respect to the scalar productrUﬁLz([R{+ x ™)
and interpolation we obtai{*O(R, x §") for arbitrary s € R. Moreover, we set
H T (Ry x 8™ == r"H5O(R,. x §") and

Hs,y(Rn+1\{o}) ={ue HIEC(IR”"'J‘\{O}) cu(r, @) € HS’V(R—&- x SM)}.
This gives us finally
Qe = {ulg, 1 u € HY (R ([OD).

To obtain analogous spaceg-’(5\{0}) on a manifoldS (of dimensionn) with conical
singularity O we first modify the former construction for conical subset®'iR{0} and
then glue together the local spaces, using a suitable partition of unity together with a
natural invariance property.

Going back to the notation in Sectidnl we denote the spaces on the corresponding
stretched manifolds also by

HET(Xy) and HSY(S),

respectively. Details on constructions of that kind may be foun®,21]. Note that the
continuity @) is a consequence of the representation of the involved operators in polar
coordinates, together with the continuity of the operator of restricfigry(X1) —
’HS‘%”/‘%(S) for everys > % The following simple remark is given for future refer-
ences:

Remark 2.1. (i) The operator of multiplication by a function’o(r), f € R, ¢ €
Cgo(@Jr) (supported in a small neighbourhood of 0) induces continuous operators
H(Xy) — HSIHP(Xy) for all 5,9 € R.

(ii) The operators(rﬁ,)kDf;, induce continuous operatofg®”(Xy) — HS™H7(X4)
for all s,y € R.
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Similar observations are true for the weighted spaces &veConsider as a simple
example the case

AL =Ag., A_=cAlg (18)

for a constant # 0, with A being the Laplace operator "+, and
, 0
Ty = "(Tea1 Te2) for Tygu:=+tulins and Ty ou = 5, Ulints. (19)
+

wherevy are the outward normal directions to the boundarie€20f {0}. On 0Q we
may take any elliptic boundary condition for the Laplacian, e.g., Dirichlet conditions.
The corresponding boundary-contact problem then represents a continuous operator

H2T2(X )
®
é cOA HYT (X ) HEITR(X)
A= T T : hea - 2 691 1 (20)
o) e @ik
@
H*3(0Q)

for my =0, my = 1 and everys > 3.

As announced before we will obtain the Fredholm property of such operators for
all real weightsy except for a discrete set which can be calculated explicitly. Let us
illustrate the shape of2Q) in connection with the Mellin symbols inlg). For kL we
simply have

ha(z) = cx(z2 — (n — 1)z + Agn)

for c; =1, c_ = ¢ with Ag» being the Laplace operator on the sphé&fe Moreover,
hy ; are defined by

1
hyi:u—>ru and hyo:u— :l:r’Z bizlu
j=0

with b; as in (L4) and the operator of restriction to intS from the + side. We then
obtain

A O )
0 cA | =m(r)op~2(h)
T, T
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for m(r) = diagr—2,r72,1,r~1) and the Mellin symboli(z) as in (L6) which has
now constant coefficients.

Looking at the spher&g” which is subdivided by the smooth submanifoléls with
common boundary there is a spac#*?(Z,, Z_) transmission problems (of order
and so-called typé) with respect to the interfacE (more details will be given below).
The operators of this space are similar to those in the uppex Bart of the matrix §).

In the present case we hawe= 2 andd = 2. The general definition oB*% (5., 5_)

is close to that of the spad8“?(Z) of (pseudo-differential) boundary value problems
(of order i and so-called typé) on a (here compacty*™ manifold = with boundaryX
which have the transmission property2atSince in that kind of operators also systems
are admitted, a local reflection argument neaallows us to reduce the definition of
B*4(E,, E_) to the case of boundary value problems, similarly as in the beginning in
connection with the operator9)( (10). The space3*“(Z,, Z_) has a natural Fréchet
topology. In our example we have

h(z) € AC, B>?(EL, E_))

(here A(U, E) denotes the space of all holomorphic functions in an openUset C
with values in the Frechet spaés.

Remark 2.2. hir, is a family of transmission problems on the sphéfe subdivided
into Z4, with interfaceX, parameter-dependent elliptic with parameterzIfar z varying
on I'g, for every § € R. If is known from such a situation that

HS"2(54)
H*(E4) ®
hz): & — HS"2(5_) (21)
H(E_) @

@/2=1 H™M=3(5)

for s > %’ mo = 0, my = 1, is invertible for allz € C\D whereD is a discrete set
with the propertyD N {c<Rez<¢'} is finite for everyc<c'.

For a number of cases we will explicitly calculate the Bein Section4.3 below.
Now 2 ~1(z) is meromorphic with values i8=2%(5_, Z,) and has poles at the points
of D. A first essential step to solve our boundary-contact problem, represented by the
operator 20), is to pass to the operator

(m(ryopl, 2 ()~ = oply 2 (h=YHym=1(r) (22)
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which is well defined for those reals where D N F%ﬂ, = (). Sinceh has constant
coefficients we have invertibility in the sense that

(0B}, 2 (" Hym=Y(r)} m(r) 0Pl 2 () = oply 2 () oply 2(h) = 1

and the same from the other side.
Observe that the operato2Q) in localised form near 0 with Mellin symbols with
constant coefficients is continuous as a map

HI"2772(Ry x E4)

- HY (R4 x E4) ®
m(ryopy, 2 (h) : ® — HI~22(Ry x B_)
HST(R_ x BEL) @

Ly HS M2 (R, x )

for everys > % andy € R as noted before (in this notation for simplicity we write

Z, rather than inEL; we hope this will not cause confusion).
2.2. Asymptotics

Asymptotics of solutions (also to be expressed explicitly for specific examples) will
be formulated in terms of suitable subspaces of the weighted Sobolev spaces. The

information is of the following kind. Given a weight € R such that our operator is
Fredholm, there are sequences of triples

{(p+,j.n+j, L+ j)}jeN (23)

consisting ofp+ ; € C, n4 ; € N, and finite-dimensional subspacés ; C C*(54),
where

n+1
Reps ; < — —y forall j
and Repy+ ; - —oo as j — oo, such that the components of a solution

u(r, @) = " (r, ), u—(r, §)) € 17 (X5) @ HW(X-)

can be written as

ALY

usrod) = o) Y3 cx ik (@r P log r + s s (. ),

j=0 k=0
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for coefficientscy jx € L+ ;. Herew is a cut-off function, i.e., an element 0}8"(@+)
which is equal to 1, in a neighbourhood of 0, and the remainders(r, ¢) belong to
H57HB(X1) for arbitrary givenf € R, and a resulting lengtli = J(f) of the sums
over j. The so-called asymptotic type&3) depend on the operator and the boundary
conditions as well as on the dafa. andg that are assumed to be given with similar
asymptotics, cf. the formuladl), (3).

Let us first give the definition of subspacésf,;?(~) of H*7(-) of elements with
asymptotic typeP when the space in the brackets is one of our stretched domains
X4, briefly denoted byX. It will be convenient to admit asymptotic types of finite or
infinite length

P ={(pj.nj, Lp}j=o,...Nn, N € NU {oo}
with p; € C,

1 1
n;— —y—19<Repj<%—y (24)

for somed € Ry U {occ} and N finite as soon ag is finite, Rep; — —oo as j — oo
for N = co. As before we assume; € N, andL; C C*(&) is a subspace of finite
dimension; £ is of analogous meaning a5, before. Denoting by® = [0, ) the
weight interval occurring inZ4) we set

My (X) = [V H7TT75(X) (25)

>0

in the topology of the projective limit. Thu2f) is a Fréchet space. L& be finite
and fix any cut-off functionm. We then form the space of singular functions belonging
to the finite asymptotic typ®

N nj
Ep(X) 1= Jw(r) Z Z cjkr— i Iogkr icjk €L
j=0 k=0

for all 0<k<n;,0<j<N¢. (26)

The spacefp (X) is finite-dimensional, and we ha\ie!g’(X) NEp(X) = {0}. The sum

H (X) = Hy (X) + Ep(X)
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is a Fréchet subspace &f*7(X), independent of the choice @f. If P is infinite we
can pass to the sequence

1 1
P = {(p,n,L)eP:%—y—(k+1)<REp<%—y}

of finite asymptotic typesk € N, and setH}’(X) := My Hy/ (X) in the Fréchet
topology of the projective limit.

In a similar manner, we can define Fréchet subsp&t?’s{& of H*7(S) for asymp-
totic typesQ = (q;.!j, Hj) j—o,...n for finite or infinite N, with ¢; € C, /; ¢ N and
finite-dimensional subspacés; C C*°(X). Concerningy; we assume Rg; < ”—ng -
(according ton —1 = dim S) and Re;; — —oo asj — oo when N = oo. For finite N
we have analogues of the spac@§)( namely,£o(S), and the definition of the spaces
My (S) is practically as before.

Proposition 2.3. Given a boundary-contact problem of the fo(t)—(3) for the case

that the interface S has a singularifat zerg the associated operator®) restrict to
continuous operators

M TR

D
! (%) Hy T O0)
A : . 69 e 691 1
M) @ity TR
S

@Y TR 0Q)
for every pair(Py, P_) of asymptotic typesassociated with the weightas described
before with some resulting asymptotic typ€R., R_, Q) associated with the weights

in the respective spacefor everys > max{m,, m’j} + % and y € R.

Proof. It suffices to consider the entries gf separately. Let us take, for instance, the
upper left corner which can be written in the form

o) oy 2(h)d+ (1 — 0)Ap(d— &)

for cut-off functionsw, @, @ such thatd = 1 on suppw, w = 1 on suppo. The Mellin
symbol 4, was defined in Sectiod.2 The continuity of the second summand is a
finite linear combination of expressions

Hy = way j (r)(—réy) .
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Consider, for instance, the case of finife (the infinite case then follows by letting
the length of asymptotic expansions going to infinity). We then h%?é(xg =

Hy (X4) + Ep, (X4). The continuity of Hy : Hp'(X4) — Hy'(X4) is a direct
consequence of the definition, together with the relatiod, ) r? = rP(ro, + Bk

for every f € R which shows why the flatness is preserved under the action. The
application of H, to £p, (X4) shows how the singular functions together with the
spaces of coefficients are transformed to a sp8ge(X,), modulo flat remainders
belonging to #," "(X4). The other entries can be treated in an analogous
manner. [J

Remark 2.4. The asymptotic types in Propositich3 may be infinite or finite (in the
latter case the weight interval® = [0, ¥) are the same for all of them).

Set 1" (X) = N,er Hp' (X), and defineHOQO’V(g) in an analogous manner. An
application of these spaces will be that parametriPeto our operatorsg) have the
property

PA=I-K;,, AP=TI-K,, (27)
where ; and KC, are smooth in the sense that they induce continuous operators

WX My O
Ki: & - @& (28)
HOTXD) M)

and
HI~RITH(X ) HC‘),?}’_“(X+)
® ®
HSTHI=H(X ) H‘;Zs“/*#(x_)
Kroo ® . - & (29)
Do M 2TEE) @l W ()
& o
N’ s—m' —1 ,
D H 20 DIy H®(02)

for all sufficient large reals (as described before), plus analogous properties of ad-
joint for the so-called type zero ingredients cf. the notation in Se@idrbelow. The
asymptotic typesU,, U_, etc. in the relations2B8) and @9 depend onkK; and K,
respectively. The final classes of smoothing operators of tygeN will be denoted

by C4(Xy, X_) while C*4(X,, X_) will denote the space of all boundary-contact
problems on our configuration characterised ®ytogether with the subdivision into
X+ (the explicit definitions will be given below).
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3. Cone transmission operators
3.1. The structure of parametrices

We now consider the parametrices of elliptic boundary-contact problems of the form
(6) and explain the meaning of the various contributions.
Let us restrict the operators to a neighbourhood¢hf and ignore for a while

the elliptic boundary value proble (the parametrix for the latter operator is

T
standard and can be added afterwards). The remaining operator then has the form
Ay O
A = 0 A_ |. Our calculus will show that there are parametrices.4ffrom
T, T-

both sides; then left and right parametrices coincide modulo smoothing operators (that
have as the corresponding mapping properties as at the end of SeZpnket us
concentrate on a parametriX from the left (the technique from the right is analogous
and left to the reader). Writ@ in the form

G_ P_ K_)°

In order to describe the entries we choose cut-off function, & on ther-half axis
that are equal to 1 in a neighbourhood of 0 (the conical point) suchdhatl on
suppw, @ =1 on suppv. Then for P we obtain

Pi=w{Hy+ Moo+ Ci+ (1 —w)Bi(l— ),

where

(i) Hy and My are Mellin pseudo-differential operator&{ of order —u with holo-
morphic symbols My smoothing with meromorphic symbols);

(i) C4 are smoothing operators of a similar kind as the first two diagonal entries of
K, in the formula 9);

(i) B+ are pseudo-differential operators with the transmission properS) &} plus
Green operators in Boutet de Monvel's calculus Xn\{0}.

Moreover, the operator& . are potential operators from the cone algebra of bound-
ary value problems on the respective sides. Finally, are transmission operators of
a similar structure as smoothing Mellin and Green operators in Boutet de Monvel's
calculus in a domain with conical singularities.

Let us now have a look at the example from Sec@oh Choose a covering a@ by
(relatively) open set§U;} ;-1 3 (say, with smooth boundaries) such tliat= B(e) for
somee > 0 (cf. the notation in Sectiod.2), U open,U; N {0} =@, X4 C U1 U Uy,
U1V U2) N2 = @. Let {p;}j=123 be a subordinate partition of unity, and let



D. Kapanadze, B.-W. Schulze / J. Differential Equations 217 (2005) 456-500 473

{;}j=1.23 functionsy; € C5°(U;) such thaty; = 1 on suppp; for all j. Then the
operator 20) can be decomposed into

3
A=Y My AMy,
j=1

for ./\/ll/,/. = diag(l//j|x+,l//j|x_), M(pj = diag(Pj|X+,(Pj|X_7(Pj|S,‘Pj|§a(Pj|aQ)
with entries being interpreted as operators of multiplication by the corresponding func-
tions. To express a parametrix gf we first form local parametrices of

A O
0 cA separately inU/; and U; (30)
T, T

and of CTA in Uz and fill them up by corresponding zeros tox23 matrices of

operators. Let us denote these enlarged matrices referriag oy 7;, such that,

1:0
:0

P1=|op, 2(h"Ym

)

cf. the formula 22),
P2 = 523 0

with S> having the meaning of a parametrix of the elliptic transmission prob@oh (
over U, and

00O00O
P3=<0P30K3)’

where (P3, K3) is a parametrix of the standard elliptic boundary value prob(e?ﬁ)

in Uz in Boutet de Monvel's calculus, cf2,17], or [6]. In this way we obtain the
following result;
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Theorem 3.1. Let A be our boundary-contact operat@20). Then
3
P=> My, PiMe,
j=1
is a parametrix ofA in the sense of the relation®3) and remainders

K e C?(X4, X0), Ky eCOXy, X0).

Theorem 3.2. Consider the boundary-contact operat@0) in dimension2, and let
ut € H=°7(X4) be a solution of

A(Z*) = (fr. f-. 8.

f s—2,y-2 2 S*mlf%y}’*mlf% s—1 -
or fi € Mg,y "(Xa), 8 € B H g (S), b € H*~2(0Q), for m1 = 0,
mp=1,s > %’ y e R\{1—- n”—_"a : k € 7} (subscripts with asymptotic types in brackets

mean either Sobolev spaces without asymptotics or subspaces with asymptotics of the
corresponding typgs Then it follow thatu, € %f};’i)(xi) (with asymptotic types+
that depend onR+ and Q).

This result is a special case of Theordn® that we prove together with the charac-
terisation of admitted weights, given in Sectidr8.

3.2. Transmission operators on the sphere

As we saw in the preceding section, the main contribution to parametrices of boun-
dary-contact problems come from Mellin operators with values in a space of transmis-
sion operators on the sphef. In order to make the information more explicit we
now outline the basic features of the so-called transmission algebra. Transmission oper-
ators with smooth interface in a pseudo-differential set-up have been considered also by
Myshkis [15]. Here we establish a parameter-dependent calculus and give more details,
since we employ transmission operators as values of operator-valued Mellin symbols.
The sphereS” is subdivided into compaaf* submanifoldsZ with common bound-
ary X. We want to introduce a space of parameter-dependent transmission operators
Brd(E,, E_; R of order u € Z and typed € N, with the parameter. € R, [ € N.

For the casé = 0 we simply write3%44(Z,, Z_). By assumptiorE. are smooth com-
pact submanifolds of” with boundaryX. We will explain our transmission operators

in terms of the pseudo-differential formalism of ‘standard’ boundary value problems
on a smooth manifold&& with boundaryX. Of course, it is not essential thatis em-
bedded in a sphere or in another smooth and closed marMoldut for convenience

we assume that. In addition l&t be compact which is the case in our application.
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There is then the spacbé’l(M; R')y of parameter-dependent pseudo-differential oper-
ators of orderu € R that have the transmission property &t Let (y,7) € R x R

be local coordinates oM near X such thaty € R"~! are local coordinates off and

t the normal variable witlr >0 on the Z-side. Recall that a symbal(y, 1,5, 1, 1)

in Sé‘l(lR;*l x Ry x RZ,J;{A) is said to have the transmission propertyrat O if the
homogeneous componenig,_j(y,t, 4,1, 4) of orderu— j in (y,7,2) #0, j € N,
satisfy the condition

[DII‘CD:;’/LQ(#*]) (y’ t, n,t, /1) - (_1)u_ja(,u*j)(y7 z, -n, —71, _/1):”[:0,(7],/1):0 =0

for all y e R"%, ¢ € R\{0}, for all k € N, « € N"~1* and allj. Let L5 (M; Ry
denote the set of ald(Z) in the spaceLgl(M; R!) of parameter-dependent pseudo-
differential operators oM with local amplitude functions(y, ¢, i, 7, 2) (near) hav-
ing the transmission property at= 0. In the following definition we denote bl any
differential operator of first order oM which has the fornv, in a tubular neighbour-
hood of X. Moreover, let & denote the operator of extension by zero from&rtb M
and rt the restriction to inE.

Definition 3.3. The space ofB*4(=Z; R)) (pseudo-differential) parameter-dependent
boundary value problems a& of orderu € Z and typed € N is defined to be the set
of all families of block matrix operators

C>®(E) C*®(E)
A() = (A+; G g) : @ — @ (31)
c*i,cly  c>®z, )
of the form
AQ) = <A0+ 8) +GU) +C0) (32)

for Ay(A) := rtA(4)et with dimensions/, J depending on the operator and entries
as follows:

() A() € Ly(M; Ry
(i) The operatorC(J) belongs toB~°>4(Z; R"), i.e., there is a representation

d .

D/ 0

C=Co+ ) :c,,( 0 0)
j=1

for elementsC; € B~9(&; R'); here B->°0(z; R') := S(R/; B->>0(%)) where
B~°0(Z) denotes the space of all operatdts= (Cij)i,j=1,2 between the spaces
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as in B1), with C* kernels overz x &, £ x X, X x Z and 2 x X, respectively
(with smoothness up to the boundary).

(iii) The operatorG(4) is a block matrix(G;;(4)); j=1,2 where G, ;(2) for i, j =1, 2,
i+j < 4, are Schwartz functions ih e R’ with values in the smoothing operators
onintE xintZ, intZ x X, and X x int Z, respectively, whileGz, € Lé‘,(Z; R, and
G(J) is locally nearX in the coordinategy, 1) € R1xRa pseudo-differential
operator alongR”~1 with operator-valued symbgj(y, 1), namely,

omgXMuoo=://ﬂﬂ”fmg@nwbu@5dydm

u e C@O(Rq,S(EJF)), with g(y,#n, 4) being a Green symbol of order and type
d, cf. the material at the end of this section.

Remark 3.4. The space3*4(=; R!) for everyu € Z andd € N is Fréchet in a natural
way, cf., e.g., Schroh§l9].

The operatorsd(1) € B*“(Z; R') have a parameter-dependent principal symbolic struc-
ture

a(A) = (a4, (A), 75(A))

consisting of the (usual) parameter-dependent principal sympoh)(x, ¢, 4) of the
operator in the upper left corner 083), restricted to=, and the parameter-dependent
principal boundary symbok,(A)(y,n, 4) € C®(T*E x R\0). The boundary symbol
is operator-valued in the sense of a family of operators

H*(Ry) H7H(Ry)
ay(A)(y,n, A): &) — @ (33)
c! c’

depending on(y, 1, A) € (T*Z x R)\0 with 0 indicating(s, 2) = 0 (in (33) we assume
s € R to be sufficiently large). The definition is as follows:

r+0p(a/ ))()’» 7’], /Alf)e+ 0
0

oy(A)(y,n, A) = ( (u 0

)+%@X%%M~ (34)

Here a(, (y.n.7.2) = oy(A)(y.1,1,7. D=0 in local coordinates(y,7) near the
boundary X, and ¢,(G)(y, y,4) is the homogeneous principal operator-valued sym-
bol in the sense of twisted homogeneity, cf. the explicit expressions at the end of this
section.
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To see the structure in some important cases, consider, for example

Ay = (r+(A ~ et )

T

whereA is the Laplacian oM andT the operator that expresses Dirichlet or Neumann
conditions. In the Dirichlet case we have

ao(Tu = uli=0
and in the Neumann case

ou
(T = =
60( )M ot t=0

for u € H'(Ry), s > 3.

In the general calculus it makes sense to unify the orders of the operators referring
to the boundary. This will produce families of continuous operators

H(5) H~H(E)
Ay @ o ® (35)
Hz(x,chy  HYRaE C)

for s > max(u, d)—%. For ‘realistic’ boundary value problems this is not necessarily the
case as we saw in the example, but we can compose the operators by order reductions
on the boundary. To be more precise, if we have first continuity in the sense

I J
AD H @ e @PH T2 - B @ e @H ()
i=1 j=1
for certainn;, m;, then we can pass to the operator
diag(l, (R (1)) j=1,...)) A diag(d, (R" (1))i=1,....1). (36)

vi =nj, p; = u—m; with parameter-dependent elliptic operatdt$(/) € L (Z; RY
of the corresponding order which induce isomorphisms

R'(J): HS(Z) — H™'(2)

forall s e R, 1 e R..



478 D. Kapanadze, B.-W. Schulze / J. Differential Equations 217 (2005) 456—500

Nevertheless in the application of the calculus below we employ the realistic orders
from the concrete problems.

The class of operator8t4(Z; R') is nothing other than Boutet de Monvel's space
of (pseudo-differential) boundary value problems of orgefin the sense 35)) and
type d, with parameters. € R'. More details may be found if2,9].

As noted before the calculus may also be formulated in the context of systems in
the upper left corners. Moreover, instead of the sp&ée C’ we could also speak
about vector bundles and distributional sections in those bundles. However, this is not
necessary for our application.

Let us now formulate the related spad®$?(Z,,Z_; R') of transmission operators
(with parameterst € R/, I € N; in the casd = 0 we simply write 344 (5., 5_))

H(Z HH(E
A+()u) G+(;u) K+(/L) éa+) 69( +)
A= G-y ALy K-y | H'(ED) —  HTMED . (@37)
o) 2]

T (A T-(A) Q(4) wodeel)  meriod)

First, the operatorQ is an J x I matrix of elements ofLf(Z; R'). Moreover, the
Ar Ky
Ty O
this section. The most typical contribution are the Green transmission opefators
of order u and typed. Let us defineG; the minus case is similar. As before we fix
a first-order differential operatdd which is equal tod, in a tubular neighbourhood
_____ 1 be coordinate neighbourhoods &

such thatV;NX # ¢ for all j and X  |J U;. Choose function®;, y; € C5°(U;), j =

1,..., L such thaty; =1 on suppp; for all j and Zle ¢; =1 in a neighbourhood
of X. Then G4 has the form

submatrice consist of operators iwtd(Z,; R as defined at the end of

L

Gi=) ¢;Gsj¥j+Cq, (38)
j=1

where the ingredients are as follows:

d

Cy(u =Y Cyr()Du,
k=0

where

Coa(Mv(x) = / cr k(e E, V() dR

=
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for some kernet; (x, X, 1) € S(R!, C*®(5, x E_)). Moreover, the operatorsg; ;(4)
are defined as

d
Gy () =) Gy Dk, (39)
k=0

where G, jx(4) is the operator pull back of a Green transmission operator of type 0
in R" with respect to the interfac®”~* under a chart; : U; — R" which induces
a chartx’/. UjNY— R*! and 1jWUjNEy) = @i. It remains to explain the latter
notion. For simplicity we also denote the variablesif by (y,7), wherey R1,
and Ri is the closed half-space for>0 andr <0, respectively. For the definition we
need a construction from the general (edge-) analysis, namely, operator-valued symbols
with twisted homogeneity.

Let H be a Hilbert space in which we have fixed a strongly continuous group
{rs}sem, Of isomorphisms

ks H— H, 0¢eR:

(that is,ksh € C(R4, H) for everyh € H).
1
In our application we havéd = H*(R;), s € R, with (ksu)(t) = 62u(dt), é € R,
In particular, fors = 0 the operatorscs : L?(Ry) — L?(R,) are unitary. Moreover,

if E C H is a Fréchet subspace, written as a projective lifmit= lim N EX of
<~ ke

Hilbert spacest* with continuous embeddings . < Eftl < Ek s s EO = H,
such that{is}ser, induces by restriction a strongly continuous group of isomorphisms
on EX for every k, we talk about an action ofis}ser, On E. An example for the
latter situation isH = L?(Ry), E = S(Ry) (= SM)Ig,), with E¥ = (1) FHK(R,),
k e N.

Now, if H and H are Hilbert spaces with grougs;}ser, and{is}scr, , respectively,
we have the space of symbols

SH(RY x RP; H, H)
of all a(y,n) € C®(R? x R?; L(H, H)) such that

sup  (m) PR DD aly. kol g iy < 00
yeR? neR?

for all multi-indiceso € N?, f € N?; (n) = (1 + |n|2)%. The subspacesé‘l(ﬂ%‘f X
R?; H, H) of classical symbols:(y,n) is defined by the condition that there is a
sequence of homogeneous components ;(y,n) € C*®(R? x (RP\{0}), L(H, H))
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in the sense

agu—jy (v, 0m) = "I Rgagu—jy (v, Myt

for all 6 € Ry, (y,n) € R? x (R”\{0}), such that

N
a(y. ) — 1Y aq-j(y.n) € SNV(®RI < RP; H, H)
=0

for all N € N. This easily extends to the case of Fréchet spaces endowed with groups
as mentioned before, in particular, whehis a Hilbert space and e H a Fréchet

space,E = Ilmk N EF. In the latter case the spaci,, (R? x R”; H, E) is defined as
<~ ke

the intersection ovek of the spaces referring tel and EF. The notation ‘(cl)’ means
that we admit both the classical and the general case. In the classical case we set

Ua(a)(y, n) = a v, n).

Let us apply this concept for the cage = L2(R_), E = S(R}) or H = L3(R,),
E = S(R_). An elementg(y,n) € C®(R? x R?; L(L3(R_), L3(Ry))) is called a
Green transmission symbol (from the minus to the plus side) of qudeiR and type
0 if it has the properties

g, € SERT x RP; LA(R-), S(R4)), &*(y, 1) € SH(RT x R”; LA(Ry), S(R)).

Here ¢* means the pointwise adjoint af as an operatol.2(R_) — L2%(R,). An
operator functiong(y,n) : L3(R_) — L?(R,) is said to be a Green transmission
symbol (from the minus to the plus side) of ordee R and typed € N if

d ak
g =) &=
k=0 !

for Green transmission symbolg of order u — k& and type O.

In the present parameter-dependent situation we now replane (4, ) € R*~1+
and obtain in this way parameter-dependent Green transmission symbols. A local Green
transmission operatat (/) of orderu and typed is nothing other than a corresponding
pseudo-differential operator

GG = Op, ) = [ [ &0 Mgy n Hutr)dy'dy

for a Green transmission symbgly, 7, 2), u(y) € C*(R"™, L2(R_)).
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Now the operatorss , jx(4) in the formula 89) are Green transmission operators of
order u — k and type 0. This completes the definition &8J.

It remains to define the Green, trace and potential operators in boundary value
problems of Boutet de Monvel's class. As in the beginning of this section we consider
the manifold = with boundary>. Let (y,t) € R""! x R, be local coordinates of
nearX. A (parameter-dependent) Green symp@), i, 1) is defined by the properties

g(y.n, ) = diag(L, (7, )2)g(y. . 2) diag(d, (. 2) %)
for a g(y, n, ) such that
gnm ) e YR x R LRy @ C, S(Ry) ® C7),
g e SHERIX R 2Ry @ CL SRy @ C).

Writing g as a block matrixg = (g;;)i, j=1.2 We also callgo; a trace symbol of order
u +% and type 0 andgi2 a potential symbol of ordep — % Despite of this order
convention we callg a Green symbol of orden and type 0. Note that the definition
implies that the lower right corner is & x I matrix of classical (parameter-dependent)
symbols of orderu.

A Green symbols(y, n, 2) of order u and typed € N is defined by

d . ak
g(y.n. ) = go(y. . 2) + Y _ g(y.n. 2) diag 50 (40)
k=1

for Green symbolsg, of order p — k and type 0. From the definition of classical
symbols we see that (parameter-dependent) Green symbals, 1) have homogeneous
components in(y, 1) # 0 of orderu — j, j € N. More precisely, the diagonal entries
are homogeneous of ordar— j, while the trace and potential entries are homogeneous
of order u — j +% andpu—j — % respectively. In particular, there is a homogeneous
principal symbol

g, A € COR™L x (R0}, L(LAR;) @ C', SRy) © C7))

in that sense, such that(y,n, ) — x(n, g (y,n, 4) is of orderpu — 1. If G(4) =
Op(g)(4) is the associated pseudo-differential operator we set

Gﬁ(g)(y9 n, /1) = g(ﬂ)()’» n, /1)
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Observe that then

0 K3t 0
G(g)(y,én,éﬁ)—b“<o s )Ua(g)(yﬂﬂ)( 0 o %>-

We now complete Definitior8.3(iii) as follows: The operatoG(4) in (32) has the
form

L
G =) My, Gi(DMy,.

j=1

Here(q&,), 1,...L» (!ﬂj), 1....1 are functions incgo(UJ)for coordinate neighbourhoods

(Uj)j=1,... on E nearX, U; N X # 0, ZcU_lU/, such thatZ —1¢;=1ina
neighbourhood of, y; = 1 on suppp; for all j and Mw and /\/ll/, are operators of
multiplication by diadge;, ¢;|x) and diagy;, zp]|;) respectlvely Moreoverg]()) is
the operator pull back under a chdr — — R"1 x R, of an operator Op(g)(4) for
some Green symbg; (y, n, 2) of the form @0). The elementg; (1) have an invariantly
defined homogeneous principal boundary symbalG)(y, n, 4) for (v, n, A) € (T*X x
R)\0. By this we have completed4).

The spaceéB®?(Z; R!) is nothing other than the set of all (pseudo-differential) bound-
ary value problems of order € Z and typed € N of Boutet de Monvel’s calculus,
here in parameter-dependent form, with the parameter®’. We also admit the case
[ = 0; then we have such operators in the form fr§h Every A(1) € B44(5; R)
extends from §1) to a family of continuous operator8%) for every reals > d — %
and 4 € Ry. This is a known result from the general calculus. Let us also mention the
composition property which means that

C(y e BM@E R, D) e BY(E; R

entails C(A)D (L) € B*V(5: R for h = max(v + d, ¢), where 6(CD) = a(C)a(D)
with componentwise composition. Clearly we assume that rows and columns in the
middle fit together.

An elementA(/) € B~4(Z; R') is said to be parameter-dependent elliptic (of order
w) if o, (A) does not vanish of7*Z= x RH\0 and if the operators3@) are bijective
for all (y,n, 1) € (T*2 x RH\0.

Let us now recall the following result. Set := max(v, 0) for any v € R.

Theorem 3.5. Every elliptic A € B*4(Z; R)) has a parametrixP e B~H@-n"
(2; R in the sense that

I—PA=K;, and IT- AP =:K,



D. Kapanadze, B.-W. Schulze / J. Differential Equations 217 (2005) 456-500 483

belong to B—°°Maxd.w (z: Ry and B~°>@-W" (Z; R!), respectively(Z is the identity
operator in the corresponding spages

Results of that kind may be found {2,6], or [17] under different assumptions on
the types. The present version with arbitrary types may be fourj@]in

Remark 3.6. The definitions and results of*<(=: R) have a straightforward exten-

sion to the case of a non-compa€t® manifold £ with boundaryX. The principal
symbolic structure is as before, while the continuity refers to ‘comp’ and ‘loc’ versions
of Sobolev spaces. There is also an analogue of the composition property between
operators combined with a localisation in the middle and of Thedsesn

Remark 3.7. The construction of the space of (parameter-dependent) transmission op-
erators B4(Z,, Z_; R!) refers to the sphere”, subdivided intoZ,,Z_. A slight
modification allows us to define such spaces of transmission operators on our domain
Q\{0} in R3 with respect to the decomposition

Q\{0} = {(\{0h N X} U {(\{0) N X_}.

The interface then consists ¢f\{0} and is non-compact. In other words there is a
straightforward definition of corresponding spadg? (X \{0}, X_\{0}) of transmis-
sion operators (which we need here without parameters) where the f§fniereplaced
by Q, furthermore,Z. by X1\{0}, and X by S\{0}.

In other words in the definition oB*“ (X \{0}, X_\{0}) we ignore the presence of
0Q as well as of the origin, just as in the analogous case of boundary value problems
on a (not necessarily compaaof)>™ manifold with boundary. The global smoothing
operators are defined in terms of kernels in a similar manner as in the compact case.
The non-smoothing ingredients are defined by local expressions and a partition of unity.
The continuity then refers to ‘comp’ and ‘loc’-analogues of Sobolev spaces.

Let us now complete the information on parameter-dependent transmission opera-
tors A € B44(5,, 5_; RY) by formulating the principal symbolic structure and basic
statements about ellipticity. The parameter-dependent homogeneous principal symbol is
defined as a pair

a(A) = (ay(A), ot (A))

with interior and transmission symbotg, (A) and oy (A), respectively. IfA is written
in the form @7) we setay (A) = (oy (A1), oy (A-)). In order to definesy(A) we
proceed in a similar manner as fotlj. Analogously as &) we consider a localised
operator

Alintv, (G4lintv_)e* Ky
Ay, = | 971G lintv, () HA_linev)e* (71K |,
Tylintv, (T—lintv_)e* 0
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which obviously belongs t#*4 (V. ; R!), cf. Remark3.6. We then have the boundary
symbol ¢,(Av,)(y,n, 4). By transforming back the entries in the second row and
column via the reflection map : R — R; we obtain the principal transmission
symbol of A itself, namely

H*(R4) H7H(Ry)

@ 52

or(A)(y,n, 4) : H'(R-) — H7HR-), (41)
® @
CI ﬂ:]

(y,n,2) € (T*2 x RH\0.

Proposition 3.8. Let C € B*4 (5., 5_;R), D € B"¢(5,, 5_; R}, and assume that
weight data and dimensions in the spaces that aré@diit to corresponding data in
the domain ofC. ThenCD e B**V/ (5., 5_; R') for h = max(v +d, ¢), and we have
a(CD) = a(C)a(D) with componentwise composition

A transmission operator3() is called parameter-dependent elliptic af.4L) are
elliptic as usual and if41) is a family of isomorphisms for every > max(u, d) — %

Theorem 3.9. Let A € B*4(5,, 5_; R') be elliptic. Then there is a parametriR
B—@-w"(Z, Z_;R') in the sense that

Z—-PA= K, and I— AP =:K,
belong toB—o>Mad.w(z, =_: Ry and B~°@-W" (5, Z_; R'), respectively

Proposition3.8 as well as Theoren3.9 can be proved in a similar manner as the
corresponding results in boundary value problems.

3.3. Mellin operators with transmission operator-valued symbols

We now formulate a crucial contribution to the pseudo-differential analogue of
boundary-contact operators 2 near the conical singularity of the interfac (the
origin in R"*1). As noted in the beginning the original (differential) boundary-contact
operators have the formi%) with a B*%(Z,, Z_)-valued symbol 16) (in this notation
u represents the tuple of all involved orders aheé- max{m; +1:1=1,..., N}). The
entries ofh are holomorphic inz and behave like parameter-dependent transmission
operators onZ4, Z_) with parameters Im on every linel's, f € R.

For the general pseudo-differential scenario we employ unified orders on the inter-
face (for concrete operators a simple reduction of orders allows us to return to the
original orders). In the following construction we use the fact tB&t?(Z,, Z_) is
a Fréchet space in a natural way, cf., analogously, Rem3adk Thus we can talk
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about A(C, B*4(Z,,5_)), the space of entire functions in € C with values in

B4 (5., E_). The symbols of Mellin operators contain kras a parameter, as we saw

in the case of differential boundary-contact operators. This is typical also in the general
case, although there are not only holomorphic but also meromorphic ingredients. In the
present section we concentrate on the holomorphic partM%\d(3+, EZ_) denote the
subspace of alk(z) € A(C, B44(5,, 5_)) such thath(f+io) € B*4 (5., E_; R!) for
every € R, uniformly in compactf-intervals. For the parametrix construction below
we employ the following Mellin quantisation result:

Theorem 3.10. For every f(z) € B44(52,, E_; I'p) for any fixedf € R (whereIlmz

is interpreted as the parameter fare I'y) there exists ar(z) € M’é’d(&r, Z_) such
that

h(@r, — f(z) € B>%E4,5-;Tp)

and h is uniquemod/\/l(_g"o’d(&r, Z).
An analogous result holds fof (r,z) € C®(Ry, B*(5_, Z4; I'g)) with a corre-
spondingh(r, z) € C®(Ry., M‘(f)’d(3+, Z)).

The proof of TheorenB.10is based on a kernel cut-off construction with respect to
the parameter € I'y as is mentioned in a similar situation, for instance[9n Section
1.3.2] Since the ideas are completely analogous, we omit the details. In Sdcfion
we defined Mellin operators ép(h) for scalar amplitude functions(r, r’, z) given for
Z € F%iﬁ. In a similar manner we proceed in the operator-valued casehor)

C>®R,, M’(‘Q’d(&r, Z_)) we have operators

HST(X ) HITHITR(X )
) T ®

rRopl 2y s HYI(XD) s TR
S S

WRIRS.C) i Red(s )

which are continuous for all > d — %; because of the holomorphy bfin z the weight
y is arbitrary. Observe that Eﬁgjﬁ (h) € B*4(Z}, E"), cf. Remark3.7. Operators of the

kind wr~# opZ?(h)@ for cut-off functionsw, @ will also be interpreted as operators
between Sobolev spaces definedXn and S, respectively (when the support of, &

is sufficiently close to 0). Let us sety (wr # OpyM_é(h)cb) := h(0, z) interpreted as

z-dependent operators 8“9 (Z,, £_), z varying on the weight Iind"%_y.
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3.4. Smoothing operators with asymptotic data

The parametrices of elliptic boundary-contact problems (localised near the conical
point 0) will belong to a kind of transmission cone algebra, containing operators with
smoothing meromorphic Mellin symbols. In fact, if we start from an elliptic operator
with holomorphic Mellin symbols (say, with constant coefficientsr)n:(z), we have
to pass toh~1(z) which is, in general, a meromorphic operator function. Applying
Theorem3.10to h_l(z)lrﬂ for somef such thatl"’s does not contain a pole af1(2)

we obtain an element(z) € B~*@-W" (2, 5_;C), andl(z) := k(z) — h~(z), first
given on Iz and of order—oo has an extension to a meromorphic Mellin symbol of
the following class.

Definition 3.11. Let R = {(rj,n;, N;)};cz be a sequence of triples withr;,n;)

CxN, |Rer;| — oo as|j| — oo and finite-dimensional spaceg; of operators of finite
rank belonging ta3—°>4(Z,, Z_) for some givend € N. Then M;O"d(:Jr, E_) de-
notes the space of all elemenfse A(C\ncR, B->4(Z,, Z_)) for ncR = Ujez{rj}

with the following properties:

(i) f extends to a meromorphic function with polesratof multiplicities »; + 1 and
Laurent coefficients atz — r;)~**V in N; for all 0<k<m;, j € Z;

(i) if y(z) € C°°(C) is any function withy(z) = 0 for dist(z, nic R) < co, x(z) = 1 for
dist(z, nicR) > c1 for certain O< ¢p < ¢1 we have

1@ f@lr, € BUE, 5 Tp)
for every f € R, uniformly in compactf-intervals.

Every f € M;oo'd(5+, Z_) (given together with dimensions J) induces continu-
ous operators

5,7 —y
Hip,) (X4 Mgl (X4)
) @ o
oropl, 2N Heo9) S HGTO) (42)
) o

1 y_p—1
XS, ¢ Hg RS,

s—1.

H(S)z
for arbitrary s > d — % andv € R; herew, @ are cut-off functions supported in a
sufficiently small neighbourhood of 0. The subscripf3.), (S), etc. indicate spaces
with (or without) the corresponding asymptotic types. The weighh (42) is cho-
sen in such a way thatcR N F%_V = . The transformation of asymptotic types
(P, P_,S) - (Q4+, 0_,T) comes from the application of the meromorphic opera-
tor functionf (with poles and Laurent expansions encodedRpyo the meromorphic
function M (®u) (having poles and Laurent expansions accordingRo, P_, S)).
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Let M;S”'d(5+,5_) denote the union of space&l;"o’d(EJr,E_) over all R as
mentioned in Definitior3.11 Fix cut-off functionsw, @ and consider operators of the
form

k n
M = or Z r Opﬁ/fl'_é(fj)d) (43)
=0

for f; M;soo’d(3+, Z_) with weight y; € R such thatf; is holomorphic in a strip

around F%L_,),_ (suchy; may always be found, because the distribution of poles is
J

discrete), and we assume

y—Jj<y;<y foral j=0,... k (44)

Then M induces continuous operators between the spaces a&)fdr 1 = v. The
asymptotic types in this case refer to the weight inte®ak [0, k + 1), k € N.
Given an operatoyM of the kind @3) we set

O'M(M)(Z) = fO(Z), zZ € Fn+1_1,. (45)

2 /

The operators 43) belong to the structure of parametrices of elliptic boundary-
contact problems and contribute to the asymptotic properties of solutions, as we shall
see below. The choice of the cut-off functioms & as well as of the weightg; (under
the condition 44)) only affects such operators modulo so-called Green operators (of
type d). These form another important class of smoothing operators, the so-called Green
operators of typeld. Such an operator induces (by definition) continuous maps

HT (X 4) Hy M X4
® @
HT(X2) Hy ' THX)
g. | @ e ® (46)
245 2’re;(§,ﬂ:) ’H;O’T_H_é(g, CJ)
;1 / @
HS~2(0Q,C") H®00Q. ¢

for 5,5, e R, s > d — % with asymptotic typesQ+ and T, depending ong. The
operatorsG are assumed to be of the foréh= Go + Zle Gr diag(D¥, 0, 0, 0) for an
operatorD as in Sectior3.2 and Green operatoig, of type 0 which are characterised
by the mapping propertieg), in this case for alk > —%, and by analogous properties
of the formal adjointG* (with other asymptotic types).
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Let cg(x+,x,) denote the space of all Green operators of tgpband Cﬁ}iG
(X4, X_) the space of all operators of the form diad, 0) + G for arbitrary G €
C& (X4, X_) and M of the kind @3).

Note that we also have the spadé%iG(XJr, X_) for the infinite weight interval
® = [0, 00), defined as the intersection of the corresponding space®;fet [0, k+1),
k € N.

3.5. Boundary-contact operators

The category of operatord that we study in this section are a pseudo-differential
analogue of the boundary-contact problems of Secfidh Because of the expected
shape of parametrices of elliptic elements, cf. SecBoh and in order to have the
freedom to carry out compositions within our class of operators we start withd 4
block matricesA = (A;;);,j=1,...4 Which contain trace and potential operators with
respect toS and 02 at the same time. In other words our operators will define maps
of operators

Wpow o
o @
5,7 — 1,y —
Hip ,(X0) Hfo)’ *(X2)
A: 1 ei - 1 @ 1 (47)
M S TR s )
o o
H3 (00, C!) H 1300, C7)

with entries A;; acting between corresponding components of the involved spaces;
seR, s >d— %

As in Section3.1 we choose a covering a® by (relatively) open set#/1, Us, U3
and fix a subordinate partition of unitygoj}jzl,z,g and functions{xpj}j:l,g,g with
the properties mentioned before. Let us form diagonal matriegs, of operators of
multiplication by functionsM(,,j = diag;lx,. ¢jIx_, ¢jls, ®jlae) and, similarly,
/\/ll/,j. Here, ¢;ls, ®jl,o are combined with the identity operators in spacesind
0Q, respectively, and we omit these entries as soon as a corresponding dimension
1,J,...,Iis zero.

Definition 3.12. Let C#4(X,, X_) for u € Z, d € N denote the space of all operators
of the form

3
A=Y My AjMy +G (48)

j=1
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for arbitrary elements; € Cg(XJr, X_) and operators4; as follows:

() AL = diagrop, 2(h).0) + diagM.0) for an h(rz) € C(R. My
(E4, E-)), cf. Section3.3 and an operatoyM of the kind @3);

(i) Az := diag(Azint, 0) for an elementdyin € B4 (X, \{0}, X_\{0}), cf. Remark
3.7,

(i) Az := (Aszj)i j=1,..4 for an (As;;)i j—24 € B4 (Q), cf. Definition 3.3 for I =0
and Az;; =0 for (i, j) # (2, 4).

The hidden data such as weight data, asymptotic types in the smoothing Mellin and
Green operators and the dimensiahg and I’, J’ are assumed to be given for every
concrete operator.

Remark 3.13. Writing A in the form @8) there is aK € cg(x+, X_) such that

3
A=Y My AMy +K.
j=1

Theorem 3.14.Every A € C*4(X,, X_) induces continuous operator@7) for all
s > max(u,d) — % and (in the case of spaces with asymptatider every triple
(P4, P_, S) of asymptotic types with some resultia@., O_, T) (depending onA,

not ons).

Remark 3.15. A slight modification of Definition3.12 allows us to define the space
(X4, X_) also for the case of boundary-contact configuration with non-compact
interfaces or non-compa®, cf. also Remark3.6. As a generalisation of Theoref14

we then have continuous maps between ‘comp’ and ‘loc’-versions of the corresponding
spaces.

The operatorsd € C*?(X,, X_) have a principal symbolic hierarchy which is respon-
sible for ellipticity and parametrices

a(A) = (oy(A), o (A), 65(A), o (A)). (49)

Here oy (A) = (oy(A+), 0y (A-)) is the pair of homogeneous principal symbols of
order . of the operatorsA. on X4 \{0}. Incidentally we also writery, (A). instead of
oy (Ax). Moreover,oy (A) is the transmission symbol ot with respect to the interface
S\{0}, defined in the same way as in Secti®2 as an operator function

H* (R4) H7H(Ry)

@ 2]
o (A, m: H'(R-) — H7HR-),  (y,n) € T*(S\{OH\0 (50)
5] 2]

c! c’
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(recall that this does not employ the compactness of the interfage)l) is nothing
other than the principal boundary symbol of the restriction of the operfadg;, j—2 4
to a collar neighbourhood afQ2, namely,

H'(Ry)  H7HRy)
ar( Ay, n) : GB, — Q . (v, m) € TH(0)\O. (51)
c! c’

Finally, o5 (A) is the principal conormal symbol referring only ¢@l;;); j—1, 3, defined
by

om(A)(@) == h(0, 2) + oy (M)(2),

cf. the expressiondf) and Definition3.12 (ii). The conormal symbob,,(A)(z) rep-
resents a family of continuous operators

H*(E4) H™H(EL)
(&) D
ou(A@): H'(E-) — HTHMED) | zelwa ., (52)
@ @ 2

H™3(5,Ch  HYURE(E, )

s >d— % with values inB*4(Z,,Z_). Interpreting the components of, (A) and
ayr(A) in a neighbourhood of 0 in polar coordinates with variables and covariables
(r,¢,0,e) € TH(Ry x Z)\0 and (r, ¢', 0,¢") € T*(Ry x X)\0, respectively, the

expressions

Gy(A)=(r, §. 0.8) := r'oy (A= (r. . r 1o, &) (53)
and

G (A, ¢, 0. &) = rlon (A, ¢, rto, &) (54)

are smooth up te = 0.

Remark 3.16. Let A, B € C*?(X,, X_) and assume that(A) = ¢(B). Then A-B is
compact as an operator between the spacedn ((vith or without asymptotics).

Remark 3.17. Let A € C*4(X,, X_), B € C"*(X4, X_), and assume that weight
data and dimensions in the image Bffit to corresponding data in the domain df
Then AB € CH+V (X4, X_) for h = max(v+d, e), and we haver(AB) = (A)a(B)
with componentwise composition, whesg; (AB)(z) = oy (A)(z—V)ou (B)(z). If A or
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BB belong to the subspace of Green or smoothing Mellin plus Green operators (indicated
by subscriptsG or M + G) then the same is true of the composition.

In the non-compact case, cf. RemasBkl5 we have a similar composition result
when we pass todoB for a localising factorp in the middle, or whenA or B are
properly supported in an analogous sense as for standard pseudo-differential operators.

Comparing 47) with operators of the kindg) which represent boundary value prob-
lems for differential operators we should have a generalisation of DefirstibAto the
case of arbitrary order of the operators referringStd¢and also tod€2). What concerns
the smooth boundary componed® we simply apply standard reductions of orders,
represented by diagonal matrices of elliptic operators of the Ktd Lgl(ag), 0 € R,
which induce isomorphismg? : HS(0Q) — HSH(0Q) for all s € R, cf., analogously,
the formula 86).

Similar reductions of orders should be applied with respecStcSince S is the
stretched manifold of a (compact) manifold with conical singularity O we need a cor-
responding special result such that asymptotic data near the tip of the cone are not
influenced. Such an order reduction result exists, indeed, and the corresponding theo-
rem is based on the (pseudo-differential) cone calculussowhich consists of those
continuous operators

RO : HITH(S) — HITITeT1(S) (55)

for some giveny € R, that are contained in the operatofsfrom Definition 3.12 (for
I =J =1 andg = p) as the space of entriedzz (when we write 4 = (A;;); j=1,...4).

Theorem 3.18. For everyy, ¢ € R there exists an elliptic elemerf®?¢ in the above
mentioned cone algebra of which induces isomorphism®5) for all s € R. For
everyd > 0 we can choos&R? in such a way that its principal conormal symbol

om(R9(z) : HY(X) — H™9(2)

represents a holomorphic family of isomorphisms in the sjrig)—9 < Rez < 5—y+9
and that the invers&k ¢ (which exists in the cone algebra with respectyte ¢) has
an analogous property

Theorem3.18 is a direct consequence of order reducing results ffédmbased on
certain specific symbols frorfb] with the transmission property.

Remark 3.19. Applying from both sides diagonal matrices of order reductions on
0Q and S, respectively, for a suitable choice of orders we can modify the space
Cc*(X,, X_) to a space of operators where the entries referring®and S are

of different orders (analogously as in Douglis—Nirenberg systems). Because of the
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holomorphy of conormal symbols of the operators referringSton a strip of arbi-
trary finite width we do not lose the essential mapping properties in subspaces with
asymptotics.

4. Asymptotics of solutions

We now pass to the ellipticity of boundary-contact operators which is based on the
principal symbolic hierarchy4@).

4.1. Ellipticity

Definition 4.1. An operatorA € C*4(X,, X_) is said to be elliptic (of ordep and
with respect to the weighy) if

() oyp(Ax(x, ) # 0 forall (x, &) € T*(X£\{0}), anday (A+)(r, ¢, 0, &) # O for all
(rv ¢’ Q,g), (Qv 8) 7& 01 up tor = 01

(i) o (A)(y,n) is a family of isomorphisms50) and 6y (A)(r, ¢, 0, ¢’) is bijective
in an analogous sense for &l, ¢’, o, ¢’), (0, ¢’) #0, up tor = 0;

(i) oy (A)(z) is a family of isomorphisms52) and allz € F%l_y;

(iv) a,(A)(y,n) is a family of isomorphisms&1) for all (v, n) € (T*(2)\0).

The conditions (ii)—(iv) are required for any sufficiently large

Example 4.2. The operator4 defined by 20) belongs toC%2(X,, X_) (the notation

of orders is to be interpreted here in a corresponding generalised sense when we do not
reduce the orders o). The weight data follow immediately from the nature of the
problem: in Q0) there are no smoothing Mellin plus Green terms; so the weight intervals

in asymptotic considerations are admitted to be infinite. Concerning the dimensions we
havel =0, J=2,1I' =0, J' = 1. As we shall see below there is a discrete Beatf

reals such thatd is elliptic for every weighty € R\D.

Theorem 4.3.Let A € C*?(X,,X_) be elliptic there is then a parametri® e
c—r@=w¥ (X, , X_) such that

PA=T—K;, AP=I-K,

for elementsi; € Cp* (X, X_) and K, € cg‘“>+(x+, X_).

According to Remark3.17 we then haves(P) = o~ 1(A) with componentwise in-
version (in particulargy, (A)~1(z — u) = on (B)(2)).

Corollary 4.4. Let A € C*(X,,X_) be elliptic. Then A induces a Fredholm
operator 47) between the corresponding spaces without asymptotic types, for=all
max(u, d) — % where the weight is determined by Definitiort. 1 (iii).
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Proof of Theorem 4.3. Similarly as in Remark3.13 we localise the operatad in
neighbourhoodd/;, j = 1, 2, 3, and write

3
A=Y My, AMy. +G.

j=1

The construction of a parametrix can be done locallyinfor j = 1,2, 3, and we
may ignoreG which belongs to the ideal of smoothing operators (cf. the last statement
of Remark3.17). Then, since there is a compatibility in intersections of the open sets
we may set

3
P=3 My PiM,y, (56)
j=1

with P; being a local parametrix oft on U;. The operatotd in the neighbourhood/z
represents an elliptic operator in Boutet de Monvel's calcubs’ (Uz). We identify

it with (A;;); j—2,4, ignoring smoothing operators in other entries. This gives us a
parametrixP; € B—@=0" (U3) (we will be tacitly identify P53 with a corresponding
4 x 4 block matrix by filling up the 2x 2 matrix by zeros at the remaining places).
In a similar manner, we can proceed withl;;); ;=123 over U which is elliptic in
the transmission algebrﬁ“vd(XJr N Uz, X_ N Up) with smooth interfaceS N U,. The
parametrix construction in that calculus gives us an elenfente B“’(d‘ﬂ)+(x+ N
Uz, X_ N Uz) (which is also filled up by zeros to the>44 size). Thus it remains to
consider(A;;);, j=1,2,3 over U1 which is the part referring to the conical singularity.
The shape of/; is still arbitrary, and it suffices to také; = {x € R"™1: |x| < ¢} for
someeg > 0. Near O the operator has the form

k n
rwopy, 2 (Wd+or ™Y rlopy 2 (h)d
j=0

for cut-off functionsw and @ near 0 and Mellin symbols
h(r.2) € C® (R, Mpy' (54, 50)) and hj(x) € M&(E4, 5 )

for j = 0,...,k. From the ellipticity of A it follows that there is a Mellin—Leibniz
inverse fV(r, z) € C®Ry, B-HW-W" (5, =_; F%ﬂ)). Applying Theorem3.10

— _ Nt
we can replacef "V (r, z) by an element Y (r, z) € C*(R,, MO”’(d W By, BL))
which is also a Mellin—Leibniz inverse. For the associated conormal symbols we know
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in this construction that

D0, 2)h(0,2) = 1+ 1(2) (57)
—oo,max(i,d) , —~ —_ .. .
for somel € Mgs (&4, E_). This implies
R0, 2){h(0, 2) + ho(2)} = 1+ m(2) (58)

for anotherm ¢ M;sc’o’ma‘“’d)(sﬁ Z_). As is known from the nature of smoothing
Mellin symbols with asymptotics there is ane M;s"o’d(5+, E_) such that

A+n@@)A+m@@)=1

in the sense of the composition of meromorphic operator functions faralC. From

(58) we obtain (1 + n(2))h"P(0,z) = (h(0,z) + ho(z))~! in the same sense. The
— Nt

left-hand side has the form~2(0, z) + lo(z) for somelp € Ma"“"M" (5., 5_).

By virtue of the invertibility of

o (A)(@) = h(0,z) + ho(z)

for all z € F%l_v it follows that

oA Nry @ =0"P0,2) + @), -
T 7 T_}

Choose cut-off functionso1, @1 such thatw = 1 on suppp; and @1 = 1 on suppos.
Then, composing the operatas; op,, 2 (kD (r, z) + lo(z))@1 from the right with
wopyﬁf(h)ob + wZ’;:o ri opz_i(h.,)d) and taking into account the rules of evalu-

ating compositions of Mellin operators of that shape in the cone algebra we obtain an
expression of the form

k
1) 1+Zr-"0pi;}‘7?(mj) o+ G
j=1

for elementsn; € Mo M (4, E-), with suitable weightsj; (in order to avoid
possible poles on the corresponding weight lines involved in the Mellin actions), and
a Green operatoG. Now the Ansatz

k . k .,
w 1+er0p[:,f§(nj) w 1+Zr’opi;f§(mj) owo=w-lId
j=1 j=1
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—

modulo a Green operator allows us to calculate the elements M;soo’d(:+, E).
This gives us finally

k B .
w(l +y Opfjf_?(nj))a)wl opy, 2(h Y, 2) + lo(2))dn
j=1

k
= w10y, 2 (P 2)d1+ w1y rd oy (l(2)in
j=0

modulo a Green operator, where, ..., [, € M;soo’(d_“)+(5+,ﬂ,) are resulting
smoothing Mellin symbols. The right-hand side, composed from the right*bys
just the desired local (left) parametrix of in Uy (which is finally filled up by zeros
at the appropriate places to ax44 matrix Py).

Summing up, we have calculated all ingredients of the expres&iéh and thus
obtained a left parametrix afl. Analogous constructions give us a right parametrix;
hence §6) is a two-sided parametrix as desired]

Remark 4.5. Note that (in the notation of the preceding proof) we also have

(h(0,2) + ho(2) =110, 2) + fo(2) (59)

for some fy € M;ﬁo’(d_“)+(5+, Z_), whereh~1(0, z) denotes the inverse df(0, z)

as a meromorphic operator function in the complex plane which may have poles on the
reference weight line. The relatio®9) easily follows from 67) by composing both
sides from the right by:~1(0, z).

4.2. Regularity with asymptotics

We now turn to the regularity of solutions in weighted spaces with and without
asymptotics. The interpretation of the subscripts in spaces of the following theorem is

as in @7).
Theorem 4.6. Let A € C*4(X4, X_) be elliptic, and let

e HT(Xy) ®HT(X) @H 73S, Cy @ H Q. ¢V, (60)
r > max(u, d) — % be a solution of the equatioflu = f,
Sy~ S—py—H S—p—3.)—H—73 J smpmt A
FeH P ) @ H, TR @ Hy (S.C7) @ H'F3 (22, €
for ans > (d — w* — 3. Then we have

., - s—1,-1 1 ,
we My (Xp oMy XoeHs 7 s.che r e .cl)
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for every prescribedQ+, O_, T) with resulting asymptotic types,, P—, S) that also
depend on the operatad (not ons).
An analogous regularity result holds in weighted spaces without asymptotics

Proof. From Theorem4.3 we have a parametri of 4. Then, because of the as-
sumption onf from Au = f we can pass t®PAu = Pf. Let us discuss, for instance,

the case with asymptotics, the assertion without asymptotics follows in an analogous
manner. By virtue of the continuity g between spaces with asymptotics, cf. Theorem
3.14 it follows thatP f is as on the left-hand side o#7) for certain resulting asymp-

totic types. Moreover, we havP Au = Zu — K;u for somek; Cg‘ax(“’d)(XJr, XO).
Therefore, from §0) and @6) we obtain thatC;u also belongs to a space as on the
left-hand side of 47), with some asymptotic types and= oco. Thusu = Pf + Kju

is as desired. [J

Remark 4.7. Definition 4.1 also makes sense in the non-compact case, cf. ReBndbk
There is then an analogue of Theoreh8, for instance, whend or P are properly
supported in a suitable sense (or when we localise the notion of a parametrix). This
allows us to conclude elliptic regularity of solutions with (or without) asymptotics also
in the non-compact case. In particular, 4 is an elliptic problem of the form2Q),
where all entries are local operators, then we have an analogue of Thddéncally

near the conical points of our interfa&also in the case of non-compa8t

4.3. Examples and remarks

We now specify our results for concrete boundary-contact problems, first)ef3].
The corresponding operatod is continuous in the sens&Q) for every s > % and
y € R. The main contribution comes from a neighbourhood of the conical point 0; the
first task is to study the principal conormal symbol. In our example we assume that the
interface S is conical in a neighbourhood of 0. A simple delation of variables allows
us to pass to the caseN{|x| <1} ={/ix : 0 < 1 < 1, x € §" N S}. We consider the
casen = 1; thenZ = SN S consists of two points, and after a rotation we can set

Ep={peST:0<p<), E_={pe St asop<2n)

The Laplace operatoA in polar coordinates—2((—rd,)? + d¢) gives rise to the
conormal symbolb;(A)(z) = z% + 82. The map 21) then has the form

s—2(m=
28 o NG
(2 2

(/) c(z +/6¢) H*(Z4) HS—Z(E_)
h(z) = ,rO /_KO e — @ ,

rod¢ rod¢ HY(E_) c2

r —r
o o D

1,0 r,0¢ 2
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where % denotes the operator of restriction {@ < r < 1,¢ = f}, here for
p=0,o0.

As noted in Remark2.2 before, h(z) is a parameter-dependent elliptic family of
transmission problems ofit. The admissible weight for our boundary-value problem
follow from the setD of those points; € C where i(z) in not bijective. That means
we ask those; € C where the problem

! V42200 =0 1 0)=v-(21)  vi(®) = v_(%), 61

cv +7%v_)=0 v, (0) = —v_(2m) v/ () = —v' ()

has non-trivial solutions. Let us first verify thateOD. In this case §1) has the solutions
vy = v_ = C, for an arbitrary constant. For the case = a+ib # 0 the solutions of
the equations’, +z%v. = 0 may be represented as = Cire "Pe®® 4 CppePPe—ia®,
respectively. Moreover, we hawé, = (b — ia)(—Cire ??e/9 + CorePPe—®). From
the boundary conditions in6Q) it follows that

C1+ + C2+ — Clig—aneZian + C27€2nbe—2ian’

_Cl+ + C2+ — Clie—Znheﬂan _ Czieane—Zian’
Cl_‘_efbaeiaot + C2+ehocefiaoc — Cl_efhaeiaot + Cz_ehocefiaa,
_Cl_i_efboceiaa 4 C2+ebaefiaoc — Cl_efboceiaa _ Cz_ebaefiaac.

An easy calculation gives us

: C2+ — Cl_g—aneZian C2+ — Cl_e—ZabeZiaoc’

C1+ — C2_62nbg—2ian C]_+ — C2_629<be—21'aoc_

Since we are looking for non-trivial solutions let us assute # 0 (the case”1— = 0,
Co_ # 0 is analogous). Then we obtauT 2™ ¢2ian — =2#b,2ia%  Because ofr # 7

we haveb = 0 and 2™ — 0, ie. a = — &, for k € Z\{0}. Summing up we
- T— o
k} .
T—0o JkeZ

finally obtain D = i

Theorem 4.8. The boundary-contact problerfl)—(3) for the operators(18), (19) (in
dimension2) defines a Fredholm operatqR0) for all s > "—5 and all y e R\{1— n“—_ka :
k € 7}.

Proof. Let A denote the operator represented by the problgw(g). The ellipticity
conditions (i), (ii) and (iv) of Definition4.1 are obviously satisfied for our problem.
Moreover, we saw that the principal conormal symbg}(A) = h(z) is bijective for
all z € C\D. Applying Corollary 4.4 we obtain the Fredholm property for all weights
ysuch thatbnNr'y ,=¢. O
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The set
DN{Rez <1—y} (62)

gives us more precise information about the asymptotics of solutions in the sense of
Theorem3.2 In fact, the main contribution comes from the poleshof(z) which just
constitute the set6@).

Theorem 4.6 can be specialised to the present situation. In particular,ulet
HEV(X4) d HST(X2) be a solution ofAu = 0. Then we haver € H®7"(X,) &
H7(X_). Near the origin, in the splitting of variables int@, ¢) € Ry x S, we

obtain asymptotics ofi = (Z+) of the form

usn )~ Y car(@r 7 +cxoo(@) + cx.01(6) logr

keZ\0}, - k<l—y

with coefficientscy x, ¢+ 00, c+.01 € C*°(E+). The second two terms only occur in the
casey < 1.

Remark 4.9. Our approach can also be applied to boundary-contact problems, with
different composites meeting, for instance, in conical points. This would be modelled
in terms of decompositions &f” into subregionszy, ..., £y with smooth(and partly
common boundaries,S" = U?’zl 5.

Another modification of our method also allows us to treat plane crack problems
locally near a conical singularity of the crack which is represented, for instance,
by two intervalsSg := {(r,0) : 0<r<1}, Sy ;= {(r,a) : 0<r<1}, i.e.,, S = SoU Sy
contained inQ. Since S does not decomposg in this case we can consider the
Laplacian inQ\S without any factorc. To determine asymptotics of solutions locally
near 0 we apply Remarld.7. Analogously as in the example in the beginning we
calculate the non-bijectivity points of the conormal symbols including multiplicities
(that are 1 in this case) as follows:

The map 21) has the form

s—2(=
2.2 o A
0 Zz + 62 sem s—=2(%
/ ¢ | HED H"2(E_)
ho=| Tl 0 e — @
0 N | miE c?
ra0¢) 0 @

0 r&ad) (]:2



D. Kapanadze, B.-W. Schulze / J. Differential Equations 217 (2005) 456-500 499

Similarly as above (see alg8, Section 5.5.3) we now solve the following problem:

v 42204 =0 v/ (0) = v, (x) =0,

vV 4720 =0v.(21) =v (2) =0

and .for' the nc?n bijectivity points we Obtalb“k}kez and {271—“ ]kez’ i.e., for the
admissible weighty we have

Ve R\({l_ gk}kGZU {l_ 2nn— ak}kez) '
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