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Wave diffraction by a 45 degree wedge sector with Dirichlet and
Neumann boundary conditionsI
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Abstract

The problems of wave diffraction by a plane angular screen occupying an infinite 45 degree wedge sector with Dirichlet and/or
Neumann boundary conditions are studied in Bessel potential spaces. Existence and uniqueness results are proved in such a
framework. The solutions are provided for the spaces in consideration, and higher regularity of solutions are also obtained in a
scale of Bessel potential spaces.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The first solved plane wave diffraction problems for wedges date from the beginning of the twentieth century.
Indeed, in 1901 Sommerfeld [1] solved the problem of diffraction of an electromagnetic wave by a wedge whose
angle was a rational multiple of 180◦. In 1902, Macdonald [2] provided a complex contour integral (obtained by
following Poincaré [3] and summing the Fourier series representation of the Green function) which was the exact
solution of the problem of diffraction by a soft or hard wedge of any angle, in the two-dimensional case of cylindrical
acoustic wave incidence. Later on, in 1920, the Sommerfeld suggestion of generalizing his method to irrational angles
(by considering the corresponding irrational number as the limit of a sequence of rational numbers) was successfully
implemented by Carslaw [4].

A very important contribution was also provided in the 1950s by Malyuzhinets when the acoustic wedge diffraction
problem was solved for impedance boundary conditions, and for arbitrary angles. In the mean time, the so-called
factorization technique was also more developed in the second half of the twentieth century, providing therefore
several other possibilities of finding corresponding solutions.
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Regardless of these developments (and several other more recent ones like in [5–7]), for several cases a complete
space setting description for those problems with a consequent analysis of solvability, and the eventual obtainment
of more regular solutions is missing. It was mainly because of these reasons that such kind of problems gained an
increased importance in the last years, and several authors turned to consider those problems in appropriate Sobolev
or Bessel potential spaces. Presently, several results in this direction are known for the right-angle wedge [8–12] (with
different kinds of boundary conditions), but not so many for other angles. For the Neumann–Neumann problem within
the framework of H1 Sobolev spaces, the work [13] generalizes the results of [8] to an arbitrary angle of magnitude
less than 180◦.

The present paper is devoted to the analysis of the boundary value problem originated by the problem of diffraction
by a wedge with a 45◦ angle, and for the three different cases of Dirichlet–Dirichlet, Neumann–Dirichlet and
Neumann–Neumann data in Sobolev spaces. Our method is based upon a sort of doubling process for appropriate
potential operators, and corresponding pseudo-differential equations. Besides providing the unique solution in the
natural order Sobolev spaces it is also proved that the same solution can be interpreted in higher regularity Sobolev
spaces (/Bessel potential spaces).

2. Basic notations and formulation of the problems

In the present section the three problems under consideration are going to be formulated, and the necessary
notations will be introduced.

As usual, S(Rn) denotes the Schwartz space of all rapidly vanishing functions and S ′(Rn) the dual space of
tempered distributions on Rn . The Bessel potential space H s(Rn), with s ∈ R, is formed by the elements ϕ ∈ S ′(Rn)

such that ‖ϕ‖H s (Rn) = ‖F−1(1 + |ξ |2)s/2 ·Fϕ‖L2(Rn) is finite. As the notation indicates, ‖ · ‖H s (Rn) is a norm for the
space H s(Rn) which makes it a Banach space. Here, F = Fx 7→ξ denotes the Fourier transformation in Rn .

For a given domain, D, on Rn we denote by H̃ s(D) the closed subspace of H s(Rn) whose elements have supports
in D, and H s(D) denotes the space of generalized functions on D which have extensions into Rn that belong to
H s(Rn). The space H̃ s(D) is endowed with the subspace topology, and on H s(D) we put the norm of the quotient
space H s(Rn)/H̃ s(Rn

\ D). Obviously, these definitions are valid for L2 spaces. Note that the spaces H0(Rn
+) and

H̃0(Rn
+) can be identified, and we will denote them by L2(Rn

+).
Let Ω := {x := (x1, x2) ∈ R2

: 0 < x2 < x1}, Γ1 := {(x1, 0) : x1 ∈ R}, Γ2 := {(x1, x1) : x1 ∈ R}. Further let
Γ1,+ := {(x1, 0) : x1 ∈ R+}, Γ2,+ := {(x1, x1) : x1 ∈ R+} and ∂Ω := Γ1,+∪Γ2,+∪{(0, 0)}. Denote by n1 =

−−−−→
(0,−1),

n2 =
−−−−−−−−−−→
(−1/

√
2, 1/

√
2) the unit normal vectors to Γ1 and Γ2, respectively. For our purposes below, let us also define

Γ3 := {(0, x2) : x2 ∈ R} and associate with it the unit normal vector n3 :=
−−−−→
(−1, 0).

We are interested in studying the problem of existence and uniqueness of an element u ∈ H1+ε(Ω), 0 ≤ ε < 1,
such that(

∆ + k2
)

u = 0 in Ω , (2.1)

(where the wave number k ∈ C \ R is given), and satisfy one of the following boundary conditions:

(D–D) [u]
+

Γ1,+
= h1,D on Γ1,+ and [u]

+

Γ2,+
= h2,D on Γ2,+; (2.2)

(N–N) [∂n1 u]
+

Γ1,+
= h1,N on Γ1,+ and [∂n2 u]

+

Γ2,+
= h2,N on Γ2,+; (2.3)

(N–D) [∂n1 u]
+

Γ j,+
= h1,N on Γ1,+ and [u]

+

Γ2,+
= h2,D on Γ2,+; (2.4)

here the Dirichlet and Neumann traces on Γ j,+ are denoted by [u]
+

Γ j,+
and [∂n j u]

+

Γ j,+
, respectively. Note that the

Dirichlet type conditions can be understood in the trace sense, while the Neumann type conditions are understood
in the distributional sense (cf. [14]). The elements h j,D ∈ H1/2+ε(Γ j,+), h j,N ∈ H−1/2+ε(Γ j,+), j = 1, 2, are
arbitrarily given since the dependence on the data is to be studied for well-posedness.

In addition, in the above first two cases (D–D and N–N), compatibility conditions are necessary to be considered
in view of the combination of the same kind data. Taking this into account, from now on we will refer to:

• Problem PD–D as the one characterized by (2.1) and (2.2), and the compatibility condition h1,D(x)−h2,D(ei π4 x) ∈

rΓ1,+ H̃1/2+ε(Γ1,+);
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• Problem PN–N as the one characterized by (2.1) and (2.3), and the compatibility condition h1,N (x)+h2,N (ei π4 x) ∈

rΓ1,+ H̃−1/2+ε(Γ1,+);
• Problem PN–D as the problem characterized by (2.1) and (2.4).

Here, and in what follows, rΣ denotes the restriction operator to Σ = Γ1,+,Γ2,+,Γ3,R± (defined in corresponding
Bessel potential spaces).

Remark 1. Due to the fact that rΓ1,+ H̃ s(Γ1,+) = H s(Γ1,+) if and only if −1/2 < s < 1/2, it follows that the just

introduced compatibility condition h1,N (x) + h2,N (ei π4 x) ∈ rΓ1,+ H̃−1/2+ε(Γ1,+) in Problem PN–N is automatically
fulfilled for 0 < ε < 1.

3. Uniqueness of solution for the homogeneous problems in H1 spaces

In this section we will present conditions which will guarantee the uniqueness of the solution for each of the
homogeneous problems under consideration (in the case of ε = 0).

Theorem 2. Let ε = 0. Then the homogeneous problems PD–D, PN–N and PN–D have only the trivial solution u = 0
in the space H1(Ω).

Proof. Let R be a sufficiently large positive number and B(R) be the disk centered at the origin with radius R. Set
ΩR := Ω ∩ B(R). Note that the domain ΩR has piecewise smooth boundary

SR := (∂B(R) ∩ Ω) ∪ (Γ1,+ ∩ B(R)) ∪ (Γ2,+ ∩ B(R)) ∪ {(0, 0)},

and denote by n(x) the outward unit normal vector at the non-singular point x ∈ SR .
Let u be a solution of the homogeneous problem. Then the first Green’s identity (see, e.g., [15]) for u and its

complex conjugate ū in the domain ΩR yields∫
ΩR

[
|∇u|

2
− k2

|u|
2
]

dx =

∫
SR

∂nu ū dSR . (3.1)

From (3.1) we obtain∫
ΩR

[
|∇u|

2
− k2

|u|
2
]

dx =

∫
Γ1,+∩B(R)

∂nuū dx +

∫
Γ2,+∩B(R)

∂nuū dx +

∫
∂B(R)∩Ω

∂nuū dS

=

∫
∂B(R)∩Ω

∂nuū dS, (3.2)

in any of the cases (2.2)–(2.4) with trivial data. Note that, since =m k 6= 0 the integral
∫
∂B(R)∩Ω ∂nu ū dS tends to 0

as R → ∞. Indeed, in (R, φ) polar coordinates we have∫
∂B(R)∩Ω

∂nu ū dS = R
∫ π

4

0
∂nu u dφ = R lim

δ1,δ2→0+

∫ π
4 −δ2

δ1

∂nu u dφ

and we take into account that the solution u ∈ H1(Ω) of the Helmholtz equation exponentially vanishes at infinity in
the sector φ ∈ (δ1,

π
4 − δ2) (which follows from the representation formula of a solution of the Helmholtz equation;

see, for instance, [16]). Therefore passing to the limit as R → ∞ in (3.2) it follows∫
Ω

[
|∇u|

2
− k2

|u|
2
]

dx = 0.

From to the real and imaginary parts of the last identity, we obtain∫
Ω

[
|∇u|

2
+

(
(=m k)2 − (Re k)2

)
|u|

2
]

dx = 0 and − 2(Re k)(=m k)
∫
Ω

|u|
2 dx = 0.

Thus, it follows from the last two identities that u = 0 in Ω . �
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4. The fundamental solution and potentials

Let us denote the standard fundamental solution of the Helmholtz equation (in two dimensions) by

K(x) := −
i

4
H (1)

0 (k|x |),

where H (1)
0 (k|x |) is the Hankel function of the first kind of order zero (cf. [17, Section 3.4]). Furthermore, we introduce

the single and double layer potentials on Γ j

V j (ψ)(x) =

∫
Γ j

K(x − w)ψ(w)dwΓ j , x 6∈ Γ j ,

W j (ϕ)(x) =

∫
Γ j

[∂n j (y)K(x − w)]ϕ(w)dwΓ j , x 6∈ Γ j ,

where j = 1, 2, 3 and ψ , ϕ are density functions. Note that for j = 1 sometimes we will write R instead of Γ1 and n
instead of the unit normal n1. In this case, for example, the single layer potential defined above has the form

V1(ψ)(x1, x2) =

∫
R
K(x1 − y, x2)ψ(y)dy, x2 6= 0.

Set R2
± := {(x1, x2) ∈ R2

: x2 ≷ 0} and let us first consider the operators V := V1 and W := W1.

Theorem 3 ([18]). The single and double layer potentials V and W are continuous operators

V : H s(R) → H s+1+
1
2 (R2

±), W : H s+1(R) → H s+1+
1
2 (R2

±) (4.1)

for all s ∈ R.

Clearly, a similar result holds true for the operators V2, W2, V3 and W3.
Let us now recall some properties of the above introduced potentials. Namely, the following jump relations are

well-known (cf. [18]):

[V (ψ)]+R = [V (ψ)]−R =: H(ψ), [∂n V (ψ)]±R =:

[
∓

1
2

I

]
(ψ),

[W (ϕ)]±R =:

[
±

1
2

I

]
(ϕ), [∂nW (ϕ)]+R = [∂nW (ϕ)]−R =: L(ϕ),

(4.2)

where

H(ψ)(z) :=

∫
R
K(z − y, 0)ψ(y)dy, z ∈ R, (4.3)

L(ϕ)(z) := lim
R2

+3x→z∈R
∂n(x)

∫
R
[∂n(y)K(y − x1,−x2)]ϕ(y)dy, z ∈ R, (4.4)

and I denotes the identity operator.
In our further reasoning we will make a convenient use of the even and odd extension operators defined by

`eϕ(y) =

{
ϕ(y), y ∈ R±

ϕ(−y), y ∈ R∓

and `oϕ(y) =

{
ϕ(y), y ∈ R±

−ϕ(−y), y ∈ R∓

,

respectively.

Remark 4 (cf. [19]). The following operators

`e
: H

1
2 +ε(R±) −→ H

1
2 +ε(R), `o

: rR±
H̃

1
2 +ε(R±) −→ H

1
2 +ε(R),

`o
: H−

1
2 +ε(R±) −→ H−

1
2 +ε(R), `e

: rR±
H̃−

1
2 +ε(R±) −→ H−

1
2 +ε(R),

are continuous for all ε ∈ [0, 1/2).
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Lemma 5 (cf. [20]). If 0 ≤ ε < 1/2, then

rΓ3 ◦ V ◦ `oψ = 0, rΓ3 ◦ W ◦ `oϕ̃ = 0, rΓ3 ◦ ∂n3 V ◦ `eψ̃ = 0, rΓ3 ◦ ∂n3 W ◦ `eϕ = 0

for all ψ ∈ H−
1
2 +ε(Γ1,+) , ϕ̃ ∈ rΓ1,+ H̃

1
2 +ε(Γ1,+), ψ̃ ∈ rΓ1,+ H̃−

1
2 +ε(Γ1,+) , and ϕ ∈ H

1
2 +ε(Γ1,+).

Note that analogous results are valid for the operators V3 and W3.

5. Solutions of the problems within a set of smoothness space orders

In the present section we will provide the solutions for the three problems in the non-homogeneous case. In
addition, it will be obtained as an improvement of the solutions regularity. This will be done for a new set of
smoothness index Bessel potential spaces above the case of ε = 0.

We will use the notation g|Γ j,+ ( j = 1, 2) to the value of g on Γ j,+ in the case where no discontinuities arise in the
values of g (from both sides of Γ j,+). To distinguish from this situation, we will continue to use the notation [g]

+

Γ j,+

for the value of g on Γ j,+ when computed from the plus/right part of Γ j,+ and when g has no value on the other side
of Γ j,+ or simply when it may arise a discontinuity on the other side of Γ j,+.

Theorem 6. If the boundary data satisfy the conditions

(h1,D, h2,D) ∈ H
1
2 +ε(Γ1,+)× H

1
2 +ε(Γ2,+)

for 0 ≤ ε < 1
2 , then the Problem PD–D has a unique solution u ∈ H1+ε(Ω), which is representable in the form

u = 2W1(`
og1)− 2W3(`

og3)+ 2W2(`h2,D), (5.1)

where ` is any extension of h2,D such that `h2,D ∈ H
1
2 +ε(Γ2) and

g1 := h1,D − 2W2(`h2,D)|Γ1,+ and g3(0, x2) := g1(x2, 0).

Proof. First note that the compatibility condition yields g1 ∈ rΓ1,+ H̃
1
2 +ε(Γ1,+) and therefore `og1 ∈ H

1
2 +ε(Γ1), cf.

Remark 4. It is clear that (5.1) satisfies the Helmholtz equation in Ω and due to Theorems 2 and 3 it only remains to
check the boundary conditions. We have

[u]
+

Γ1,+
= 2[W1(`

og1)]
+

Γ1,+
− 2W3(`

og3)|Γ1,+ + 2W2(`h2,D)|Γ1,+

= g1 + 2W2(`h2,D)|Γ1,+ = h1,D − 2W2(`h2,D)|Γ1,+ + 2W2(`h2,D)|Γ1,+ = h1,D.

Here we used Lemma 5 and the jump relations (4.2). Further,

[u]
+

Γ2,+
= 2W1(`

og1)|Γ2,+ − 2W3(`
og3)|Γ2,+ + 2[W2(`h2,D)]

+

Γ2,+

= −2 rΓ2,+

∫
R
∂x2K(x1 − y, x2)(`

og1)(y)dy + 2rΓ2,+

∫
Γ3

∂x1K(x1, x2 − y)(`og3)(y)dyΓ3 + h2,D

= −2 rΓ2,+

∫
R
∂x2K(x1 − y, x2)(`

og1)(y)dy + 2rΓ2,+

∫
R
∂x1K(x1, x2 − y)(`og1)(y)dy + h2,D.

Since

∂x2K(x1 − y, x2) = −
i

4
Ḣ (1)

0 (k|(x1 − y, x2)|)
x2√

(x1 − y)2 + x2
2

and

∂x1K(x1, x2 − y) = −
i

4
Ḣ (1)

0 (k|(x1, x2 − y)|)
x1√

x2
1 + (x2 − y)2
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(here Ḣ (1)
0 denotes the ordinary derivative of the Hankel function, which equals to −H (1)

1 , cf. [21, 8.473(6)]), then on
Γ2,+, i.e., for x1 = x2, we obtain

−∂x2K(x1 − y, x1)+ ∂x1K(x1, x1 − y) = 0.

Therefore

−2rΓ2,+

∫
R
∂x2K(x1 − y, x2)(`

og1)(y)dy + 2rΓ2,+

∫
R
∂x1K(x1, x2 − y)(`og1)(y)dy = 0.

Thus [u]
+

Γ2,+
= h2,D . �

Theorem 7. If the boundary data satisfy the conditions

(h1,N , h2,N ) ∈ H−
1
2 +ε(Γ1,+)× H−

1
2 +ε(Γ2,+)

for 0 ≤ ε < 1
2 , then the Problem PN–N has a unique solution u ∈ H1+ε(Ω), which is representable in the form

u = −2V1(`
eg1)− 2V3(`

eg3)− 2V2(`h2,N ), (5.2)

where ` is any extension of h2,N such that `h2,N ∈ H−
1
2 +ε(Γ2) and

g1 := h1,N + [2 ∂n V2(`h2,N )]Γ1,+ and g3(0, x2) := g1(x2, 0).

Proof. Analogously as in the proof of Theorem 6 we have that `eg1 ∈ H−
1
2 +ε(Γ1) (due to compatibility condition

and Remark 4), and we only need to check the boundary conditions. For these, we have:

[∂nu]
+

Γ1,+
= −2 [∂n V1(`

eg1)]
+

Γ1,+
− 2 ∂n V3(`

eg3)|Γ1,+ − 2 ∂n V2(`h2,N )|Γ1,+

= g1 − 2 ∂n V2(`h2,N )|Γ1,+ = h1,N + 2 ∂n V2(`h2,N )|Γ1,+ − 2 ∂n V2(`h2,N )|Γ1,+ = h1,N .

Further,

[∂nu]
+

Γ2,+
= −2 ∂n V1(`

eg1)|Γ2,+ − 2 ∂n V3(`
eg3)|Γ2,+ − 2 [∂n V2(`h2,N )]

+

Γ2,+

= −2 ∂n V1(`
eg1)|Γ2,+ − 2 ∂n V3(`

eg3)|Γ2,+ + h2,N = h2,N .

Indeed, in here n = n2 and therefore ∂n := −
1

√
2
∂x1 +

1
√

2
∂x2 . Moreover,

(−∂x1 + ∂x2)K(x1 − y, x2) = −
i

4
Ḣ (1)

0 (k|(x1 − y, x2)|)
x2 − x1 + y√
(x1 − y)2 + x2

2

and

(−∂x1 + ∂x2)K(x1, x2 − y) = −
i

4
Ḣ (1)

0 (k|(x1, x2 − y)|)
x2 − x1 − y√
x2

1 + (x2 − y)2
.

Thus, on Γ2,+ (i.e., for x1 = x2), we have

∂n2K(x1 − y, x2)+ ∂n2K(x1, x2 − y) = 0

which yields

−2 ∂n V1(`
eg1)|Γ2,+ − 2∂n V3(`

eg3)|Γ2,+ = 0. �

Theorem 8. If

(h1,N , h2,D) ∈ H−
1
2 +ε(Γ1,+)× H

1
2 +ε(Γ2,+)

for 0 ≤ ε < 1
2 and the boundary data satisfy the compatibility condition

g1 := h1,N − 2∂nW2(`h2,D)|Γ1,+ ∈ rΓ1,+ H̃−
1
2 +ε(Γ1,+) (5.3)
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for some extension ` of h2,D such that `h2,D ∈ H
1
2 +ε(Γ2), then the Problem PN–D has a unique solution

u ∈ H1+ε(Ω), which is representable in the form

u = −2V1(`
eg1)+ 2V3(`

eg3)+ 2W2(`h2,D),

where g3(0, x2) := g1(x2, 0).

Proof. Due to compatibility condition we have that `eg1 ∈ H−
1
2 +ε(Γ1) and arguing as above we need to check the

boundary conditions. We have

[∂nu]
+

Γ1,+
= g1 + 2∂nW2(`h2,D)|Γ1,+ = h1,N ,

and

[u]
+

Γ2,+
= −2 rΓ2,+

∫
R
K(x1 − y, x2)(`

eg1)(y)dy + 2 rΓ2,+

∫
R
K(x1, x2 − y)(`eg1)(y)dy + h2,D

= h2,D. �

Note that the compatibility condition (5.3) is only a restriction for ε = 0 (in the case of 0 < ε < 1/2 the condition
is automatically fulfilled due to the same reason as in Remark 1). Anyway, it should also be pointed out that this is
not a necessary condition as the ones introduced in the end of Section 2 but just a condition which appears due to the
proposed technique.

Finally, we would like to point out that the above conclusions for the three problems (where the solutions are
presented as sums of different potentials) open the possibility to eventual studies about corresponding efficient
computations on these combinations of potentials — in accordance with Galerkin procedures which are known to
be applied to isolated single or double potential operators (cf., e.g., [22,23]).
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