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Abstract. We study two wave diffraction problems modeled by the Helmholtz equation in a half-
plane with a crack characterized by Dirichlet and impedance boundary conditions. The existence and
uniqueness of solutions is proved by an appropriate combination of general operator theory, Fredholm
theory, potential theory and boundary integral equation methods. This combination of methods leads
also to integral representations of solutions. Moreover, in Sobolev spaces, a range of smoothness
parameters is obtained in which the solutions of the problems are valid.

1 Introduction

Problems of wave diffraction by geometrical configurations involving cracks have been object of great
interest in the scientific literature in the last years. In part, this is due to their fundamental relevance
in a great variety of concrete applications. Indeed, they serve as models for a significant number of
complex situations in different sciences. In the present paper, we will be considering problems of
wave diffraction by a half-plane configuration to which we are adding a perpendicular crack to the
main boundary involving Dirichlet and impedance boundary conditions.

For different types of boundary value problems in domains with cuts or cracks, the specialized
papers [22]–[30] presented integral representation of solutions in the form of potentials. Some other
general works (cf. [5]–[12], [18]–[19], [31]–[40]) provided convenient settings, explained and de-
tailed justified why different classes of problems of diffraction by plane sectors admit exact analytic
solutions. Moreover, in some of these works, consequent exact analytic solutions were obtained.
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In our present case, the geometry of a half-plane with a perpendicular crack makes it possible to
separate the Helmholtz equation in two quadrants and to “reduce” (in a certain sense) each of the
original wave diffraction problems into corresponding boundary value problems involving also some
transmission conditions in a contact half-line which is comum to both quadrants. This allows extra
possibilities to derive the consequent solutions of the problems in appropriate Sobolev space settings,
as well as some other qualitative properties. Thus, in here, we continue our development of operator
theory methods to deal with wave diffraction problems involving cracks, and apply it to the important
problem of diffraction by a screen occupying a half-plane containing a crack characterized by having
impedance and Dirichlet boundary conditions.

The formulation of the problems in Bessel potential spaces and the derivation of conditions which
ensure corresponding uniqueness of solutions is presented in the next section. In section 3 we will
rewrite our original problems in convenient Wiener-Hopf-Hankel equations. Section 4 is devoted to
a Fredholm and invertibility analysis of Wiener-Hopf operators which we associate to the previous
Wiener-Hopf-Hankel equations. The main result is presented in the last section and arises as a natural
consequence of the previous constructions and results. It exhibits formulas for the solutions of the
original problems in Bessel potential spaces and a range of increased smoothness of the spaces where
that solutions are still valid.

2 Formulation of the problems and uniqueness of solutions

We start by introducing some general notation so that we will be able to present the formulation of
our problems from the mathematical point of view.

We use the notation S(Rn) for the Schwartz space of all rapidly decreasing functions and S ′(Rn)
for the dual space of tempered distributions on Rn. The Bessel potential space Hs(Rn), with s ∈ R, is
formed by the elements φ ∈ S ′(Rn) such that

∥φ∥Hs(Rn) = ∥F −1(1+ |ξ|2)
s/2

·F φ∥L2(Rn)

is finite. As the notation indicates, ∥ · ∥Hs(Rn) is a norm for the space Hs(Rn) which makes it a Banach
space. Here, F = Fx 7→ξ denotes the Fourier transformation in Rn. For a given Lipschitz domain D,
on Rn, we denote by H̃s(D) the closed subspace of Hs(Rn) whose elements have supports in D, and
Hs(D) denotes the space of generalized functions on D which have extensions into Rn that belong
to Hs(Rn). The space H̃s(D) is endowed with the subspace topology, and on Hs(D) we introduce
the norm of the quotient space Hs(Rn)/H̃s(Rn\D). Throughout the paper we will use the notation
Rn
± := {x = (x1, . . . ,xn−1,xn) ∈ Rn : ±xn > 0}. Note that the spaces H0(Rn

+) and H̃0(Rn
+) can be

identified, and we will denote them by L2(Rn
+). For a comprehensive treatment of Sobolev spaces

we refer to [1], for unbounded Lipschitz domains see also [33], and for domains with conical points,
edges, polyhedra, cuts (or cracks), slits or holes we cite [20].

Let

Ω := {(x1,x2) ∈ R2 : x1 > 0, x2 ∈ R},
Γ1 := {(x1,0) : x1 ∈ R},
Γ2 := {(0,x2) : x2 ∈ R},

and
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C := {(x1,0) : 0 < x1 < a} ⊂ Γ1

for a certain positive number a and ΩC := Ω\C . Clearly, ∂Ω = Γ2 and ∂ΩC = Γ2 ∪C .
For our purposes below we introduce further notations:

Ω1 := {(x1,x2) ∈ R2 : x1 > 0, x2 > 0},
Ω2 := {(x1,x2) ∈ R2 : x1 > 0, x2 < 0};

then, ∂Ω j = S j ∪S , for j = 1,2, where

S := {(x1,0) : x1 ≥ 0} ⊂ Γ1,

S1 := {(0,x2) : x2 ≥ 0} ⊂ Γ2,

S2 := {(0,x2) : x2 ≤ 0} ⊂ Γ2.

Finally, we introduce the following unit normal vectors n1 =
−−−−→
(0,−1) on Γ1 and n2 =

−−−−→
(−1,0) on Γ2.

Let ε∈ [0, 1
2). We are interested in studying the problem of existence and uniqueness of an element

u ∈ H1+ε(ΩC ), such that (
∆+ k2)u = 0 in ΩC , (2.1)

and u satisfies one of the following two representative boundary conditions:{
[∂n1u]+C − p [u]+C = g+1 on C ,

[u]−C = g−0 on C ,
and

{
[u]+S1

= h1 on S1,

[u]+S2
= h2 on S2,

(2.2)

{
[∂n1u]+C − p [u]+C = g+1 on C ,

[u]−C = g−0 on C ,
and

{
[∂n2u]+S1

= f1 on S1,

[∂n2u]+S2
= f2 on S2,

(2.3)

for j = 1,2. Here the wave number k ∈C\R and the number p ∈C are given. The elements [u]+S j
and

[∂n2u]+S j
denote the Dirichlet and the Neumann traces on S j, respectively, while by [u]±C we denote the

Dirichlet traces on C from both sides of the crack and by [∂n1u]+C we denote the Neumann trace on C
from the upper side of the crack.

Throughout the paper, on the given data, we assume that h j ∈ H1/2+ε(S j), f j ∈ H−1/2+ε(S j), for
j = 1,2, and g±j ∈ H1/2− j+ε(C ), for j = 0,1. Furthermore, we suppose that they satisfy the following
compatibility conditions:

χ0

(
g−0 − rC h2 ◦ e−i π

2

)
∈ rC H̃1/2+ε(C ), (2.4)

χ0

(
g+1 + rC f1 ◦ ei π

2

)
∈ rC H̃−1/2+ε(C ). (2.5)

Here, rC denotes the restriction operator to C and χ0 ∈C∞([0,a]) is such that χ0(x)≡ 1 for x ∈ [0,a/3]
and χ0(x)≡ 0 for x ∈ [2a/3,a].

From now on we will refer to:

• Problem PI−D−D as the problem characterized by (2.1), (2.2), and (2.4);
• Problem PI−D−N as the one characterized by (2.1), (2.3), and (2.5).
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As about the just stated compatibility conditions, note that they are necessary conditions for the
well-posedness of the corresponding problems. Note also that, the compatibility condition (2.5) in-
cluded in Problem PI−D−N is an additional restriction only for ε = 0.

Now, having formulated the problems in a rigorous mathematical way and having considered the
necessary compatibility conditions, we are in a position to look for conditions which will guarantee
the uniqueness result for the solutions of the problems in consideration.

Theorem 1. If one of the following situations holds:

(a) (ℜek)(ℑmk)> 0, ℑm p ≥ 0,

(b) (ℜek)(ℑmk)< 0, ℑm p ≤ 0,

(c) |ℑmk| ≥ |ℜek|, ℜe p ≤ 0,

(d) ℜek = 0, ℑm p > 0,

(e) ℑm p ̸= 0 , (ℑmk)2 − (ℜek)2 +2(ℜek)(ℑmk) ℜe p
ℑm p > 0 ,

then problems PI−D−D and PI−D−N have at most one solution.

Proof. The proof is somehow standard and uses the Green’s formula (being sufficient to consider the
case ε = 0). Let R be a sufficiently large positive number and B(R) be the disk centered at the origin
with radius R. Set ΩR := ΩC ∩B(R). Note that the domain ΩR has a piecewise smooth boundary SR

including both sides of C and denote by n(x) the outward unit normal vector at the non-singular points
x ∈ SR.

Let u be a solution of the homogeneous problem. Then the first Green’s identity for u and its
complex conjugate ū in the domain ΩR, together with zero boundary conditions on SR yields∫

ΩR

[
|∇u|2 − k2|u|2

]
dx = p

∫
C
|[u]+|2dx +

∫
∂B(R)∩ΩC

(∂nu) ūdSR . (2.6)

From the real and imaginary parts of the last identity, we obtain∫
ΩC

[
|∇u|2 +

(
(ℑmk)2 − (ℜek)2

)
|u|2
]
dx− (ℜe p)

∫
C
|[u]+|2dx = ℜe

∫
∂B(R)∩ΩC

(∂nu) ūdSR ,

−2(ℜek)(ℑmk)
∫

ΩC

|u|2 dx− (ℑm p)
∫

C
|[u]+|2dx = ℑm

∫
∂B(R)∩ΩC

(∂nu) ūdSR .

Further, for each of the conditions (a)–(e), arguing similarly as in the proof of [13, Theorem 3.1], we
get that u = 0 in ΩC .

3 Potentials and Wiener-Hopf-Hankel formulation of the problems

In the present section, we will start by recalling some results from potential theory. Then, using such
results, we will be able to rewrite the original problems as Wiener-Hopf-Hankel equations.

From now on, throughout the remaining part of the paper, and without loss of generality, we
assume that ℑmk > 0; the complementary case ℑmk < 0 runs with obvious changes. Let us denote
the standard fundamental solution of the Helmholtz equation (in two dimensions) by

K (x) := − i
4

H(1)
0 (k|x|) ,
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where H(1)
0 (k|x|) is the Hankel function of the first kind of order zero (cf. [19, §3.4]). Furthermore,

we introduce the single and double layer potentials on Γ j:

Vj(ψ)(x) =
∫

Γ j

K (x− y)ψ(y)dyΓ j , x /∈ Γ j ,

Wj(φ)(x) =
∫

Γ j

[∂n j(y)K (x− y)]φ(y)dyΓ j , x /∈ Γ j ,

where j = 1,2 and ψ, φ are density functions. Note that for j = 1 sometimes we will write R instead
of Γ1. In this case, for example, the single layer potential defined above has the form

V1(ψ)(x1,x2) =
∫
R

K (x1 − y,x2)ψ(y)dy, x2 ̸= 0.

Set R2
± := {(x1,x2) ∈ R2 : x2 ≷ 0} and let us first consider the operators V :=V1 and W :=W1.

Theorem 2 (cf. [8]). The single and double layer potentials V and W are continuous operators

V : Hs(R)→ Hs+1+ 1
2 (R2

±), W : Hs+1(R)→ Hs+1+ 1
2 (R2

±)

for all s ∈ R.

Clearly, a similar result holds true for the operators V2 and W2.
Let us now recall some properties of the above introduced potentials. The following limit relations

are well-known (cf. [8]):

[V (ψ)]+R = [V (ψ)]−R =: H (ψ), [∂nV (ψ)]±R =: [∓1
2

I](ψ) ,

[W (φ)]±R =: [±1
2

I](φ), [∂nW (φ)]+R = [∂nW (φ)]−R =: L(φ) ,

where

H (ψ)(z) :=
∫
R

K (z− y)ψ(y)dy , z ∈ R ,

L(φ)(z) := lim
R2
+∋x→z∈R

∂n(x)

∫
R
[∂n(y)K (y− x)]φ(y)dy , z ∈ R ,

and I denotes the identity operator.
In our further reasoning we will make a convenient use of the even and odd extension operators

defined by

ℓeφ(y) =
{

φ(y), y ∈ R±
φ(−y), y ∈ R∓

and ℓoφ(y) =
{

φ(y), y ∈ R±
−φ(−y), y ∈ R∓

,

respectively.

Remark 1 (cf. [18]). The following operators

ℓe : Hε+ 1
2 (R±)−→ Hε+ 1

2 (R), ℓo : rR±H̃ε+ 1
2 (R±)−→ Hε+ 1

2 (R),

ℓo : Hε− 1
2 (R±)−→ Hε− 1

2 (R), ℓe : rR±H̃ε− 1
2 (R±)−→ Hε− 1

2 (R),

are continuous for all ε ∈ [0,1/2).
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Lemma 1 (cf. [8]). If 0 ≤ ε < 1/2, then

rΓ2 ◦V ◦ ℓoψ = 0, rΓ2 ◦W ◦ ℓoφ̃ = 0,

rΓ2 ◦∂n2V ◦ ℓeψ̃ = 0, rΓ2 ◦∂n2W ◦ ℓeφ = 0

for all ψ ∈ Hε− 1
2 (S) , ψ̃ ∈ rS H̃ε− 1

2 (S) , φ ∈ Hε+ 1
2 (S) , and φ̃ ∈ rS H̃ε+ 1

2 (S).

Note that analogous results are valid for the operators V2 and W2.
Finally, let us assume that one of the conditions (a)–(e) of Theorem 1 is satisfied and note that the

operator
Ap := L − p

2
: H

1
2+ε(R)−→ H− 1

2+ε(R), (3.1)

is invertible, cf. [8].
Now, we will equivalently write our problems in the form of single equations characterized by

Wiener-Hopf plus Hankel operators. In view of this, the use of the pseudodifferential operators intro-
duced in the last section together with an appropriate use of odd and even extension operators will be
quite important. In addition, the reflection operator J given by the rule

Jψ(y) = ψ(−y) for all y ∈ R.

will also play an important role here.
We start with the PI−D−D problem. This boundary value problem can equivalently be rewritten in

the following form: Find u j ∈ H1+ε(Ω j), j = 1,2, such that(
∆+ k2)u j = 0 in Ω j, (3.2)

[u j]
+
S j
= h j on S j, (3.3)

[∂n1u1]
+
C − p [u1]

+
C = g+1 , [u2]

−
C = g−0 on C , (3.4)

and
[u1]

+
C c − [u2]

−
C c = 0, [∂n1u1]

+
C c − [∂n1u2]

−
C c = 0 on C c, (3.5)

where C c = S\C .
Let us consider the following functions

u1 :=W1A−1
p ℓorS ψ+H1 in Ω1, (3.6)

and
u2 =−2W1ℓ

orS φ+H2 in Ω2, (3.7)

where
H1 :=W1A−1

p
(
ℓo(ℓ+g+1 +2p[W2(ℓ

eh1)]
+
S )
)
+2W2(ℓ

eh1) in Ω1,

and
H2 := 2W2(ℓ

eh2)−2W1
(
ℓo(ℓ+g−0 −2[W2(ℓ

eh2)]
−
S )
)

in Ω2;

here ψ and φ are arbitrary elements of the spaces H̃− 1
2+ε(C c) and H̃

1
2+ε(C c), respectively; ℓ+g1 ∈

H− 1
2+ε(S) is any fixed extension of g+1 ∈ H− 1

2+ε(C ), ℓ+g−0 ∈ H
1
2+ε(S) is any fixed extension of

g−0 ∈ H
1
2+ε(C ), while A−1

p denotes the inverse of the operator Ap, cf. (3.1). Note that, the functions
H1 and H2 are well defined (cf. Remark 1 and compatibility condition (2.4)) and are known.
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Using the properties of the operators introduced above (see also [8]) it is easy to verify that u j,
j = 1,2, belong to the spaces H1+ε(Ω j) and satisfy equations (3.2)-(3.4). Thus it remains to fulfil the
conditions (3.5), which lead us to the following equation

rC cK ℓorS ϒ = HID, (3.8)

where

K :=

 I −1
2

A−1
p

2L LA−1
p

 , ϒ :=
(
−2φ
−2ψ

)
,

I is the identity operator and HID = (H1
ID,H

2
ID)

⊤ is a known vector function with

H1
ID := 2[H2]

−
C c −2[H1]

+
C c ∈ H

1
2+ε(C c),

H2
ID := 2[∂n1H1]

+
C c −2[∂n1H2]

−
C c ∈ H− 1

2+ε(C c).

Note that to simplify further arguments in Section 4 we prefer to have the equation (3.8) in the just
derived form.

As a consequence of the equation (3.8), in view to obtain more information on the elements ψ and
φ, we need to investigate the invertibility of the operator

rC cK ℓorS :
H̃

1
2+ε(C c)
⊕

H̃− 1
2+ε(C c)

−→
H

1
2+ε(C c)
⊕

H− 1
2+ε(C c)

With the help of the operator J and the shift convolution operators

Op(τ±a) := F −1τ±a ·F

where τb(ξ) := eibξ, ξ ∈ R, we equivalently reduce the problem to the invertibility of the operator

rR+K−− :
H̃

1
2+ε(R+)
⊕

H̃− 1
2+ε(R+)

−→
H

1
2+ε(R+)
⊕

H− 1
2+ε(R+)

(3.9)

where
K−− := K diag{I −Op(τ−2a)J, I −Op(τ−2a)J}.

Let us note here that because of Theorem 1 and having in mind the exhibited limit relations of the
potentials, we already know that KerrR+K−− = {0}.

Let us now turn to the boundary value problem PI−D−N . This can equivalently be rewritten in the
following form: Find u j ∈ H1+ε(Ω j), j = 1,2, such that(

∆+ k2)u j = 0 in Ω j, (3.10)

[∂n2u j]
+
S j
= f j on S j, (3.11)

[∂n1u1]
+
C − p [u1]

+
C = g+1 , [u2]

−
C = g−0 on C , (3.12)

and
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[u1]
+
C c − [u2]

−
C c = 0, [∂n1u1]

+
C c − [∂n1u2]

−
C c = 0 on C c, (3.13)

where C c = S\C .
Let us consider the following functions

u1 :=W1A−1
p ℓerS ψ+F1 in Ω1, (3.14)

and
u2 =−2W1ℓ

erS φ+F2 in Ω2, (3.15)

where
F1 :=W1A−1

p
(
ℓe(ℓ+g+1 +2[∂n1V2(ℓ

o f1)]
+
S )
)
−2V2(ℓ

o f2) in Ω1,

and
F2 :=−2V2(ℓ

o f2)−2W1
(
ℓe(ℓ+g−0 )

)
in Ω2.

Here ψ ∈ H̃− 1
2+ε(C c) and φ ∈ H̃− 1

2+ε(C c) are arbitrary elements as above. Due to (2.5) the functions
F1 and F2 are well defined and known. Note that u j, j = 1,2, belong to the spaces H1+ε(Ω j) and
satisfy equations (3.10)-(3.12). The conditions (3.13) lead us to the following equation

rC cK ℓerS ϒ = FID, (3.16)

where

K :=

 I −1
2

A−1
p

2L LA−1
p

 , ϒ :=
(
−2φ
−2ψ

)
,

I is the identity operator and FID = (F1
ID,F

2
ID)

⊤ is a known vector function with

F1
ID := 2 [F2]

−
C c −2 [F1]

+
C c ,

F2
ID := 2 [∂n1F1]

+
C c −2 [∂n1F2]

−
C c .

Thus, we need to investigate the invertibility of the operator

rC cK ℓerS :
H̃

1
2+ε(C c)
⊕

H̃− 1
2+ε(C c)

−→
H

1
2+ε(C c)
⊕

H− 1
2+ε(C c)

which we equivalently reduce the problem to the invertibility of the operator

rR+K++ :
H̃

1
2+ε(R+)
⊕

H̃− 1
2+ε(R+)

−→
H

1
2+ε(R+)
⊕

H− 1
2+ε(R+)

(3.17)

where
K++ := K diag{I +Op(τ−2a)J, I +Op(τ−2a)J}.

Similarly as before, let us note here that because of Theorem 1 (and the limit relations of the poten-
tials), we already know that KerrR+K++ = {0}.
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4 Fredholm and invertibility analysis of associated Wiener-Hopf operators

Now, we will exhibit operator relations that will be applied to the operators which appeared in the last
section. Such relations will help us in obtaining their Fredholm and invertibility properties.

Having in mind [2, 17], we recall that two bounded linear operators T : X1 → X2 and S : Y1 → Y2,
acting between Banach spaces, are said to be (toplinear) equivalent after extension if there are Banach
spaces Z1 and Z2 and invertible bounded linear operators E and F such that[

T 0
0 IZ1

]
= E

[
S 0
0 IZ2

]
F,

where IZ1 and IZ2 represent the identity operators in Z1 and Z2, respectively. In particular, in case we
will simply have T = ESF for some boundedly invertible operators E and F , we will say that T and
S are equivalent operators. In such a case, we will write T ∼ S. These operator relations between two
operators T and S, if obtained, allow several consequences on the properties of these two operators.
Namely, T and S will have the same Fredholm regularity properties (i.e., the properties that directly
depend on the kernel and on the image of the operator).

Let us consider

Λs
±(ξ) := (ξ± i)s = (1+ξ2)

s
2 exp

{
s iarg(ξ± i)

}
,

with a branch chosen in such a way that arg(ξ± i)→ 0 as ξ →+∞, i.e., with a cut along the negative
real axis (see Example 1.7 in [21] for additional information about the properties of these functions).
In addition, we will also use the notation

ζ(ξ) :=
Λ−(ξ)
Λ+(ξ)

=
ξ− i
ξ+ i

, ξ ∈ R .

Lemma 2 (cf. [21, §4]). Let s,r ∈ R, and consider the operators

Λs
+(D) = (D+ i)s

Λs
−(D) = rR+(D− i)sℓ(r) ,

where (D± i)±s = F −1(ξ± i)±s ·F , and ℓ(r) : Hr(R+)→ Hr(R) is any bounded extension operator
in these spaces (which particular choice does not change the definition of Λs

−(D)).
These operators arrange isomorphisms in the following space settings

Λs
+(D) : H̃r(R+)→ H̃r−s(R+),

Λs
−(D) : Hr(R+)→ Hr−s(R+)

(for any s,r ∈ R).
Bearing in mind the purpose of this section, let Ai j = Op(ai j) = F −1ai j ·F and Bi j = Op(bi j)

be pseudodifferential operators of order µi j ∈ R; thus, ⟨·⟩−µi j ai j,⟨·⟩−µi j bi j ∈ L∞(R), where ⟨ξ⟩ :=
(1+ξ2)

1
2 and i, j = 1,2. Since the operators rR+(Ai j +Bi jJ) arrange continuous maps

rR+(Ai j +Bi jJ) : H̃s(R+)→ Hs−µi j(R+)

for all s ∈ R, then 2×2 matrix operator



10 L.P. Castro and D. Kapanadze

A+BJ =

(
A11 +B11J A12 +B12J

A21 +B21J A22 +B22J

)
, A = (Ai j)i, j=1,2, B = (Bi j)i, j=1,2

arrange continuous maps

rR+(A+BJ) :
H̃

1
2+ε(R+)
⊕

H̃− 1
2+ε(R+)

→
H

1
2+ε(R+)
⊕

H− 1
2+ε(R+)

where A11 = I, A12 =−1
2 A−1

p , A21 = 2L , A22 = LA−1
p , and Bi j = Ai jOp(τ−2a), for i, j = 1,2.

Recall that the complete symbols of the pseudodifferential operators L and Ap are (cf. [8, 9]):

σ(L)(ξ) =− iw(ξ)
2

and σ(Ap)(ξ) =− iw(ξ)+ p
2

, (4.1)

where w = w(ξ) := (ρ2 +ρ2)
1
4 (cos α

2 + i sin α
2 ), with

ρ = ρ(ξ) := (ℜek)2 − (ℑmk)2 −ξ2 ,

ρ := 2(ℜek)(ℑmk)

and

α :=



arctan ρ
|ρ| if ρ > 0, ρ > 0

π
2 if ρ = 0, ρ > 0
π− arctan ρ

|ρ| if ρ < 0, ρ > 0
π if ρ = 0
2π− arctan |ρ|

|ρ| if ρ > 0, ρ < 0
3π
2 if ρ = 0, ρ < 0

π+ arctan |ρ|
|ρ| if ρ < 0, ρ < 0

. (4.2)

Lemma 2 allows us to construct an equivalence relation between rR+(A+BJ) and

rR+(A +BJ) : [L2(R+)]
2 → [L2(R+)]

2, (4.3)

which is explicitly given by the following identity

rR+(A +BJ) := diag{Λ
1
2+ε
− ,Λ− 1

2+ε
− }rR+(A+BJ)diag{Λ− 1

2−ε
+ ,Λ

1
2−ε
+ } , (4.4)

where A := (Ai j)i, j=1,2, B := (Bi j)i, j=1,2, with

Ai j := (D− i)riAi j(D+ i)−r j , Bi j := (D− i)riBi jJ(D+ i)−r j J, (4.5)

for r1 := 1
2 + ε, r2 := −1

2 + ε. Due to the fact that Λs−µ
− : Hs−µ(R+)→ L2(R+) and Λ−s

+ : L2(R+)→
H̃s(R+) are invertible operators (cf. Lemma 2), the identity (4.4) shows that

rR+(A+BJ)∼ rR+(A +BJ) .

Note that

Λs
+(−ξ) = Λs

−(ξ)esπi, Λs
−(−ξ) = Λs

+(ξ)e−sπi
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which in particular allow us to describe the operators Ai j and Bi j and their symbols in the following
way

Ai j = Op(ãi j) , ãi j(ξ) = Λri
−(ξ)ai j(ξ)Λ−r j

+ (ξ) ,

Bi j = Op(b̃i j) , b̃i j(ξ) = Λri
−(ξ)bi j(ξ)Λ−r j

+ (−ξ) = Λri−r j
− (ξ)bi j(ξ)e−r jπi .

In particular, we have σ(A)(ξ) = (ãi j(ξ))i, j=1,2 with

ã11(ξ) = ζ
1
2+ε(ξ), ã12(ξ) =−1

2 ζε(ξ)⟨ξ⟩ [σ(Ap)(ξ)]−1,

ã21(ξ) = 2ζε(ξ)σ(L)(ξ)⟨ξ⟩−1, ã22(ξ) = ζ− 1
2+ε(ξ)σ(L)(ξ) [σ(Ap)(ξ)]−1,

and σ(B)(ξ) = (b̃i j(ξ))i, j=1,2, where

b̃11(ξ) = −iτ−2a(ξ)e−επi,

b̃12(ξ) = −1
2

i(ξ− i)τ−2a(ξ)e−επi [σ(Ap)(ξ)]−1,

b̃21(ξ) = −2i(ξ− i)−1τ−2a(ξ)e−επi σ(L)(ξ),

b̃22(ξ) = iτ−2a(ξ)e−επi σ(L)(ξ) [σ(Ap)(ξ)]−1.

Thus
rR+K++ ∼ rR+(A +BJ) and rR+K−− ∼ rR+(A −BJ). (4.6)

Further, let us consider a pseudodifferential operator Op(Ξ) with 4×4 matrix symbol Ξ(ξ) parti-
tioned into four 2×2 blocks αi j, i, j = 1,2:

Ξ(ξ) =
(

α11(ξ) α12(ξ)
α21(ξ) α22(ξ)

)
with

α11(ξ) = σ(A)(ξ)−σ(B)(ξ)[σ(A)(−ξ)]−1σ(B)(−ξ) ,
α12(ξ) = −σ(B)(ξ) [σ(A)(−ξ)]−1 ,

α21(ξ) = [σ(A)(−ξ)]−1 σ(B)(−ξ) ,
α22(ξ) = (σ(A)(−ξ))−1 .

The direct calculation shows that α11 is the null matrix, i.e., α11(ξ)≡ 0, while

α12(ξ) =

(
−iτ−2a(ξ)eεπiζ 1

2+ε(ξ) 0

0 iτ−2a(ξ)eεπiζ− 1
2+ε(ξ)

)
,

α21(ξ) =

(
iτ2a(ξ)eεπiζ 1

2+ε(ξ) 0

0 −iτ2a(ξ)eεπiζ− 1
2+ε(ξ)

)
,

α22(ξ) =

(
−1

2 e2επiζ 1
2+ε(ξ) −e2επi ⟨ξ⟩σ(H )(ξ)ζε(ξ)

−e2επi ⟨ξ⟩−1σ(Ap)(ξ)ζε(ξ) −1
2 e2επiσ(Ap)(ξ)[σ(L)(ξ)]−1ζ− 1

2+ε(ξ)

)
.
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Under the above conditions it is straightforward to conclude that

rR+Op(Ξ) : [L2(R+)]
4 → [L2(R+)]

4 (4.7)

is a continuous operator. Moreover, it is easy to see that the determinant of the symbol of this operator
is always nonzero, for all ξ ∈ R.

The importance of the operator rR+Op(Ξ) is clarified by the next result.

Theorem 3. (i) The operators

rR+A ± rR+BJ : [L2(R+)]
2 → [L2(R+)]

2

(defined in (4.3)–(4.5)) are both invertible if and only if the operator rR+Op(Ξ) (given in (4.7)) is
invertible.

(ii) The operators rR+A + rR+BJ and rR+A − rR+BJ have both the Fredholm property if and only if
rR+Op(Ξ) has the Fredholm property. In addition, when in the presence of the Fredholm property
for these three operators, their Fredholm indices satisfy the identity

Ind (rR+A + rR+BJ)+ Ind (rR+A − rR+BJ) = Ind rR+Op(Ξ) . (4.8)

In fact, this theorem is a consequence of a stronger fact which basically states that rR+Op(Ξ)
is (toplinear) equivalent after extension to a diagonal block matrix operator whose diagonal entries
are the operators rR+A + rR+BJ and rR+A − rR+BJ. Moreover, it is interesting to clarify that all the
necessary operators to identify such (toplinear) equivalence after extension relation can be built in an
explicit way (see [14, 15, 16, 17]).

Having in mind the Theorem 3, now we would like to investigate the Wiener-Hopf operator

rR+Op(Ξ) : [L2(R+)]
4 → [L2(R+)]

4.

We have that Ξ belongs to the very general C∗−algebra of the semi-almost periodic four by four
matrix functions on the real line ([SAP(R)]4×4); see [41]. We recall that [SAP(R)]4×4 is the smallest
closed subalgebra of [L∞(R)]4×4 that contains the (classical) algebra of (two by two) almost periodic
elements ([AP]4×4) and the (four by four) continuous matrices with possible jumps at infinity.

Due to a known characterization of the structure of [SAP(R)]4×4 (see [3, 4, 41]), we can choose a
continuous function on the real line, say γ, such that γ(−∞) = 0, γ(+∞) = 1 and

Ξ = (1− γ)Ξl + γΞr +Ξ0,

where Ξ0 is a continuous four by four matrix function with zero limit at infinity, and Ξl and Ξr are
matrices with almost periodic elements, uniquely determined by Ξ, and that in our case have the
following form (due to the behavior of Ξ at ±∞):

Ξl =


0 0 iτ−2a e−επi 0

0 0 0 −iτ−2a e−επi

−iτ2a e−επi 0 1
2

1
2

0 iτ2a e−επi −1
2

1
2

 ,

Ξr =


0 0 −iτ−2a eεπi 0

0 0 0 iτ−2a eεπi

iτ2a eεπi 0 −1
2 e2επi 1

2 e2επi

0 −iτ2a eεπi −1
2 e2επi −1

2 e2επi

 .
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Here, it is worth noting that we had in consideration that ω(ξ)→ i|ξ| as ξ →±∞ (cf. (4.1)–(4.2)), and

ζν(ξ)→ 1 as ξ → ∞,

and

ζν(ξ)→ e−2πνi as ξ →−∞.

Theorem 4. For 0≤ ε< 1/4, the operator rR+Op(Ξ) : [L2(R+)]
4 → [L2(R+)]

4 is a Fredholm operator
with zero Fredholm index.

The proof repeats word by word the arguments given in the proof of [12, Theorem 7.4] since the
matrices Ξl and Ξr are exactly the same as corresponding matrices considered in [12, Section 7] and
therefore it is omitted here. Note also that if we would allow the case ε = 1/4 then our operators
would not have the Fredholm property (and therefore would not be invertible operators).

Corollary 1. Let 0 ≤ ε < 1
4 and one of the conditions (a)–(e) in Theorem 1 be satisfied. The Wiener-

Hopf plus and minus Hankel operators (3.9) and (3.17) (which characterize our problems) are invert-
ible operators.

Proof. As a consequence of the equivalence relations (4.6), we have:

dimCoKerrR+K++ = dimCoKerrR+(A +BJ), (4.9)

dimKerrR+K++ = dimKerrR+(A +BJ). (4.10)

and

dimCoKerrR+K−− = dimCoKerrR+(A −BJ), (4.11)

dimKerrR+K−− = dimKerrR+(A −BJ). (4.12)

From Theorem 3 and Theorem 4, we obtain that rR+(A + BJ) and rR+(A − BJ) are Fred-
holm operators. Moreover, recalling that under one of the conditions (a)–(e) in Theorem 1 it holds
KerrR+K++ = {0} and KerrR+K−− = {0}, from identities (4.8), (4.9)–(4.12) and Theorem 4, it fol-
lows

0 = Ind rR+(A +BJ)+ Ind rR+(A −BJ) = Ind rR+K+++ Ind rR+K−−

= (0−dimCoKerrR+K++)+(0−dimCoKerrR+K−−) .

Thus, we have

dimCoKerrR+K++ = dimCoKerrR+K−− = 0

and so we reach to the conclusion that both operators in (3.9) and (3.17) are invertible (under the
announced conditions).

5 Main result

We are now in a position to derive the main result of this work. This is obtained as a direct combination
of the results and constructions of the last two sections (with special emphasis to Corollary 1).
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Theorem 5. If 0 ≤ ε < 1
4 and one of the following situations holds

(a) (ℜek)(ℑmk)> 0, ℑm p ≥ 0,

(b) (ℜek)(ℑmk)< 0, ℑm p ≤ 0,

(c) |ℑmk| ≥ |ℜek|, ℜe p ≤ 0,

(d) ℜek = 0, ℑm p > 0,

(e) ℑm p ̸= 0 , (ℑmk)2 − (ℜek)2 +2(ℜek)(ℑmk) ℜe p
ℑm p > 0 ,

then:

(i) the Problem PI−D−D has a unique solution which is representable as a pair (u1,u2) defined by the
formulas (3.6) and (3.7), where the components φ and ψ of the unique solution ϒ of the equation
(3.8) are used.

(ii)the Problem PI−D−N has a unique solution which is representable as a pair (u1,u2) defined by
the formulas (3.14) and (3.15), where the components φ and ψ of the unique solution ϒ of the
equation (3.16) are used.

Moreover, in the present conditions, the two problems PI−D−D and PI−D−N are well-posed (since the
resolvent operators are continuous).

We conclude by pointing out that although from the natural assumptions in the formulation of the
problems (cf. Section 2) we were looking for the eventual possibilities for ε ∈ [0, 1

2), we now realize
that the last result is optimal from the point of view of the possible variability of the Bessel potential
spaces smoothness orders (in view to have corresponding well-posed problems).
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