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The problem of plane wave diffraction by a wedge sector having arbitrary aperture 
angle has a very long and interesting research background. In fact, we may recognize 
significant research on this topic for more than one century. Despite this fact, 
up to now no clear unified approach was implemented to treat such a problem 
from a rigourous mathematical way and in a consequent appropriate Sobolev 
space setting. In the present paper, we are considering the corresponding boundary 
value problems for the Helmholtz equation, with complex wave number, admitting 
combinations of Dirichlet and Neumann boundary conditions. The main ideas are 
based on a convenient combination of potential representation formulas associated 
with (weighted) Mellin pseudo-differential operators in appropriate Sobolev spaces, 
and a detailed Fredholm analysis. Thus, we prove that the problems have unique 
solutions (with continuous dependence on the data), which are represented by the 
single and double layer potentials, where the densities are solutions of derived 
pseudo-differential equations on the half-line.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The problem of plane wave diffraction by wedge sectors counts already more than one century of research. 
Indeed, we may identify the classical works of Sommerfeld [67] and Poincaré [60] as the first ones where this 
type of problem was significantly tackled. There, the solution of the Helmholtz equation in an infinite wedge 
sector with Dirichlet and Neumann boundary conditions was studied by using the Sommerfeld integrals and 
separation of variables, respectively. Anyway, previous partial results can also be identified. This is the case 
of Macdonald [39] who already gave in 1895 a representation of the first and second Green’s functions (i.e., 
electrostatic and velocity potentials) of the potential equation for a wedge of an arbitrary aperture angle. 
In fact, this was first considered only for angles of the form π/m, where m is a positive integer, and later 
(cf. [40]) Macdonald was able to obtain formulas for the two Green’s functions of the Helmholtz equation 
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for wedges with any aperture angle. However, Macdonald’s method is not easy to follow when involving 
somehow conventional formalisms of nineteenth century.

Carslaw did also relevant work on the construction of appropriate potentials, by using the Sommerfeld’s 
method, first for some wedges of particular aperture angles and then for arbitrary ones (cf. [3–5]).

In the last decades the mathematical analysis of wave diffraction problems by wedge configurations has 
been receiving increased attention. Consequently, we can identify a significant number of publications where 
such analysis was taken for particular cases of wedge amplitudes and/or boundary conditions (cf., e.g.,
[2,7–13,18,21,22,33–35,42,48,44–46,49,50,55,56,58,61,59,72]). However, none of these listed papers contain 
final solvability results for the general problems in a rigourous mathematical Sobolev space setting as is 
done in the present paper.

It is clear that one of the main difficulties in such analysis arises from the geometry of the domain 
in consideration. For some regions, the direct method of layer potentials works very well, allowing the 
well-posedness of the problems in appropriate Sobolev spaces and, in some cases, closed-form solutions. 
For smooth domains the list of publications is quite huge. Anyway, we would like to refer here to some 
corresponding excellent works which present a somehow rather complete account of the theory in smooth 
domains, as is the case of the books by Colton and Kress [14], Courant and Hilbert [17], Hsiao and Wendland 
[26], Kress [37], McLean [41], and Taylor [69]. Moreover, among the non-smooth domains, general theories for 
Lipschitz domains are also available and can be tested in concrete corresponding boundary value problems. 
Related to this, we would like to refer the works of Costabel [15], Costabel and Stephan [16], Jerrison and 
Kenig [27–29], Kohr, Pintea and Wendland [31], Mitrea and Mitrea [51,52], Mitrea and Taylor [53,54], and 
Verchota [71].

We may say that the recent developments in problems of wave diffraction by non-smooth regions were 
certainly inspired by also somehow recent significant general results for boundary value problems in non-
smooth domains. As representatives of the latter ones, we may also cite here the monographs [19,25,57,64], 
as well as the pertinent work [36]. Here, Kondrat’ev’s method is mainly based on the Mellin transform, 
already allowing information on the smoothness and asymptotic expansion of the solutions at the edges of 
the boundary angles.

The relevant work of Komech, Merzon and their collaborators [32–35] must also be referred, where the 
so-called method of complex characteristics for elliptic equations in nonconvex angles is used. Typically, the 
crucial part of the method is played by the connection equation on the Riemann surface of complex character-
istics of the given elliptic operator. Also, the limiting amplitude principle in the two-dimensional scattering 
of an incident plane harmonic wave by a wedge has recently been successfully applied, cf. [13,49,56].

In [18], the problem of wave diffraction by impenetrable wedges having arbitrary aperture angle was 
studied by means of the Wiener–Hopf method. This positively answered the important issue (that had been 
open for a long period) on the possibility of applying the Wiener–Hopf technique to this more complex 
geometrical problem of having wedges with arbitrary angles. However, no concern with the space setting 
was there presented. As a very significant result, it was obtained that the diffraction by an impenetrable 
wedge always reduces to a standard Wiener–Hopf factorization. For given impedance boundary conditions, 
explicit factorizations were derived which lead to consequent closed-form solutions.

The series of results obtained by Meister, Speck and their collaborators (cf., e.g., [10–12,21,22,42,48,
44–46,58]) constitute a systematic approach to a rigourous mathematical analysis of plane wave diffraction 
by wedges. They obtained important conclusions on both the well-posedness of the problems and consequent 
closed-form solutions, in appropriate Sobolev spaces, for a large number of particular cases of aperture angles 
and different types of boundary conditions. In particular, in [21,22], the authors obtained the well-posedness 
for the so-called rational angles of the form πm/n, where m and n are natural numbers. This was done 
by using symmetry properties within certain Riemann surfaces. In addition, this was a somehow natural 
development of the previous work [58] where, by using also symmetry arguments and Sommerfeld potentials 
(resulting from special Sommerfeld problems which are explicitly solvable), the well-posedness and explicit 
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solution in closed analytic form of the Dirichlet and Neumann problems for the Helmholtz equation in the 
non-convex and non-rectangular wedge with angle of 4π/3 was obtained. However, the proposed method 
does not work for non-rational angles.

The authors of the present work have also previously considered several cases of problems of wave 
diffraction by wedges with particular aperture angles (cf. [7–9]) in which symmetry arguments, the potential 
method, and Wiener–Hopf and Hankel operators were combined in a successful way.

Having all this in mind, we note that a thorough justification in appropriate Sobolev spaces, in the 
Hadamard well-posedness sense, for the problems under analysis, has never been done.

Thus, in the present paper, we would like to consider problems of wave diffraction by wedges having 
arbitrary aperture angle, facing Dirichlet–Dirichlet, Neumann–Neumann and Dirichlet–Neumann boundary 
conditions, in a strict mathematical perspective where everything will be considered in appropriate Sobolev 
space settings. Thus, as a main result, we shall prove the unique existence of solution, and its continuous 
dependence on the data, for each of those classes of problems. Moreover, integral representations of the 
solutions are obtained in terms of the single and double layer potentials, where their densities are solutions 
of certain Mellin pseudo-differential equations on the half-line. In particular, this also opens the possibility 
of considering further studies on the solutions based on the obtained formulas – like the regularity and 
asymptotic behavior of the solutions near the edge of the corresponding cones. Thus, the present work, at 
the same time, unifies several past works and completes the existent open situations when considering the 
solvability of these classes of wedge wave diffraction problems for any aperture angle within Sobolev spaces 
(although, for the Dirichlet-Neumann problems we only consider convex angles).

The paper is organized as follows: Section 2 is devoted to the presentation of the basic definitions, the 
problem formulation and the conclusion that we are dealing with classes of problems which admit at most 
one solution in the considered Sobolev spaces. Section 3 reports the use of potentials and their adjustment 
in a corresponding half-line setting which allows the construction of appropriate auxiliary operators that 
will appear in the solutions representation. In Section 4, the Mellin transform and weighted Sobolev spaces 
will be considered in order to obtain a reinterpretation of the problems in an operator theory language, 
and so that it will serve for wedges with any aperture angle. Then, in the last section, a detailed Fredholm 
analysis of the obtained operators is deduced and the consequent properties are transferred to the boundary 
value problems under consideration.

2. Formulation of the problems and uniqueness of solutions

We use the notation S(Rn) for the Schwartz space of all rapidly decreasing functions and S ′(Rn) for the 
dual space of tempered distributions on Rn. The Bessel potential space Hs = Hs(Rn), with s ∈ R, is formed 
by the elements ϕ ∈ S ′(Rn) such that

‖ϕ‖Hs =
∥∥F−1(1 + |ξ|2

)s/2 · Fϕ
∥∥
L2(Rn)

is finite. As the notation indicates, ‖ · ‖Hs is a norm for the space Hs(Rn) which makes it a Banach space. 
Here, F = Fx�→ξ denotes the Fourier transformation in Rn. For a given non-empty, open set D ⊂ R

n, we 
denote by Hs

D = Hs
D(Rn) the closed subspace of Hs whose elements have supports in D, and Hs(D) denotes 

the space of generalized functions on D which have extensions into Rn that belong to Hs. The space Hs
D is 

endowed with the subspace topology, and on Hs(D) we introduce the norm of the quotient space Hs/Hs
Rn\D. 

Thus Hs(D) = rD(Hs), where rD denotes the restriction operator to D. Finally, let us introduce the spaces 
H̃s(D) = rDH

s
D with a norm naturally defined as

‖u‖
H̃s(D) := inf ‖�0u‖Hs .
�0
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Here �0u stands for any extension of a distribution on D to a distribution in Hs
D (which is not unique for 

s < −1/2).
Throughout the paper we will use the notation

R
n
± :=

{
x = (x1, . . . , xn−1, xn) ∈ R

n : ±xn > 0
}
.

Note that the spaces H0(Rn
+) and H̃0(Rn

+) can be identified with L2(Rn
+). For a comprehensive treatment 

of the introduced spaces we refer to [1,41,70].
Let Ω = Ωα be a plane angle of magnitude α, 0 < α < 2π with vertex at the origin and sides S1,+ :=

{(t, 0) : t ∈ R+}, S2,+ := {(t cosα, t sinα) : t ∈ R+}. Let further ∂Ω := S1,+ ∪S2,+ ∪ {(0, 0)} and denote by 
n the unit exterior vector of Ω, which equals to n1 = (0, −1)� on S1,+ and n2 = (− sinα, cosα)� on S2,+.

We are interested in studying the problem of existence and uniqueness of an element v ∈ H1+ε(Ω), 
0 ≤ ε < 1/2 such that (

Δ + k2)v = 0 in Ω, (2.1)

and v satisfies one of the three boundary conditions

[v]+S1,+
= g1 on S1,+, [v]+S2,+

= g2 on S2,+, (2.2)

[∂nv]+S1,+
= f1 on S1,+, [∂nv]+S2,+

= f2 on S2,+, (2.3)

[v]+S1,+
= g1 on S1,+, [∂nv]+S2,+

= f2 on S2,+, (2.4)

where the wave number k ∈ C \ R is given. In addition, Δ stands for the Laplace operator, and the 
Dirichlet and Neumann traces on Sj,+, j = 1, 2, are denoted by [v]+Sj,+

and [∂nv]+Sj,+
, respectively. Note that 

the Dirichlet type condition can be understood in the trace sense, while the Neumann type condition is 
understood in the distributional sense, defined by means of Green’s formula and duality arguments (cf. [41]). 
Finally, for j = 1, 2, the elements gj ∈ H1/2+ε(Sj,+) and fj ∈ H−1/2+ε(Sj,+) are arbitrarily given provided 
they satisfy the following compatibility conditions:

g1 − χ∗g2 ∈ H̃1/2+ε(R+), (2.5)

f1 + χ∗f2 ∈ H̃−1/2+ε(R+); (2.6)

here χ∗ = χα,∗ denotes the pull back (χ∗u)(t) = u(χ(t)) of a function χ = χα : R+ = S1,+ � t �→ eiαt ∈ S2,+, 
i.e. χα(t) = eiαt, t ∈ R+. Clearly, χ∗ induces isomorphisms

χ∗ : Hs(S2,+) → Hs(R+) and χ∗ : H̃s(S2,+) → H̃s(R+)

for all s ∈ R.
It is worth mentioning that from the compatibility conditions (2.5) and (2.6) it follows (cf. [16,25]) that 

there exist unique elements g ∈ H
1
2+ε(∂Ω) and f ∈ H− 1

2+ε(∂Ω), respectively, such that

rSj,+g = gj and rSj,+f = fj , j = 1, 2. (2.7)

This observation allows us to state an equivalence between the boundary conditions (2.2) and

[v]+∂Ω = g on ∂Ω (2.8)

for the Dirichlet problem and between the boundary conditions (2.3) and
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[∂nv]+∂Ω = f on ∂Ω (2.9)

for the Neumann problem. Here note also that, the compatibility condition (2.6) is an additional restriction 
only for ε = 0. Finally, let us mention that the case when −1/2 < ε < 0 will not be considered here. We are 
not aware of general uniqueness results for −1/2 < ε < 0 (apart from special cases on the geometry/angle 
and on the boundary conditions; cf. [21,22]).

From now on we will refer to:

• Problem PD–D as the one characterized by (2.1) and (2.8);
• Problem PN–N as the one characterized by (2.1) and (2.9);
• Problem Pmixed as the one characterized by (2.1) and (2.4).

Theorem 2.1. The problems PD–D, PN–N , and Pmixed have at most one solution.

Proof. The proof is somehow standard and uses the Green’s formula (being sufficient to consider the case 
ε = 0). Let R be a sufficiently large positive number and B(R) be the open disk centered at the origin with 
radius R. Set ΩR := Ω ∩B(R). Note that the domain ΩR has a piecewise smooth boundary SR and denote 
by n(x) the outward unit normal vector at the non-singular points x ∈ SR.

Let u be a solution of the homogeneous problem. Then the first Green’s identity for u and its complex 
conjugate ū in the domain ΩR, together with zero boundary conditions on SR yields∫

ΩR

[
|∇u|2 − k2|u|2

]
dx =

∫
∂B(R)∩Ω

[∂nu]+[ū]+dSR. (2.10)

From to the real and imaginary parts of the last identity, we obtain∫
ΩR

[
|∇u|2 + (�m k)2|u|2

]
dx = 
e

∫
∂B(R)∩Ω

[∂nu]+[ū]+dSR, (2.11)

for 
e k = 0 and

−2(
e k)(�m k)
∫
ΩR

|u|2dx = �m
∫

∂B(R)∩Ω

[∂nu]+[ū]+dSR, (2.12)

for 
e k �= 0. Recall that we consider the case �m k �= 0. Now, note that since u ∈ H1(Ω) then there is a 
monotonic sequence of positive numbers {Rj}, such that Rj → ∞ as j → ∞ and

lim
j→∞

∫
∂B(Rj)∩Ω

[∂nu]+[ū]+dSRj
= 0. (2.13)

Indeed, first in (R, ϕ) polar coordinates we have

∫
∂B(R)∩Ω

[∂nu]+[ū]+dSR = R

α∫
0

∂nu(R,ϕ)ū(R,ϕ)dϕ.

Due to u, ∂nu ∈ L2(Ω) we have that the integrals
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∞∫
0

(
R

α∫
0

∣∣u(R,ϕ)
∣∣2dϕ)dR and

∞∫
0

(
R

α∫
0

∣∣∂nu(R,ϕ)
∣∣2dϕ)dR

are finite. This fact in particular implies that there exists a monotonic sequence of positive numbers {Rj}
such that Rj → ∞ as j → ∞ and

α∫
0

∣∣u(Rj , ϕ)
∣∣2dϕ = ō

(
R−1

j

)
and

α∫
0

∣∣∂nu(Rj , ϕ)
∣∣2dϕ = ō

(
R−1

j

)
as j → ∞.

Further, applying the Cauchy–Schwarz inequality for every Rj we get

∣∣∣∣∣
α∫

0

∂nu(Rj , ϕ)ū(Rj , ϕ)dϕ

∣∣∣∣∣ ≤
α∫

0

∣∣∂nu(Rj , ϕ)u(Rj , ϕ)
∣∣dϕ

≤
( α∫

0

∣∣∂nu(Rj , ϕ)
∣∣2dϕ) 1

2
( α∫

0

∣∣u(Rj , ϕ)
∣∣2dϕ) 1

2

= ō
(
R−1

j

)
as j → ∞

and therefore we obtain (2.13).
Since the expressions under the integrals on the left side of the equalities in (2.11) and (2.12) are non-

negative then we have that these integrals are monotonic with respect to R. This observation together with 
(2.13) implies

∫
Ω

[
|∇u|2 + (�m k)2|u|2

]
dx = lim

R→∞

∫
ΩR

[
|∇u|2 + (�m k)2|u|2

]
dx = 0,

for 
e k = 0 and ∫
Ω

|u|2dx = lim
R→∞

∫
ΩR

|u|2dx = 0,

for 
e k �= 0.
Thus, it follows from the last two identities that u = 0 in Ω. �

3. Reduction to the half-line

In the present section, we will start by recalling some results from potential theory. Then, we will construct 
operators that will help us in the analysis of the problems under study.

From now on, throughout the remaining part of the paper, we assume that �m k > 0; the complementary 
case �m k < 0 runs with obvious changes. Let us denote the standard fundamental solution of the Helmholtz 
equation (in two dimensions) by

Φ(x) := − i

4H
(1)
0

(
k|x|

)
,

where H(1)
0 (k|x|) is the Hankel function of the first kind of order zero (cf. [14, §3.4]). Furthermore, we 

introduce the single and double layer potentials on Sj
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Vjψ(x) =
∫
Sj

Φ(x− y)ψ(y)dySj , x /∈ Sj ,

Wjϕ(x) =
∫
Sj

[
∂nj(y)Φ(x− y)

]
ϕ(y)dySj , x /∈ Sj ,

where S1 := {(t, 0) : t ∈ R}, S2 := {(t cosα, t sinα) : t ∈ R}, j = 1, 2, and ψ, ϕ are density functions. Note 
that, for j = 1, sometimes we will write R instead of S1. Let us first consider the operators V1 and W1.

Proposition 3.1. (Cf. [7,20,26].) The single and double layer potentials V1 and W1 are continuous operators

V1 : Hs(R) → Hs+1+ 1
2
(
R

2
±
)
, W1 : Hs+1(R) → Hs+1+ 1

2
(
R

2
±
)

(3.1)

for all s ∈ R.

Let us now recall some properties of the above introduced potentials. The following limit relations are 
well-known (cf. [7,20,26]):

[V1ψ]+
R

= [V1ψ]−
R
, [∂n1V1ψ]±

R
=

[
∓1

2I
]
ψ,

[W1ϕ]±
R

=
[
±1

2I
]
ϕ, [∂n1W1ϕ]+

R
= [∂n1W1ϕ]−

R
,

where I denotes the identity operator. Clearly, analogous results hold true for the operators V2 and W2. 
Note that for the single and double layer potentials given on ∂Ω

V ψ(x) =
∫
∂Ω

Φ(x− y)ψ(y)dy∂Ω, x /∈ ∂Ω,

Wϕ(x) =
∫
∂Ω

[
∂n(y)Φ(x− y)

]
ϕ(y)dy∂Ω, x /∈ ∂Ω,

we have

[V ψ]+∂Ω = [V ψ]−∂Ω , [∂nV ψ]±∂Ω =:
[
∓1

2I + V0

]
ψ,

[Wϕ]±∂Ω =:
[
±1

2I + W0

]
ϕ, [∂nWϕ]+∂Ω = [∂nWϕ]−∂Ω ,

where

V0ψ(z) :=
∫
∂Ω

[
∂n(z)Φ(z − y)

]
ψ(y)dy∂Ω, z ∈ ∂Ω,

W0ϕ(z) :=
∫
∂Ω

[
∂n(y)Φ(y − z)

]
ϕ(y)dy∂Ω, z ∈ ∂Ω

are the direct values of the operators ∂nV and W on ∂Ω, respectively.
In the sequel we will need to consider operators on R+. Passing to the boundary we arrive to operators 

rS1,+W0 and rS2,+W0. To treat this type of operators by using the Mellin transform we decompose the 
integration over ∂Ω into the integrations over S1,+ and S2,+. Therefore, in what follows we will use the 
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single and double layer potentials not only in the above sense, when applied to elements defined in a full 
line or in the full boundary ∂Ω, but also to elements defined just in a half-line. The mapping properties 
of these operators are characterized in Lemma 4.2, Theorems 4.3 and 5.2 below; see also [16, §1-2] for the 
corresponding details.

The following result is needed before we start applying the potential method to our problems.

Lemma 3.2. Let 0 < s < 1. Then, the operators

χ∗rS2,+W1�0, rS1,+W2�0χ
−1
∗ : H̃s(R+) −→ H̃s(R+) (3.2)

are continuous and they are equal, i.e.,

χ∗rS2,+W1�0 = rS1,+W2�0χ
−1
∗ . (3.3)

Proof. From the mapping properties of the double layer potential (cf. (3.1)) and the restriction operator 
it follows that χ∗rS2,+W1 : Hs

R+
→ Hs(R+). Since for any ϕ ∈ Hs

R+
the function W1ϕ ∈ Hs+ 1

2 (Ω), 
for x ∈ Ω, therefore its Dirichlet boundary data necessarily satisfy the compatibility condition (cf. [25]), 
i.e., χ∗rS2,+W1ϕ − rR+ϕ ∈ H̃s(R+). Thus χ∗rS2,+W1ϕ ∈ H̃s(R+), for any ϕ ∈ Hs

R+
. Similarly, we have 

rS1,+W2�0χ
−1
∗ ϕ ∈ H̃s(R+), for any ϕ ∈ H̃s(R+).

To show (3.3), we compare the kernels of these integral operators. First note that

−∂yj

(
− i

4H
(1)
0

(
k|x− y|

))
= − ik

4 Ḣ
(1)
0

(
k|x− y|

)xj − yj
|x− y| , j = 1, 2,

where Ḣ(1)
0 denotes the ordinary derivative of the Hankel function, which equals to −H

(1)
1 cf. [24, 8.473(6)]. 

Therefore, taking x = (τ cosα, τ sinα) and y = (t, 0) for the kernel of the operator χ∗rS2,+W1�0, we obtain

∂n1(y)Φ(x− y) = − ik

4 Ḣ
(1)
0

(
k
√

τ2 − 2τt cosα + 1
) t sinα√

τ2 − 2τt cosα + 1
,

while taking x = (τ, 0) and y = (t cosα, t sinα) for the kernel of operator rS1,+W2�0χ
−1
∗ we get

∂n2(y)Φ(x− y) = (− sinα∂y1 + cosα∂y2)Φ(x− y)

= − ik

4 Ḣ
(1)
0

(
k|x− y|

)( sinα(x1 − y1)
|x− y| − cosα(x2 − y2)

|x− y|

)
= − ik

4 Ḣ
(1)
0

(
k
√

τ2 − 2τt cosα + 1
) t sinα√

τ2 − 2τt cosα + 1
.

Since the kernels of the integral operators χ∗rS2,+W1�0 and rS1,+W2�0χ
−1
∗ are the same they are equal. �

Notice that the range of indices s for which the operators in the lemma are continuous can be extended. 
However, the case s ∈ (0, 1) is sufficient for our proposes and therefore, for simplicity, our consequent results 
will also be formulated for this interval. In addition, for a matter of notation simplicity, from now on we 
will avoid to exhibit the notation of the zero extension operator in the appropriate places of the operators 
multiplication – considering that it is clear where this trivial operator is in action.

3.1. The problem PD–D

Let us look for a solution of PD–D problem in the following form
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v(x) = Wϕ(x), x ∈ Ω, (3.4)

where W is the double layer potential on ∂Ω and ϕ ∈ H
1
2+ε(∂Ω) is an unknown function. Setting

ϕ1 := rS1,+ϕ and ϕ2 := rS2,+ϕ (3.5)

we have that the unknown functions ϕ1 ∈ H
1
2+ε(S1,+) and ϕ2 ∈ H

1
2+ε(S2,+) satisfy the compatibility 

condition ϕ1 − χ∗ϕ2 ∈ H
1
2+ε

R+
. Clearly, the functions v is an element of the space H1+ε(Ω) and satisfy (2.1)

in Ω. Further, from the given boundary conditions on S1,+ and S2,+, we obtain (cf. (2.7)) the following 
equations

1
2rS1,+ϕ1 + [W2ϕ2]+S1,+

= g1

and

[W1ϕ1]+S2,+
+ 1

2rS2,+ϕ2 = g2.

Thus we get a system of equations with respect to ϕ1 and ϕ2{
rS1,+ϕ1 + 2[W2ϕ2]+S1,+

= 2g1,

2[W1ϕ1]+S2,+
+ rS2,+ϕ2 = 2g2.

(3.6)

The sum and the difference of the first equation and the pull back of the second equation in (3.6), due to 
(3.3), gives us that the system (3.6) is equivalent to the following system of equations on R+:{

rS1,+φ1 + 2χ∗rS2,+W1φ1 = 2g1 + 2χ∗g2,

rS1,+φ2 − 2χ∗rS2,+W1φ2 = 2g1 − 2χ∗g2,
(3.7)

where φ1 := ϕ1 + χ∗ϕ2 and φ2 := ϕ1 − χ∗ϕ2.
The solvability of the obtained system is equivalent to the solvability of both equations in (3.7). Thus we 

need to study the invertibility of operators (see also (2.5))

A+ : H 1
2+ε(R+) −→ H

1
2+ε(R+), (3.8)

and

A− : H̃ 1
2+ε(R+) −→ H̃

1
2+ε(R+), (3.9)

where

A±ψ := rR+ψ ± 2χ∗rS2,+W1ψ. (3.10)

Then ϕ1 and ϕ2 can be recovered by

ϕ1 = (φ1 + φ2)/2, ϕ2 = χ−1
∗

(
(φ1 − φ2)/2

)
.

Lemma 3.3. The operators A± in (3.8), (3.9) have trivial kernels, i.e.,

dim KerA± = 0.
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Proof. It suffices to show that the system (3.6) has at most one pair (ϕ1, ϕ2) of solutions, i.e., the corre-
sponding homogeneous system { 1

2rS1,+ϕ1 + [W2ϕ2]+S1,+
= 0,

[W2ϕ1]+S2,+
+ 1

2rS2,+ϕ2 = 0,
(3.11)

has only the trivial solution, which is an easy consequence of Theorem 2.1 and the exhibited limit relations 
of the potentials. Indeed, let (ϕ1, ϕ2) be a non-trivial solution of (3.11), thus ϕ �≡ 0 (cf. (3.4)). Then the 
function

v(x) = Wϕ(x), x ∈ Ω ∪
(
R

2\Ω
)
,

solves the Helmholtz equation in Ω with zero Dirichlet boundary conditions on S1,+ ∪ S2,+. Then due to 
Theorem 2.1 the function v(x) ≡ 0, x ∈ Ω, and therefore its Neumann data are equal to zero. Moreover, v
solves the Helmholtz equation in R2\Ω with zero Neumann boundary conditions (since ∂nW is continuous) 
and therefore v(x) ≡ 0, x ∈ R

2\Ω. This implies that zero Dirichlet data on ∂R2\Ω = ∂Ω. Then we 
obtain ϕ = [u]+∂Ω − [u]−∂Ω = 0. Consequently the homogeneous system (3.7) has only trivial solutions, i.e., 
dim KerA± = 0. �
3.2. The problem PN–N

The representation formula for any solution of the PN–N problem suggests us to look for a solution as 
follows

v(x) = Wϕ(x) − V f(x), x ∈ Ω,

where ϕ ∈ H
1
2+ε(S1,+) is an unknown Dirichlet datum of v. Thus on S1,+ we have (cf. (3.5))

[v]+S1,+
= ϕ1 = 1

2ϕ1 + rS1,+W2ϕ2 − rS1,+V f,

which give us an equation ϕ1 − 2rS1,+W2ϕ2 = −2rS1,+V f . Similarly, on S2,+ we obtain ϕ2 − 2rS2,+W1ϕ1 =
−2rS2,+V f . Thus we equivalently reduce the PN-N problem to the following system of equations{

ϕ1 − 2rS1,+W2ϕ2 = −2rS1,+V f,

ϕ2 − 2rS2,+W1ϕ1 = −2rS2,+V f.
(3.12)

Arguing as above we take the sum and the difference of the first equation and the pull back of the second 
equation in (3.12) and get the following equivalent system of equations on R+{

φ1 − 2χ∗rS2,+W1φ1 = −2rS1,+V f − 2χ∗rS2,+V f,

φ2 + 2χ∗rS2,+W1φ2 = −2rS2,+V f + 2χ∗rS2,+V f
(3.13)

where φ1 := ϕ1 + χ∗ϕ2 ∈ H
1
2+ε(R+) and φ2 := ϕ1 − χ∗ϕ2 ∈ H̃

1
2+ε(R+) due to (2.5). Note also that 

−2rS2,+V f + 2χ∗rS2,+V f ∈ H̃
1
2+ε(R+), cf. [25] or [16]. Thus we need to study the invertibility of operators

A− : H 1
2+ε(R+) −→ H

1
2+ε(R+), (3.14)

and
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A+ : H̃ 1
2+ε(R+) −→ H̃

1
2+ε(R+). (3.15)

The functions ϕ1 and ϕ2 can be recovered by

ϕ1 = (φ1 + φ2)/2, ϕ2 = χ−1
∗

(
(φ1 − φ2)/2

)
.

The following lemma is a consequence of the uniqueness Theorem 2.1 due to equivalent reduction of the 
PN-N problem to the system of equations (3.12).

Lemma 3.4. The operators A± in (3.14), (3.15) have trivial kernels, i.e.,

dim KerA± = 0.

Thus, having in mind the desired conclusions for problem PD–D and problem PN-N , we realize that we 
need to study invertibility of the operators A± in both spaces H 1

2+ε(R+) and H̃
1
2+ε(R+).

3.3. The problem Pmixed

In the present paper, for simplicity, we investigate the Pmixed problem only for 0 < α < π. The case 
π < α < 2π involves different operators which need additional investigation and, therefore, it will be 
considered in a forthcoming paper.

Let us first consider the following auxiliary Dirichlet problem for the plane angle Ω2α of magnitude 2α
with the following boundary data

[u]+S1,+
= g̃1 on S1,+ and [u]+S�

2,+
= χ−1

2α,∗g̃1 on S�
2,+,

where g̃1 is an arbitrary element of H 1
2+ε(S1,+),

S�
2,+ :=

{
(t cos 2α, t sin 2α) : t ∈ R+

}
and χ−1

2α,∗g̃1 ∈ H
1
2+ε(S�

2,+). As we will see below (cf. Theorem 5.3) this problem is uniquely solvable. It 
turns out that [∂n2u]S2,+ = 0. Indeed, since the problem is invariant under the rotation we may assume that 
S2,+ coincides with the positive ordinate half-axis, which makes the problem symmetric with respect to the 
ordinate axis (of the Cartesian plane). This implies that u(x1, x2) and u(−x1, x2) are solutions of the same 
Dirichlet problems and due to the uniqueness results they coincide. Therefore [∂n2u]+S2,+

= [−∂x1u]+S2,+
=

[∂x1u]+S2,+
, which gives us [∂n2u]S2,+ = 0.

From this observation we immediately have that the problem Pmixed has a unique solution which is 
represented as

v(x) = u(x) − 2V2�f2(x), x ∈ Ω,

where u is a solution of PD–D problem in the plane angle of magnitude 2α with the following Dirichlet data 
g̃1 := g1 + 2[V2�f2]+S1,+

on S1,+ and g̃2 := χ−1
∗ g̃1 on S�

2,+; here �f2 ∈ H− 1
2+ε(S2) is any fixed extension of 

the generalized function f2 ∈ H− 1
2+ε(S2,+).
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4. Analysis of associated operators in weighted Sobolev spaces

Let

Mu(z) =
∞∫
0

tz−1u(t)dt

be the Mellin transform on the half-axis R+ � t, first defined for functions C∞
0 (R+). For the inverse, we 

have

M−1g(t) = (2πi)−1
∫
Γβ

t−zg(z)dz

for some β ∈ R, where Γβ = {z ∈ C : 
e z = β} and g(z) = Mu(z).
Define the space Hs,γ(R+) for s, γ ∈ R to be the completion of C∞

0 (R+) with respect to the norm 
‖〈z〉sMu(z)|Γ1/2−γ

‖L2(Γ1/2−γ), where 〈z〉 := (1 + |z|2)1/2 and L2(Γβ) is the space of square integrable func-
tions with respect to dξ, ξ = �m z. Note that H0,γ(R+) = tγL2(R+). This definition shows that the weighted 
Mellin transform Mγ : u → Mu|Γ1/2−γ

extends from C∞
0 (R+) to an isomorphism

Mγ : Hs,γ(R+) −→ 〈z〉−sL2(Γ1/2−γ).

Finally, we define the cone Sobolev spaces as a mixture between the spaces Hs,γ(R+) and Hs(R+), 
namely,

Ks,γ(R+) :=
{
ωu + (1 − ω)v : u ∈ Hs,γ(R+), v ∈ Hs(R+)

}
for a fixed cut-off function ω. Throughout the paper a function ω ∈ C∞(R+) is called a cut-off function 
(with respect to t = 0) if suppω is bounded and ω ≡ 1 near t = 0.

Let us note that the space Ks,γ(R+) is independent of the particular choice of ω. Each Ks,γ(R+) can be 
endowed with a Banach space norm which is generated by a Hilbert space scalar product, for more details 
and properties of these spaces, we refer to [63,64].

Now we shall formulate a result from [62, Section 2.3.1] which shows that the Ks,γ(R+) spaces are a 
natural modification of the “usual” Sobolev spaces. Let s ∈ R, κ(s) := max{j ∈ N : j < |s| − 1/2}, and

T s :=
{
linear span of tjω(t) for j = 0, . . . , κ(s)

}
for s > 1/2, T s := {0} for s ≤ 1/2, ω a fixed cut-off function. Further set

Ds :=
{
linear span of (d/dt)jδ0 for j = 0, . . . , κ(s)

}
for s < −1/2, Ds := {0} for s ≥ −1/2, with δ0 being the Dirac delta function at t = 0.

Proposition 4.1. Let s ∈ R, then there are canonical isomorphisms

Hs(R+) ∼=
{

Ks,s(R+) + T s for s ≥ 0, s �= 1/2 mod Z,

Ks,s(R+) for s ≤ 0

H̃s(R+) ∼=
{

Ks,s(R+) for s ≥ 0,

Ks,s(R ) + Ds for s ≤ 0, s �= 1/2 mod Z.
+
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The isomorphism for Hs(R+) follows by identifying distributions on R+ and that for H̃s(R+) by duality. 
The identifications are continuous (in both directions).

Further, for a, b ∈ R we set S(a, b) := {z ∈ C : a < 
e z < b} and denote by M−∞
O (S(a, b)) the subspace 

of all holomorphic functions h(z) on S(a, b) with h|Γβ
∈ S(Γβ) (the Schwartz space on the weight line Γβ), 

for every β uniformly in c ≤ β ≤ c′ for every a ≤ c ≤ c′ ≤ b.
For our proposes below let us show that

h(z) := sin((π − α)z)
sin(πz) ∈ M−∞

O
(
S(−1, 1)

)
. (4.1)

Indeed, first note that the sine function is an entire function. The Weierstrass factorization

sin(z) = z

∞∏
n=1

(
1 − z2

n2π2

)

indicates that the function h(z) has no poles at z = 0 and therefore it is holomorphic on S(−1, 1). Finally, 
since −π < π − α < π and

h(z) = eiz(π−α) − e−iz(π−α)

eizπ − e−izπ

we see that h(z) tends exponentially to zero when �m z → ±∞, thus h|Γβ
∈ S(Γβ) for every β uniformly 

in c ≤ β ≤ c′ for every −1 ≤ c ≤ c′ ≤ 1. Let −1
2 < γ < 3

2 , then the weighted Mellin pseudo-differential 
operator

opγ
M (h) := M−1

γ h(z)Mγ : Hs,γ(R+) −→ Hs,γ(R+)

is continuous for all s ∈ R.

Lemma 4.2. Let 0 < s < 1, then the operator

χ∗rS2,+W1 : Ks,s(R+) → Ks,s(R+) (4.2)

is continuous. Moreover, for any fixed cut-off functions ω1 and ω2 the operators

(1 − ω1)χ∗rS2,+W1ω2 : Ks,s(R+) → Ks,s(R+),

(1 − ω1)χ∗rS2,+W1(1 − ω2) : Ks,s(R+) → Ks,s(R+),

ω1χ∗rS2,+W1(1 − ω2) : Ks,s(R+) → Ks,s(R+)

are compact.

Proof. The continuity result for the operator in (4.2) immediately follows from Lemma 3.2 and Proposi-
tion 4.1.

Further, since �m k > 0 the function rS2,+W1ϕ(x) exponentially tends to 0 as |x| → ∞, for x ∈ S2,+. 
Clearly, the same is true for the function χ∗rS2,+W1ϕ(t) when t → ∞. Having in mind the isomorphism 
from Proposition 4.1 we get that the operators

(1 − ω1)χ∗rS2,+W1ω2 : Ks,s(R+) → 〈t〉−NK∞,∞(R+)
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and

(1 − ω1)χ∗rS2,+W1(1 − ω2) : Ks,s(R+) → 〈t〉−NK∞,∞(R+)

are continuous for any N ∈ N. For the operator ω1χ∗rS2,+W1(1 −ω2) we have that at infinity it is identically 
zero due to the cut-off function ω1, while the presence of (1 − ω2) ensures the smoothness of the kernel. 
Therefore, we obtain the fact that the operator

ω1χ∗rS2,+W1(1 − ω2) : Ks,s(R+) → 〈t〉−NK∞,∞(R+)

is continuous. Then the final conclusions follow from the composition with the compact embedding of 
〈t〉−NK∞,∞(R+) into Ks,s(R+). �
Theorem 4.3. Let 0 < s < 1 and ω1, ω2 be arbitrary cut-off functions, then the operator

T := χ∗rS2,+W1 −
1
2ω1 ops

M (h)ω2 : Ks,s(R+) −→ Ks,s(R+) (4.3)

is compact.

Proof. For (4.3) we have a decomposition χ∗rS2,+W = ω1χ∗rS2,+Wω2 + T1, where

T1 := ω1χ∗rS2,+W (1 − ω2) + (1 − ω1)χ∗rS2,+Wω2 + (1 − ω1)χ∗rS2,+W (1 − ω2)

is a compact operator between the spaces Ks,s(R+); cf. Lemma 4.2. Further, for the points x =
(τ cosα, τ sinα) ∈ S2,+, τ ∈ R+, let us write

rS2,+Wϕ(x) = rS2,+W0ϕ(x) + T2(x),

where

W0ϕ(x1, x2) = 1
2π

∞∫
0

(∂n1(t,0) ln)
(
|x1 − t, x2|

)
ϕ(t)dt,

and

T2(x1, x2) :=
∞∫
0

(∂n1(t,0)m)
(
|x1 − t, x2|

)
ϕ(t)dt

with the function m(x) := Φ(x) − 1
2π ln(|x|), which has the following behavior as |x| → 0 (cf. [24,38])

m
(
|x|

)
= const + O

(
|x|2 ln

(
|x|

))
, m′(|x|) = O

(
|x| ln

(
|x|

))
, m′′(|x|) = O

(
ln
(
|x|

))
.

These estimates together with the cut-off functions ω1 and ω2 give us that the kernel of the operator 
ω1χ∗rS2,+T2ω2 is square integrable and therefore it is a compact operator between the spaces Ks,s(R+) as 
well as between the spaces L2(R+). Now it remains to show the equality

χ∗rS2,+W0 = 1
2 ops

M (h)

while T = T1 + ω1T2ω2.
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We have

χ∗rS2,+W0ϕ(τ) = 1
2π

∞∫
0

τ sinα

(τ cosα− t)2 + (τ sinα)2ϕ(t)dt

= sinα

2π

∞∫
0

τ
t

( τt )2 − 2( τt ) cosα + 1ϕ(t)dt
t

= 1
2M

−1
s

[
h(z)(Msϕ)(z)

]
= 1

2
[
ops

M (h)ϕ
]
(τ),

where

h(z) = sinα

π

∞∫
0

tz
t

t2 − 2t cosα + 1
dt

t

= sinα

π

∞∫
0

tz

t2 + 2t cos(π − α) + 1dt

= sin((π − α)z)
sin(πz)

provided −1 < 
e z < 1, cf. [24, Formula 3.252.12]. �
5. Main results

In this last section we will perform a Fredholm theory analysis of the previously derived operators, and 
this will generate the main conclusions for the problems under study.

Theorem 5.1. For any aperture angle α, let ω1, ω2 be arbitrary cut-off functions, s ∈ R and 0 ≤ γ ≤ 1. 
Then, the operators

A0
± := I ± ω1 opγ

M (h)ω2 : Ks,γ(R+) −→ Ks,γ(R+)

are continuous. Moreover, they are Fredholm operators of index zero.

Proof. The continuity results follow from the properties of the spaces Ks,γ(R+) and the Mellin pseudo-
differential operators opγ

M (h) with the symbol h for 0 ≤ γ ≤ 1, cf. [30,64]. Moreover, it is well-known (cf. 
[23,62], or [30, Section 2.1.9]) that the condition 1 ± h(z) �= 0 for all z ∈ Γ 1

2−γ , cf. (4.1), implies that

I ± ω1 opγ
M (h)ω2 : Ks,γ(R+) −→ Ks,γ(R+)

is Fredholm, and

ind
(
I ± ω1 opγ

M (h)ω2
)

= 1
2πΔ arg

(
1 ± h(z)

)∣∣∣∣
Γ 1

2−γ

∣∣∣∣	m z=+∞

	m z=−∞
,

where the Δ indicates the change of the arguments of 1 +h(z) when z runs from �m z = −∞ to �m z = +∞
on the line Γ 1−γ . Note that KerA0

± and CoKerA0
± are independent of s.
2
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The identity | sin z| = | sin(
e z) + i sinh(�m z)| implies

∣∣
eh(z)
∣∣ ≤ ∣∣h(z)

∣∣ = | sin((π − α)
e z) + i sinh((π − α)�m z)|
| sin(π
e z) + i sinh(π�m z)| < 1 (5.1)

provided | 
e z| ≤ 1
2 . Indeed, for such z we have |(π − α) 
e z| < |π
e z| ≤ π

2 and therefore sin2((π −
α) 
e z) < sin2(π
e z) while sinh2((π − α) �m z) < sinh2(π�m z), for all �m z ∈ R. The estimate (5.1)
gives us


e
(
1 ± h(z)

)
> 0, for all z ∈ Γ 1

2−γ , 0 ≤ γ ≤ 1. (5.2)

Thus, the closed curve

Cγ :=
{
1 ± h(z) ∈ C : z ∈ Γ 1

2−γ

}
∪
{
(1; 0)

}
∈ C\{0} (0 ≤ γ ≤ 1)

does not intersect the imaginary line due to (5.2), and therefore

Δ arg
(
1 ± h(z)

)∣∣
Γ 1

2−γ

∣∣	m z=+∞
	m z=−∞ = 0.

This implies that operators A0
± are Fredholm of index zero. �

Note that for the very special case of an angle aperture α = π, the above closed curve Cγ degenerates to 
the particular case of the single point (1; 0) ∈ C. This in fact reflects the simplicity of the geometrical case 
α = π, which coincides with the classical Sommerfeld situation of diffraction by a half-plane, for which the 
well-posedness and closed-form solution are well-known in a Sobolev space setting for a long time; cf. [6,43,
47,68].

Theorem 5.2. The operators (3.10)

A± : H̃s(R+) −→ H̃s(R+)

and

A± : Hs(R+) −→ Hs(R+)

are invertible for all 1
2 − δ < s < 1, where δ > 0 is sufficiently small.

Proof. The invertibility of the operators A± in H̃s(R+) spaces is a direct consequence of Theorem 5.1
together with Proposition 4.1, Theorem 4.3, Lemma 3.3, and Lemma 3.4 for 1

2 ≤ s < 1, while for the case 
1
2 − δ < s < 1

2 it follows from the classical result of Shneiberg, cf. [65,66], which states that if an operator 
A is bounded on a complex interpolation scale {X}0≤θ≤1 and it is invertible on an individual space Xθ0 , 
0 < θ0 < 1, then it is also invertible on Xθ, for |θ− θ0| < δ, where δ > 0 is sufficiently small. Indeed, setting 
X0 := H̃

1
2−ε(R+), X1 := H̃

1
2+ε(R+) (see also Lemma 3.2), we have that the operator A± is invertible on 

Xθ0 , for the θ0 = 1
2 space, i.e, on the H̃

1
2 (R+) space, and therefore it is invertible for 1

2 − δ < s < 1
2 too.

For the second result let us mention that for s ∈ (1
2−δ, 12 ) the spaces H̃s(R+) and Hs(R+) are isomorphic, 

therefore if we prove the result for s ∈ (1
2 , 1) then the result for the hole range will follow by interpolation. 

The mapping properties of the potential operators we have continuity result in Hs(R+) spaces for the 
operators A± as well as for the operators ω1 ops

M (h)ω2, for arbitrary cut-off functions ω1 and ω2 with the 
property ω2ω = ω, where ω is a fixed cut-off function from T s, cf. Proposition 4.1. Now setting
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ω̃ := ω1 ops
M (h)ω2ω,

then it follows by the calculus of residues that, cf. [16],

ω̃(0) = α− π

π
.

This implies that ω̃ ∈ T s. Therefore for the fixed functions

ω̃± := A±ω

we have

ω̃+(0) = α

π
, ω̃−(0) = 2π − α

π
.

Further, for an arbitrary element u = u0 + λω ∈ Hs(R+), with u0 ∈ H̃s(R+) and λ ∈ R we have

A±u = A±u0 + λA±ω = A±u0 + ω̃±

= A±u0 + λ
(
ω̃± − ω̃±(0)ω

)
+ λω̃±(0)ω = ũ0 + λ̃ω,

where ũ0 = A±u0 + λ(ω̃± − ω̃±(0)ω) ∈ H̃s(R+) and λ̃ = λω̃±(0). Due to the invertibility of the operators 
A± in H̃s(R+) spaces the obtained relations can be also written as

λ = λ̃

ω̃±(0) , u0 = A−1
±

(
ũ0 − λ

(
ω̃± − ω̃±(0)ω

))
∈ H̃s(R+),

which show that the operators A± in Hs(R+) spaces are bijective. �
Due to a direct combination of the results obtained above we have now the main conclusions of the 

present work for the problems in consideration.

Theorem 5.3. If 0 ≤ ε < 1/2, then the problem PD–D has a unique solution which is represented as

v(x) = Wϕ(x), x ∈ Ω,

where the functions ϕ1 = rS1,+ϕ ∈ H
1
2+ε(S2,+) and ϕ2 = rS2,+ϕ ∈ H

1
2+ε(S2,+) are unique solutions of the 

system of equations (3.6), namely,

ϕ1 = A−1
+ (g1 + χ∗g2) + A−1

− (g1 − χ∗g2)

and

ϕ2 = χ−1
∗

(
A−1

+ (g1 + χ∗g2) −A−1
− (g1 − χ∗g2)

)
,

where A−1
± denote the inverse operators of A±, respectively.

Theorem 5.4. If 0 ≤ ε < 1/2, then the problem PN–N has a unique solution which is represented as

v(x) = Wϕ(x) − V f(x), x ∈ Ω,
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where the functions ϕ1 = rS1,+ϕ ∈ H
1
2+ε(S2,+) and ϕ2 = rS2,+ϕ ∈ H

1
2+ε(S2,+) are unique solutions of the 

system of equations (3.12). Namely,

ϕ1 = A−1
+ (rS2,+V f − 2χ∗rS2,+V f) −A−1

− (rS1,+V f + χ∗rS2,+V f)

and

ϕ2 = −χ−1
∗

(
A−1

+ (rS2,+V f − 2χ∗rS2,+V f) + A−1
− (rS1,+V f + χ∗rS2,+V f)

)
,

where A−1
± denote the inverse operators of A±, respectively.

Theorem 5.5. Let 0 < α < π and 0 ≤ ε < 1/2. Then the problem Pmixed has a unique solution which is 
represented as

v(x) = u(x) − 2V2�f2(x), x ∈ Ωα,

where u(x) is a solution of PD–D problem in the plane angle Ω2α of magnitude 2α which is represented with 
the help of the double layer potential on ∂Ω2α as follows

u(x) = Wϕ(x), x ∈ Ω2α;

here the functions ϕ1 = rS1,+ϕ ∈ H
1
2+ε(S2,+) and ϕ2 = rS∗

2,+ϕ ∈ H
1
2+ε(S∗

2,+) are unique solutions of the 
system of equations (3.6), namely,

ϕ1 = 2A−1
+ g̃1 and ϕ2 = 2χ−1

2α,∗A−1
+ g̃1, (5.3)

where A−1
± are the inverse operators of A±, respectively, g̃1 := g1 + 2[V2�f2]+S1,+

, for some fixed extension 

�f2 ∈ H− 1
2+ε(S2) of the generalized function f2 ∈ H− 1

2+ε(S2,+) and S�
2,+ = {(t cos 2α, t sin 2α) : t ∈ R+}.
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