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LOCALIZATION OF A HELMHOLTZ BOUNDARY VALUE
PROBLEM IN A DOMAIN WITH PIECEWISE-SMOOTH

BOUNDARY

T. BUCHUKURI, R. DUDUCHAVA, D. KAPANADZE AND M. TSAAVA

Abstract. In the recent papers by A. Bonnet-Ben Dhia, L. Chesnel,
P. Ciarlet, Jr, X. Claeys, M. Dauge and some others spectral prop-

erties of BVPs for the “anisotropic” Helmholtz equation with sign-

different constants in two neighbouring domains were investigated
with vanishing boundary conditions. They obtained sufficient con-

ditions for the solvability by using some refinement of Lax-Milgram

Lemma for T-coercive operators. In the present paper we describe the
reduction of the problem to model problems. The model problems will

be investigated in forthcoming papers.

îâäæñéâ. �ëêâð-�âê áÿ�æï, øâïêâèæï, ïæ�îèâï, çèâæïæï, áëíæï á�
äëàæâîåæ ïýã� �ãðëîæï �ýè�ý�ê à�éëïñè ïð�ðæâ�öæ öâïû�ãèæ-
èæ� ëî éëï�äôãîâ �îâöæ êæö�ê-éëê�ùãèâ çëâòæùæâêðâ�æ�êæ \�êæ-
äëðîëìñèæ" ÿâèéÿëèùæï à�êðëèâ�æï�åãæï á�ïéñèæ êñèëã�êæ
ï�ï�äôãîë ìæîë�â�æï éóëêâ ï�ï�äôãîë �éëù�êâ�æï ïìâóðî�èñîæ
åãæïâ�â�æ. T -çëâîùæðæñèæ ëìâî�ðëîâ�æï�åãæï éæï�á�àâ�ñèæ
è�óï-éæèàî�éæï èâéæï à�éëõâêâ�æå é�å éææôâï �éëýïê�áë�æï ï�çé�-
îæïæ ìæîë�â�æ. û�îéëáàâêæè ïð�ðæ�öæ øãâê �ôãûâîå �é ï�ýæï
�éëù�êæï á�õã�ê�ï éëáâèñî �éëù�êâ��éáâ, îëéèâ�æù øãâêï éëé-
áâãêë ïð�ðæâ�öæ æóêâ�� öâïû�ãèæèæ.

Introduction

In recent years there is a substantial interest to investigate the following
problem: look for a vector-function u(x) = (u1(x), u2(x), u3(x))> in two
neighbouring domains Ω1 and Ω2 which solves an “anisotropic” Helmholtz
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equations

div E1 gradu+ k2
1u = 0 in Ω1,

div E2 gradu+ k2
2u = 0 in Ω2,

[∂νu]+ = h or u+ = g on Γ := ∂(Ω1 ∪ Ω2),

u−(t) = u+(t), [∂νu]−(t) = [∂νu]+(t) on L := ∂Ω1 ∩ ∂Ω2,

(0.1)

where E1 is a negative definite 3×3 matrix, while E2 is a positive definite 3×3
matrix; Γ = ∂(Ω1 ∪ Ω2) is the boundary of the unified domain Ω := Ω1∪Ω2,
while L := ∂Ω1 ∩ ∂Ω2 is the interface.
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If Ej = const = cjI, where I is the three dimensional unit matrix, then

div Ej gradu(x) + k2
ju(x) = cj∆u(x) + k2

ju(x) in Ωj ,

and we have usual “isotropic” Helmholtz equation. But even if ±Ej 6= const

are positive definite matrices, there exist square roots E1/2
j ,

(
E1/2
j

)2

=

±Ej and the function v(x) := u
(
E1/2
j x

)
solves the system of Helmholtz

equations
∆ v(x)− (−1)jk2

j v(x) = 0 in Ω0
j .

A strong interest to such BVPs is motivated by the rapid expansion of
research into nanophotonics based on Surface Plasmon–Polaritons (SPP).
These electromagnetic waves propagate along metal–dielectric interfaces di-
electric material in Ω1 and a metamaterial in Ω2 and can be guided by
metallic nanostructures beyond the diffraction limit. This remarkable ca-
pability has unique prospects for the design of highly integrated photonic
signal-processing systems, nanoresolution optical imaging techniques and
sensors.
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In the recent papers by A. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet, Jr,
X. Claeys, M. Dauge and some others (see [1, 2] and the references cited
therein) spectral properties of BVPs type (0.1) were investigated in cases,
when E1, E2 are scalar, but variable functions and boundary conditions-
zero. The conditions obtained are sufficient and for the proofs was used
some refinement of Lax-Milgram Lemma for T-coercive operators.

The purpose of the research is to find a criterion of unique solvability of
BVPs (0.1). For this we will apply boundary integral equation method and
need some preliminaries.

We will implement this program step by step. First we will study unique
solvability of the BVP (0.1) in the Sobolev space H1(Ω1∪Ω2). Then we will
apply localization and reduce the investigation of BVP (0.1) to six model
problems.

Let, as usual, S(Rn) denote the Schwartz space of all rapidly vanishing
functions and S ′(Rn) the dual space of tempered distributions on Rn. The
Bessel potential space Hs

p(Rn), with s ∈ R, is formed by the elements ϕ ∈
S ′(Rn) such that the norm∥∥ϕ|Hs

p(Rn)
∥∥ =

∥∥F−1(1 + |ξ|2)
s/2Fϕ|Lp(Rn)

∥∥ (0.2)

is finite [9]. As the notation indicates, (0.2) is a norm for the space Hs
p(Rn)

which makes it a Banach space. Here, F = Fx 7→ξ denotes the Fourier
transformation in Rn.

For a given domain, D, on Rn we denote by H̃s
p(D) the closed subspace of

Hs
p(Rn) whose elements have supports in D, and Hs

p(D) denotes the space
of distributions on D which have extensions into Rn belonging to Hs

p(Rn).
The space H̃s

p(D) is endowed with the subspace topology, and on Hs
p(D)

we introduce the norm of the quotient space Hs
p(R)/H̃s

p(Rn\D). Obviously,
these definitions are valid for Lp spaces. Note that the spaces H0

p(Rn+) and
H̃0
p(Rn+), where Rn+ := Rn−1×R+ can be identified, and we denote them by

Lp(Rn+).

1. Localization and the Model Boundary Value Problems

We study the existence and uniqueness of a function u ∈ H1(Ω) which
solves the BVP for “anisotropic” Helmholtz equations
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

div E1 gradu+ k2
1u = 0 in Ω1,

div E2 gradu+ k2
2u = 0 in Ω2,

aj [∂νu]+ − bju+ = hj on Γj , j = 0, . . . , n,

c1j,k[∂νu](1) − d1
j,ku

(1) = c2j,k[∂νu](2) − d2
j,ku

(2)

on Lj , k = 1, 2, j = 1, . . . ,m,

(1.1)
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where ∂ν is the normal derivative ∂νu := ν1∂1u + ν2∂2u. E1 is a negative
definite 3 × 3 matrix, while E2 is a positive definite 3 × 3 matrix; Γ =

∂(Ω1 ∪ Ω2) =
n⋃
j=1

Γj is the outer boundary of the unified domain Ω :=

Ω1 ∪ Ω2, while L := ∂Ω1 ∩ ∂Ω2 =
m⋃
j=1

Lj is the interface.

To BVP (1.1) we apply a quasi-localization. Details of the localization
technique is described in the literature (see, for example, the monographs by
I. Gohberg & N. Krupnik [7], B. Silberman & V. Didenko [5], T. Buchukuri,
O. Chkadua, R. Duduchava, D. Natroshvili [3], the paper by I. Simonenko
[8] for different local principles. For applications of the local principle to
BVPs see the monograph T. Buchukuri, O. Chkadua, R. Duduchava, D. Na-
troshvili [3], the papers by R. Duduchava [6], R. Duduchava & F. Speck
[4, 6]. Here the localization program is implemented in several steps:

Step I. We identify a quasi-local representative of BVP (1.1) at all points
t ∈ Ω ∪ {∞}, including infinity and angular points; these local
representatives are obtained by freezing coefficients and rectifying
the curves (see Section 1);
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Step II. The main theorem on quasi-localization ensures that if local rep-
resentatives (model BVPs) are Fredholm for all t ∈ Ω ∪ {∞}, the
original BVP (1.1) is Fredholm as well.

Six localized (model) problems (see below) will be investigated in forthcom-
ing papers:

Step III. Under certain conditions will be proved that the homogeneous model
BVP has a trivial solution only;

Step IV. We will apply the representation formulae of a solution to the model
BVP with the help of single and double layer potentials, in which
one density function is known from boundary data, while another is
unknown. The model BVP is then reduced to a certain equivalent
boundary singular integral equation (BSIE);

Step V. It can be proved that the equivalent BSIE is Fredholm for all model
BSIEs;

Step VI. We will prove that the index of equivalent BSIE is 0. Since the
equivalent model BVP has a unique solution for all proper data
(see Step III), we conclude unique solvability of the model BVP;

Step VII. The initial BVP (1.1) is Fredholm under proper constraints on co-
efficients and data (see Step II–Step IV). We will prove that the
original BVP has a unique solution under certain conditions and
equivalent BSIE has index 0. Then BVP (1.1) has a unique solu-
tion, which is given by a representation formula with the densities
already known from the data or representing a solution to BSIE.

Next we describe those model problems which are obtained by quasilo-
calization from the initial BVP (1.1) at different points. For details of such
localization we refer to [3].

I model problem. A local representative of the BVP (1.1) at an inner
point t ∈ Ω1 ∪ Ω2 is a model problem in the entire R2:

div Ej gradu+ k2
ju = 0 in R2, (1.2)

where j = 1, 2 is fixed. The fundamental solution is the inverse to the model
differential equation and the invertibility is granted. In this case we do not
need even ellipticity of the operator.

II model problem. A local representative of the BVP (1.1) at a bound-
ary point t ∈ Γ different from vertexes t 6= t1, . . . , tn, is a model problem in
a half plane R2

+ := R× R+

{
div Ej gradu+ k2

ju = 0 in R2
+,

a[∂νu]+ − bu+ = h on R := ∂R2
+,

(1.3)
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where j = 1, 2 is fixed, a and b are known constants and h ∈ H1/2(R) is
a known function. Only the ellipticity of the symbol ensures the unique
solvability of BVP (1.3) and we drop the details again.

III model problem. A local representative of the BVP (1.1) at a
boundary vertex t = tk, different from the one where the boundary curve Γ
meets the interface curve L is the model problem in an angular domain Ωα
(see Figure 2).{

∆u+ k2u = 0 in Ωα,

a`[∂νu]+ − b`u+ = h on R`, ` = 1, 2.
(1.4)

Here Ωα is the angle of magnitude α between the half axes R1 := R+ and
the beam R2 := Rα turned by the angle α = αk from R+

IV model problem. A local representative of the BVP (1.1) at the
boundary vertex where the boundary Γ and the interface curves L meet, is
the model problem in a double angular domain (see Figure 3)

div E1 gradu+ k2
1u = 0 in Ωβ ,

div E2 gradu+ k2
2u = 0 in Ωα,

a1[∂νu]+ − b1u+ = h on R+,

a2[∂νu]+ − b2u+ = h on Rβ ,

c1` [∂νu]+ − d1
`u

+ = c2` [∂νu]− − d2
`u
− on Rα, ` = 1, 2.

(1.5)
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V model problem. A local representative of the BVP (1.1) at an
interface non-vertex point L 3 t 6= ζ1, . . . , ζm is the model problem in the
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entire plane, divided by the real axes R
div E1 gradu+ k2

1u = 0 in R2
+ := R× R+,

div E2 gradu+ k2
2u = 0 in R2

− := R× R−,

c1` [∂2u]+ − d1
`u

+ = c2` [∂2u]− − d2
`u
− on R ` = 1, 2.

(1.6)

because ∂ν = ∂2. This problem is easily solvable and we drop the details
again.

VI model problem. A local representative of the BVP (1.1) at an
interface vertex t = ζk, k = 1, . . . ,m, is the model interface problem in the
union of the angular domain Ωα and it’s complementary domain Ω2π−α

div E1 gradu+ k2
1u = 0 in Ωα,

div E2 gradu+ k2
2u = 0 in Ω2π−α,

c1` [∂νu]+ − d1
`u

+ = c2` [∂νu]− − d2
`u
− on ∂Ωα ` = 1, 2.

(1.7)
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