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Abstract

In the paper the notion oftruncating twisting functionfrom a simplicial set to a cubical set and the
corresponding notion of twisted Cartesian product of these sets are introduced. The latter becomes a
cubical set. Using this construction together with the theory of twisted tensor products for homotopy
G-algebras a strictly associative multiplicative model for a fibration is obtained.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we construct acubical setwhich models the total space of a fibration. The
normalized cubical chain complex of this cubicalmodelcoincides(as a chain complex) with
the twisted tensor product of the singular simplicial complex of the base and the singular
cubical complex of the fiber with respect to a certain specific twisting cochain which we call
“truncating”. Hence the twisted tensor product may be endowed with all structures which
exist on the chain complex of a cubical set including the Serre diagonal, Steenrod chain
(co)operations and other (co)chain operations. In this paper we concentrate only on the
strictly coassociativeSerre diagonal (the cubical analog of the Alexander–Whitney (AW)
diagonal, see[30]). The combinatorial analysis of the Serre diagonal allows us to give
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explicit formulas for a strictly associative multiplication on the twisted tensor product in
terms of the�1-product and other related cochain operations measuring the deviation of
�1 from being a derivation with respect to the� product. Using the standard triangulation
of cubes we also obtain a strictly coassociative diagonal on Brown’s twisted tensor product
of the singular simplicial complex of the base and the singular simplicial complex of the
fiber with respect to some specific twisting cochain.
For a fibrationF → E → Y , Brown [8] introduced atwisteddifferential d� on the

tensor productC∗(Y )⊗ C∗(F ) such that the homology of the cochain complex(C∗(Y )⊗
C∗(F ), d�) is additively isomorphic to the cohomologyH ∗(E). There are several papers
(see, for example, Lambe and Stasheff[23] for references) where various multiplications
are introduced on the twisted tensor productC∗(Y )

⊗
�C

∗(F )= (C∗(Y )⊗ C∗(F ), d�) to
describeH ∗(E) as an algebra as well. But these multiplications are either not associative
or the differentiald� is not a derivation except in special cases, for example, forY = Sn
[31].
The difficulty of introducing of such amultiplication rely on the following fact. Consider

the standard simplicial model of a fibration: letXbe a 1-reduced (X0= X1=pt) simplicial
set,G a simplicial group,N a simplicialG-module,t : X∗ → G∗−1 a twisting function,
andX×tN the corresponding twisted Cartesian product. Applying chain functor tot we
obtain a twisting cochaint∗=C∗(t) : C∗(X)→ C∗−1(G) such that there is acontractionof
C∗(X×tN) toC∗(X)⊗�C∗(N) where�= t∗. The simplicial structure ofX×tN induces
theAW diagonal onC∗(X×tN). The standard procedure, which uses the basic perturbation
lemma, transports theAW diagonal to the twisted tensor productC∗(X)

⊗
�C∗(N). But the

resulting (co)multiplication is (co)associative only up to higher homotopies[15,23].
The situation changes radically if we replace a simplicial groupGby amonoidal cubical

setand suitably modify the notion of a twisting function. This yields acubicalmodel of a
fibration which, as a by-product, induces a strictly associative multiplication on the above
tensor product.
Let us give some more details. LetXbe a 1-reduced simplicial set,Qamonoidal cubical

set, andL a cubicalQ-module, i.e.,Q andL are cubical sets with given associative cubical
mapsQ×Q→ Q andQ×L→ L.We introduce the notion oftruncating twisting function
� : X∗ → Q∗−1 from a simplicial set to a monoidal cubical set (the termtruncatingcomes
from the universal example�U : �n → In−1 of such functions obtained by the standard
truncationprocedure, seeSection4below).Sucha twisting function�determines thetwisted
Cartesian productX×�L asa cubical set. We remark that the study of twisting functions
from cubical sets to permutahedral sets and the appropriate twisted Cartesian product is
continued in a forthcoming paper[22].
We construct a functor which assigns to a simplicial setXamonoidal cubical set�X and

present a truncating twisting function�U : X → �X which is universal in the following
sense: Given an arbitrary truncating function� : X∗ → Q∗−1, there is a monoidal cubical
mapf� : �X→ Q such that�= f��U. The twisted Cartesian productPX=X×��X is a
cubical set that depends functorially onX. Note that�X models the loop space�|X| and
PX models the path fibration on|X|.
The normalized cubical chain functorC�∗ applied to the cubical set�X produces

C�∗ (�X), and this chain complexcoincideswith Adams’ cobar construction�C∗(X)
(equality (i) of (4)); similarlyC�∗ (PX) coincideswith the acyclic cobar construction
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�(C∗(X);C∗(X)) (equality (ii) of (4)); furthermore�∗ = C∗(�) : C∗(X) → C�∗−1(Q) is
a twisting cochain andC�∗ (X×�L) coincideswith the twisted tensor productC∗(X)

⊗
�∗

C�∗ (L) (equality (iii) of (4)).
The obtained cubical structures of the cobar construction�C∗(X) and the twisted tensor

productC∗(X)
⊗

�∗C
�∗ (L) have the following advantage.

The normalized chain complex of a cubical set admits theSerre diagonal(see[30]
and below (3)), which turns it into a dg coalgebra. Since the identificationC�∗ (�X) =
�C∗(X) the cubical structure of�X determines astrictly coassociative comultiplica-
tion on the cobar construction�C∗(X). Similarly, the cubical structure ofX×�L deter-
mines astrictly coassociative comultiplicationon the twisted tensor productC�∗ (X×�L)=
C∗(X)

⊗
�∗C

�∗ (L). Dually, we immediately obtain the desired strictly associative multipli-
cation onC∗(X)

⊗
�∗C

∗
�(L) ⊂ C∗�(X×�L) (here we have equality when the graded sets

have finite type).
Also note that the chain operations dual to Steenrod�i operations are defined for cubical

sets in[18,19]and the equalityC�∗ (�X)=�C∗(X) allows to define these operations on the
cobar construction�C∗(X); similarly sinceC�∗ (X×�L)=C∗(X)⊗�∗C

�∗ (L) it is possible
to introduce Steenrod operations on multiplicative twisted tensor products.
Next, we express the resulting comultiplication onC∗(X)

⊗
�∗C

�∗ (L) in terms of certain
chain operations of degreek

Ek,1 : C∗(X)→ C∗(X)⊗k ⊗ C∗(X), k�0,

which giveC∗(X) a homotopyG-coalgebra structure(dual to ahomotopyG-algebra in
the sense of Gerstenhaber and Voronov[12]). This structure is a consequence of the Serre
diagonal onC�∗ (�X) = �C∗(X): The Serre diagonal ofC�∗ (�X) induces the diago-
nal �C∗(X) → �C∗(X) ⊗ �C∗(X) being a multiplicative map, thus it extends a cer-
tain homomorphismC∗(X) → �C∗(X) ⊗ �C∗(X), which itself consists of components
Ek,t : C∗(X)→ C∗(X)⊗k⊗C∗(X)⊗�, k, ��0,withEk,�=0 for��2.TheoperationE1,1

is dual to the Steenrod�1-cochain operation; thus whenE1,1=0 a homotopy G-coalgebra
specializes to a cocommutative dg coalgebra (and dually for homotopy G-algebras). We
note that Baues constructed a homotopy G-coalgebra structure on the normalized chain
complexCN∗ (X) in [2,3].
Towards the end of the paper we develop the theory of multiplicative twisted tensor

products for homotopy G-algebras, which provides a general algebraic framework for our
multiplicative model of a fibration. First, we review the theory of multiplicative twisted
products due to Proutè (see[27]): SupposeC is a dg Hopf algebra,A is acommutativedg
algebra,� : C → A is acoprimitivetwisting cochain (referred to as amultiplicativecochain
below), andM is simultaneously a dg algebra and a comodule overC with multiplicative
M → C⊗M. Then the twisted tensor productA

⊗
�M is a dga with respect to the standard

multiplication on the tensor productA⊗M of dga’s. Now replace Proutè’s commutativeA
by a homotopy G-algebraA. By definition, there is a strictly associative multiplication on
BA, which can be viewed as a perturbation of the shuffle product and is compatible with
the coproduct. ThusBA is a dg Hopf algebra. We say that a twisting cochain� : C → A

ismultiplicative if the induced mapC → BA is a dg Hopf algebra map. We introduce a
twisted associativemultiplication�� onA

⊗
�M in terms of� and the homotopyG-algebra
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structure ofAby the same formulas as in the caseA=C∗(X), C=C∗�(Q) andM=C∗�(L);
then�∗ : C∗�(Q)→ C∗(X) provides a basic example of a multiplicative twisting cochain.
Thus, the theoryoutlinedaboveunifies thegeneral commutativeandhomotopycommutative
theories; in particular, this unifies the singular and Sullivan–deRham cochain complexes of
topological spaces.
We remark that the idea of using ofcubical cochains of a structure group and fiber is

found in recent results due to N. Berikashvili, who constructed a multiplicative model with
associative multiplication when the fiberF is thecubicalversion of an Eilenberg–MacLane
space (see[5]) and a multiplicative modelC∗(Y )

⊗
�C

∗
�(F ), � : C∗�(G) → C∗+1(Y ),

whereC∗(Y ) is the singularsimplicialcochain complex of the base andC∗�(G) andC
∗
�(F )

are the singularcubicalcochain complexes of the structure group and the fiber (see[6]);
however, there is no notion of underlying truncating twisting functions in general setting
as a map form a simplicial set to a cubical one leading to the cubical model; also it lacks
the analysis of the Serre cubical diagonal generating the cooperationsEk,1, and, conse-
quently, the general algebraic theory of twisted tensor products of homotopy commutative
dg (co)algebras.
Applying our machinery to a fibrationF → E → Y on a 1-connected spaceY and

an associated principalG-fibrationG → P → Y with actionG × F → F we obtain
the following cubical model (Theorem (5.1): LetX = Sing1 Y ⊂ SingY be the Eilenberg
1-subcomplex generated by the singular simplices that send the 1-skeleton of the standardn-
simplex�n to the base point ofY. LetQ=SingI G andM=SingI F be the singular cubical
sets. Then Adams’ map�∗ : �C∗(Y ) = C∗(�X) → C�∗ (�Y ) is realized by a monoidal
cubical map� : �X → SingI �Y . Composing� with the map of monoidal cubical sets
SingI �Y → Q induced by the canonicalmap�Y → Gofmonoidswe immediately obtain
a truncating twisting function� : X→ Q. The resulting twisted Cartesian productX×�M

provides the required cubical model ofE; and there exists a cubical weak equivalence
X×�M → SingI E. Applying the cochain functor we obtain Berikashvili’s multiplicative
twisted tensor product in[6].
At the end of the paper we use the theory of multiplicative twisted tensor products for

homotopy G-algebras outlined above to obtain the multiplicative twisted tensor product
C∗(Y )

⊗
�C

∗
N(F ), whereC

∗
N denotes the normalized singularsimplicial cochains. The

twisting cochain� here is the composition� : C∗N(G)
�−→C∗�(G)

�∗−→C∗(Y ), where� is
a map of dg Hopf algebras defined by the standard triangulation of cubes (see Proof 7.2).
In other words, we use a special twisting cochain to introduce an associative multiplication
on Brown’s model.
As an example we present fibrations with the base being a suspension (in this case the

homotopy G-algebra structure consists just ofE1,1=�1 and all other operationsEk,1 are
trivial) and for which the formula for the multiplication in the twisted tensor product has a
very simple form. Moreover in this case we present small multiplicative model being the
twisted tensor product of cohomologies of base and fiber with the multiplicative structure
purely defined by the� and�1 operations.
Finally, wemention that the geometric realization|�Sing1 Y | of�Sing1 Y is homeomor-

phic to the cellular model for a loop space observed by Carlsson and Milgram[9]. In [2,3],
Baues defined a geometric coassociative and homotopy cocommutative diagonal on the
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cobar construction�CN∗ (Y ) of the normalized chainsCN∗ (Y ) by means of a certain cellular
model for the loop space (homotopically equivalent to|�Sing1 Y |) whose cellular chains
coincide with�CN∗ (Y ); consequently, one obtains a homotopy G-coalgebra structure on
CN∗ (Y ). Another modification of Adams’ cobar construction is considered by Felix et al.
[10].
We are indebted to the referee for a number of most helpful comments and for having

suggested many improvements of the exposition.

2. Notation and preliminaries

LetRbe a commutative ring with unit 1. Adifferential graded algebra(dga) is a graded
R-moduleC = {Ci}, i ∈ Z, with an associative multiplication� : Ci ⊗ Cj → Ci+j and
a homomorphism (a differential) d : Ci → Ci+1 with d2 = 0 and satisfying the Leibniz
rule d� = �(d ⊗ Id + Id ⊗ d). We assume that a dga has a unit� : R → C such that
�(� ⊗ Id) = �(Id ⊗ �) = Id. A non-negatively graded dgaC is connectedif C0 = R. A
connected dgaC is n-reducedif Ci = 0,1� i�n.A dga iscommutativeif �= �T , where
T (x⊗y)=(−1)|x||y|(y⊗x). In general, we use Koszul’s sign commutation rule:Whenever
two symbolsu andv are interchanged, affix the sign(−1)|u||v|.
A differential graded coalgebra(dgc) is a gradedR-moduleC = {Ci}, i ∈ Z, with

an coassociative comultiplication� : C → C ⊗ C and a homomorphism (a differential)
d : Ci → Ci−1 with d2= 0 and satisfying�d = (d ⊗ Id + Id ⊗ d)�.A dgcC is assumed
to have a counit	 : C → R, (	⊗ Id)�= (Id ⊗ 	)�= Id.A non-negatively graded dgc
C is connectedif C0 = R. A connected dgcC is n-reducedif Ci = 0,1� i�n. A dgc is
cocommutativeif �= �T .
A (connected)differential graded Hopf algebra(dgha)(C,�,�) is simultaneously a

connected dga(C,�) and a connected dgc(C,�) such that� : C → C ⊗ C is an algebra
map; note that a graded connected Hopf algebra has a canonical antipode[26], so that the
antipode is not an issue.
A dgaM is a (left) comoduleover a dghaC if 
 : M → C ⊗ M is a dga map. Let(
M ′, 
′

)
and(M, 
) be comodules overC′ andC, respectively, and let� : C′ → C be a dgc

morphism. A map� : M ′ → M is amorphismof comodules if
�= (�⊗ �)
′.

2.1. Cobar and bar constructions

For anR-moduleM, let T (M) be the tensor algebra ofM, i.e., T (M) = ⊕∞
i=0M⊗i .

An elementa1 ⊗ . . . ⊗ an ∈ M⊗n is denoted by[a1, . . . , an]. We denote bys−1M the
desuspension ofM, i.e.,(s−1M)i =Mi+1.
Let (C, dC,�) be a 1-reduced dgc. DenoteC̄= s−1(C>0). Let�= Id⊗1+1⊗ Id+�′.

The (reduced) cobar construction�C on C is the tensor algebraT (C̄), with differential
d = d1+ d2 defined forc̄ ∈ C̄>0 by

d1[c̄] = −[dC(c)]
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and

d2[c̄] =
∑

(−1)|c′|[c̄′|c̄′′] for �′(c)=
∑

c′ ⊗ c′′

extended as a derivation. The acyclic cobar construction�(C;C) is the twisted tensor
productC⊗�C in which the tensor differential is twisted by the universal twisting cochain
C → �C being an inclusion of degree−1 (see below).
Let (A, dA,�) be a 1-reduced dga. The (reduced) bar constructionBAonA is the tensor

coalgebraT (Ā), Ā=s−1(A>0),withdifferentiald=d1+d2 given for[ā1| · · · |ān] ∈ T n(Ā)
by

d1[ā1| · · · |ān] = −
n∑
i=1

(−1)εi [ā1| · · · |dA(ai)| · · · |ān]

and

d2[ā1| · · · |ān] = −
n∑
i=2

(−1)εi [ā1| · · · |ai−1ai | · · · |ān],

whereεi =∑
j<i |āj |. The acyclic bar constructionB(A;A) is the twisted tensor product

A⊗BA inwhich the tensor differential is twistedby theuniversal twisting cochainBA→ A

being a projection of degree 1.

2.2. Twisting cochains

Let(C, d,� : C → C⊗C)beadgc,(A, d,� : A⊗A→ A)beadga,and(M, d, 
 : M →
C ⊗M) be a dg comodule overC. A twisting cochain[8] is a homomorphism� : C → A

of degree 1 satisfying Brown’s condition

d�+ �d =−� � �, (1)

where� � �′ = �A(� ⊗ �′)�C . There are universal twisting cochainsC → �C and
BA→ A being the obvious inclusion and projection, respectively. LetT (C,A) be the set
of all twisting cochains� : C → A. Three essential consequences of Brown’s condition
(1) are

(i) The multiplicative extensionf� : �C → A is a dga map, so there is a bijection
T (C,A)↔ Homdga(�C,A);

(ii) The comultiplicative extensiong� : C → BA is a dgc map, so there is a bijection
T (C,A)↔ Homdgc(C,BA);

(iii) The homomorphismd� = d ⊗ Id + Id ⊗ d + � ∩ − : A ⊗ M → A ⊗ M, where
�∩ (m⊗a)= (�⊗ Id)(Id⊗�⊗ Id)(Id⊗
)(a⊗m), is a differential, i.e., d�d�=0.

The dgC-comodule(A ⊗ M,d�) is called a twisted tensor product and is denoted by
A

⊗
�M. The twisted tensor product is functorial in the following sense: Let� : A′ → A be

adgamorphism,� : C′ → C beadgcmorphism,� : M ′ → M beamorphismof comodules
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and�′ : C′ → A′ be a twisting cochain such that��′ = ��. Then� ⊗ � : A′
⊗

�′M
′ →

A
⊗

�M is a chain map.

2.3. Adams’ cobar construction

LetXbe a 1-reduced simplicial set, i.e.,X={X0=X1={∗}, X2, X3, · · ·}, and letC̃∗(X)
be its chain complex in the ordinary sense. Define the chain complexC∗(X) as the quotient

C∗(X)= C̃∗(X)/C̃>0(∗).
ClearlyC∗(X) is a 1-reduced dgc with respect to the AW diagonal.
Now let SingY be the singular simplicial set of a based topological spaceY andX =

Sing1 Y ⊂ SingY be the (Eilenberg) 1-subcomplex generated by those singular simplices
which send the 1-skeleton of the standard simplex�n, n�0, to the base pointy ∈ Y .
Define the dgcC∗(Y ) asC∗(X). Then Adams’ cobar construction�C∗(Y ) of a spaceY is
the cobar construction of the dgcC∗(Y ).

2.4. Cubical sets

A cubical set is a graded setQ = {Qn}n�0 with face operatorsd	
i : Qn → Qn−1, 	 =

0,1, i = 1,2, . . . , n, and degeneracy operators�i : Qn → Qn+1, i = 1,2, . . . , n + 1,
satisfying the following standard cubical identities[17]:

d	
j d

	′
i = d	′

i d
	
j+1, i�j

d	
i �j =

{�j−1d	
i i < j

1 i = j
�j d

	
i−1 i > j

�i�j = �j+1�i , i�j. (2)

For an example, letYbe a space and let SingI Y = {SingIn Y }n�0, where SingIn Y is the set
of all continuous mapsIn → Y. Then SingI Y is a cubical set[24].
Givenacubical setQandanR-moduleA, let(C̄�∗ (Q;A), d)denote its chain complexwith

coefficients inA. The normalized chain complex(C�∗ (Q;A), d) ofQ is defined as the quo-
tientC�∗ (Q;A)= C̄�∗ (Q;A)/D∗(Q), whereD∗(Q) is the subcomplex of(C̄�∗ (Q;A), d)
generated by the degenerate elements ofQ. For a spaceY, we denoteC�∗ (SingI Y ;Z) by
C�∗ (Y ). Both C̄�∗ (Q) andC�∗ (Q) are dg coalgebras with respect to theSerre diagonal
determined by the Cartesian product decompositionIn = I × · · · × I of then-cube[30]:
For an elementx ∈ Qn theSerre diagonalis given by

�(x)= �(−1)	d0j1 · · · d0jp (x)⊗ d1i1 · · · d1iq (x), (3)

where the summation is over all shuffles{i1< · · ·< iq, j1< · · ·<jp} of the set{1, . . . , n}
and(−1)	 is the shuffle sign.
LetQ andQ′ be cubical sets. The(tensor) productof Q andQ′ is defined to be

Q×Q′ = {(Q×Q′)n =
⋃

p+q=n
Qp ×Q′

q}/ ∼,
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where(�p+1(a), b) ∼ (a, �1(b)), (a, b) ∈ Qp × Q′
q . This product is endowed with the

obvious face and degeneracy operators[17]. Define amonoidal cubical setto be a cubical
setQwith an associative cubical multiplication� : Q×Q→ Q for which a distinguished
elemente ∈ Q0 is a unit. (Warning: since theQi ’s are not assumed to be monoids,Q is
not a cubical monoid.) Clearly, the (normalized) chain complexC�∗ (Q;R) on a monoidal
cubical setQ and the dual cochain complexC∗�(Q;R) are dg Hopf algebras. Given a
graded monoidal cubical setQ, aQ-moduleis a cubical setL together with associative
actionQ × L → L with the unit ofQ acting as identity. In this case,C∗�(L;R) is a dga
comodule over the dg Hopf algebra(C∗�(Q;R), d).

3. The cubical loop and path functors

3.1. The cubical loop functor

In this section we construct a functor that assigns to a simplicial setX = {Xn, �i , si} a
cubical monoidal set�X, which plays the role of theloop space of X. First we construct a
cubical monoidMXwithout degeneracies, then enlarge it to�X with degeneracy operators.

Let X̄= s−1(X>0) and defineMX to be the free graded monoid (without unit) generated
by X̄.We denote elements ofMXby x̄1 · · · x̄k for xj ∈ Xmj+1, mj �0,1�j�k. The total
degree of an elementx̄1 · · · x̄k is the summ(k) =m1+ · · · +mk, mj = |x̄j |, and we write
x̄1 · · · x̄k ∈ (MX)m(k) . The product of two elements̄x1 · · · x̄k and ȳ1 · · · ȳ� is defined by
concatenation̄x1 · · · x̄kȳ1 · · · ȳ�and is subject only to the associativity relation; there are no
other relations whatsoever among these expressions. The graded setMXcanonically admits
the structure of a cubical set without degeneracies in the following fashion: Let


i : Xn → Xi ×Xn−i , 
i (x)= �i+1 · · · �n(x)× �0 · · · �i−1(x), 0� i�n

denote the components of the AW diagonal. A superscriptn on a simplexxn ∈ Xn denotes
its dimension. Then for ann-simplexxn ∈ Xn, n>0, let


i (xn)= ((x′)i , (x′′)n−i ) ∈ Xi ×Xn−i .
First define the face operatorsd0i , d

1
i : (MX)n−1 → (MX)n−2 on a (monoidal) generator

xn ∈ (X̄)n−1=Xn by
d0i (x

n)= (x′)i · (x′′)n−i , i = 1, . . . , n− 1,

d1i (x
n)= �i (xn), i = 1, . . . , n− 1.

Thereafter, for any element (word)x̄1 · · · x̄k let
d0i (x̄1 · · · x̄k)= x̄1 · · · (x′q)jq · (x′′q )mq+1−jq · · · x̄k,
d1i (x̄1 · · · x̄k)= x̄1 · · · �jq (xq) · · · x̄k,

wherem(q−1) < i�m(q), jq = i −m(q−1), 1�q�k, 1� i�n− 1.
It is straightforward to check that the defining identities of a cubical set hold ford0i , d

1
i .

In particular, the simplicial relations between the�i ’s imply the cubical relations between
the d1i ’s; the associativity relations between the
i ’s imply the cubical relations between
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thed0i ’s, and the commuting relations between the�i ’s and
j ’s imply the cubical relations
between thed1i ’s and d0j ’s. We now enlargeMX by enlarging its generating set̄X and
introduce the desired degeneracy operators.
For an elementx ∈ Xn,weconsider formal expressions�ik · · · �i1�i0(x)with 1� ij �n+

j − 1, 1�j�k, k�0, �i0 = Id. We call such an expressionnormalif i1� · · · � ik. Note
that any such expression can be reduced to this normal form by applying the defining
identities for a cubical set with degeneracy operators�i . LetX

c be the graded set of formal
expressions with normal form

Xcn+k = {�ik · · · �i1�i0(x)| x ∈ Xn}n�0;k�0,

where

i1� · · · � ik, 1� ij �n+ j − 1, 1�j�k, �i0 = Id
and letX̄c= s−1(Xc>0).Define�′′X to be the free graded monoid (without unit) generated
by X̄c. It is clear thatX ⊂ Xc since�i0(x)= x. ThusMX ⊂ �′′X.
Let�′X be themonoid obtained from�′′X byquotientingwith respect to theequivalence

relation generated by�p+1(x) · ȳ ∼ x̄ · �1(y) for |x| = p + 1, x, y ∈ X ⊂ Xc.We have
the inclusion of graded monoidsMX ⊂ �′X. We claim that�′X admits the structure of a
cubical set. Face operators on the subsetMX ⊂ �′X were already defined. Now define a
degeneracy operator�i : (�

′X)n−1 → (�′X)n on a (monoidal) generatorx ∈ (Xc)n−1 by
�i (x)= �i (x),

(assuming�i (x) is normalized). For any elementx̄1 · · · x̄k of �′X extend the degeneracy
operators by

�i (x̄1 · · · x̄k)= x̄1 · · · �jq (xq) · · · x̄k,
�n(x̄1 · · · x̄k)= x̄1 · · · x̄mk−1 · �mk+1(xk),

wherem(q−1) < i�m(q), jq = i−m(q−1), 1�q�k, 1� i�n−1. Inductively extend the
face operators on degenerate elements in such a way that the defining identities for a cubical
set are satisfied. Then the cubical set{�′X, d0i , d1i , �i} depends functorially onX.
Nowsuppose thatX is abasedsimplicial setwithbasepoint∗ ∈ X0, anddenotee=s0(∗) ∈

(X̄)0. Let�X be the monoid obtained from�′X via

�X = �′X/ ∼,
whereea ∼ ae ∼ a, for a ∈ �′X, and�n(x̄) ∼ sn(x) for x ∈ Xn, n>0. Obviously
(�X, d0i , d

1
i , �i ) is a (unital) monoidal cubical set. Note that although the underlying

monoidal structure of�X is not free; all relations involve degenerate elements.

Remark 3.1. In the definition of the face operatorsd0i , d
1
i of �X for ann-simplex ofXn

the first and last face operators�0 and�n of X are not used directly. If, in particular,X is a
1-reduced simplicial set (i.e.,X0 =X1= {∗}), we have the following identities:

d01(x
n)= (x′)1 · (x′′)n−1= e · (x′′)n−1= (x′′)n−1= �0(xn),

d0n−1(xn)= (x′)n−1 · (x′′)1= (x′)n−1 · e = (x′)n−1= �n(xn), xn ∈ Xn.
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Thus, all face operators�i of X participate in the definition of�X in this case.

Remark 3.2. The degeneracies of�X are formal; we do not use degeneracies ofX except
for the last onesn. This is justified by the geometrical fact that in the path fibration, a
degenerate singularn-simplex in the base lifts to a singular(n− 1)-cube of the fiber which
need not be degenerate (cf. the proof of Theorem 5.1).

It is convenient to verify the cubical relations by the following combinatorics of the
standard cube (compare,[4]). Motivated by the combinatorial description of the standard
(n+ 1)-simplex�n+1, we denote the set{0,1, . . . , n+ 1} by [0,1, . . . , n+ 1] and assign
this to the wholeIn.

Proposition 3.1. Let

d0i ↔ x1, . . . , xi−1,0, xi+1, . . . , xn, i = 1, . . . , n,
d0i ↔ x1, . . . , xi−1,1, xi+1, . . . , xn, i = 1, . . . , n

denote the face operators of the standard cubeIn in Euclidean coordinates. Then the action
of the face operators on[0,1, . . . , n+ 1] by

[0,1, . . . , n+ 1] d0i−→[0,1, . . . , i][i, . . . , n+ 1], i = 1, . . . , n,

[0,1, . . . , n+ 1] d1i−→[0,1, . . . , î, . . . , n+ 1], i = 1, . . . , n

agrees with the cubical identities.

Proof. It is straightforward. �

In general, anyq-dimensional facea of In is expressed as

a = [0, i1, . . . , ik1][ik1, . . . , ik2][ik2, . . . , ik3] . . . [ikp−1, . . . , ikp , n+ 1],
0< i1< · · ·< ik−p <n+ 1, q = kp − p + 1

in the above combinatorics; while a cubical degeneracy operator

�i ↔ x1, . . . , xi−1, xi+1, . . . , xn

is thought of as adding a formal element∗ to the set[0,1, . . . , n+ 1] at the(i + 1)st place

�i[0,1, . . . , n+ 1] = [0,1, . . . , i − 1, ∗, i, . . . , n+ 1]
with the convention that[0,1, . . . , i−1, ∗][∗, i, . . . , n+1]= [0,1, . . . , n+1] guarantees
the equalityd0i �i = Id = d1i �i .

3.2. The cubical path functor

Here we assign to a simplicial setX a cubical setPX which plays the role of thepath
space of X. In some sense,PX will be a twisted Cartesian productof a simplicial setX and
the monoidal cubical set�X.
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First we define the cubical setP′X as follows. Ignoring underlying structure for the
moment, consider the Cartesian product

Xc ×�′X =
(Xc ×�′X)n =

⋃
p+q=n

Xcp × (�′X)q


of the graded setsXc and�′X. Let

Xc×̃�′X =Xc ×�′X/ ∼,
where(�p+1(x), y) ∼ (x, �1(y)), (x, y) ∈ Xcp×(�′X)q . Introduceoperatorsd0i , d1i and�i
onXc×̃�′X as follows. For anelement(x, y) ∈ Xp×(�′X)q ⊂ Xcp×(�′X)q, p+q=n,
let

d0i (x, y)=
{
((x′)i−1, (x′′)p+1−i · y), 1� i�p,
(x, d0i−p(y)), p < i�n,

d1i (x, y)=
{
(�i−1(x), y), 1� i�p,
(x, d1i−p(y)), p < i�n,

�i (x, y)= (�i (x), y), 1� i�p,
�i (x, y)= (x, �i−p(y)), p < i�n+ 1.

It is easy to check that these face operators satisfy the canonical cubical identities. The data
uniquely extends to the structure of a cubical set on the wholeXc×̃�′X. The resulting
cubical set is denoted byP′X; the cubical setPX is obtained by replacing�′X by�X in
the definition ofP′X. There is the canonical inclusion of graded sets�X → PX defined
byy �→ (∗, y), ∗ ∈ X0, and the canonical projection
 : PX→ X defined by(x, y) �→ x.

The cubical relations inP′X can be verified by means of the following combinatorics
of the standard cube (compare with Proposition 3.1). The top dimensional cell ofIn+1 is
identified with the set 0,1, . . . , n+ 1] while any properq-facea of In+1 is expressed as

a = j1, . . . , js1][js1, . . . , js2][js2, . . . , js3] . . . [jst−1, . . . , jst , n+ 1],
0�j1< · · ·<jst < n+ 1, q = st − t + 1.

The dimension of the first blockj1, . . . , js1] is dim([j1, . . . , js1])+ 1.

Proposition 3.2. Let the faceoperatorsd	, 	=0,1,act ona faceaofIn+1as inProposition
3.1,but for its first block as

j1, . . . , js1]
d0i−→ j1, . . . , ji][ji, . . . , js1], 1� i < s1,

j1, . . . , js1]
d1i−→ j1, . . . , ĵi , . . . , js1], 1� i < s1.

Then the relations amongd	’s again agree with the cubical identities.

Proof. It is straightforward. �

The canonical cellular map� : In+1 → �n+1 [30] is combinatorially defined by

j1, . . . , js1][js1, . . . , js2][js2, . . . , js3] . . . [jst−1, . . . , jst ] → j1, . . . , js1
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Fig. 1. The universal truncating twisting function�.

(seeFig. 1). In particular the face 0][0,1, . . . , n+ 1] of In+1, i.e.,d01, goes to the minimal
vertex (the base point) 0∈ �n+1.
The map� can be thought of as a combinatorial model of the projectionPX


−→X.

4. Truncating twisting functions and twisted Cartesian products

There is the classical notion of atwisting function� : X → G from a simplicial set to
a simplicial group. Such� defines atwisted Cartesian productfor a simplicialG-module
M as a simplicial setX×�M. In this section we introduce the notion of a twisting function
between graded sets in which the domain and the target have face and degeneracy operators
of different types; moreover, the group structure on each homogeneous component of the
target is replaced by a graded monoidal structure reflecting the standard Cartesian product
of cubes. Namely, we define atruncating twisting function� : X → Q from a simplicial
setX to a monoidal cubical setQ. For a cubicalQ-module with actionQ× L→ L, such
� defines atwisted Cartesian productX×�L as acubical set.
These notions are motivated by the cubical setPX, which can be viewed as a twisted

Cartesian product determined by the canonical inclusion� : X → �X, x �→ x̄ of degree
−1, referred to as theuniversal truncating twisting function.

Definition 4.1. Let X be a 1-reduced simplicial set andQ be a monoidal cubical set. A
sequence of functions� = {�n : Xn → Qn−1}n�1 of degree−1 is called a truncating
twisting function if it satisfies:
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�(x)= e, x ∈ X1,

d0i �(x)= ��i+1 · · · �n(x) · ��0 · · · �i−1(x), i = 1, . . . , n− 1, x ∈ Xn, n�1
d1i �(x)= ��i (x), i = 1, . . . , n− 1, x ∈ Xn, n�1
�n�(x)= �sn(x), x ∈ Xn, n�1.

Remark 4.1. Note that by definition, a truncating twisting function commutes only with
the last degeneracy operators (compare[30]), since this is so for the universal truncating
function.

The next proposition is an analog of the property (ii) of a twisting cochain from 2.2.

Proposition 4.1. Let X be a 1-reduced simplicial set and Q be a monoidal cubical set. A
sequence of functions�={�n : Xn → Qn−1}n�1 of degree−1 is a truncating twisting func-
tion if and only if the monoidal mapf : �X→ Q defined byf (x̄1 . . . x̄k)= �(x1) . . . �(xk)
is a map of cubical sets.

Proof. Sincef is completely determined by its restriction to monoidal generators, use the
argument of verification of cubical identities for a given single generator�̄ in �X being
equivalent to that of identities of the universal truncating function�U : � → �̄. �

The following construction is an analog of the property (iii) of a twisting cochain from
2.2. Given a truncating twisting function� : X → Q and a cubical setL, which is aQ-
module viaQ × L → L, define the corresponding twisted Cartesian productX×�L by
replacing�X with L in the definition ofPX. This gives the following:

Definition 4.2. Let X be a 1-reduced simplicial set,Q be a monoidal cubical set, andL
be aQ-module viaQ × L→ L. Let � = {�n : Xn → Qn−1}n�1 be a truncating twisting
function. The twisted Cartesian productX×�L is the graded set

X×�L=Xc × L/ ∼,
where(�p+1(x), y) ∼ (x, �1(y)), (x, y) ∈ Xcp × Lq , and is endowed with the faced0i , d

1
i

and degeneracy�i operators defined for(x, y) ∈ Xp × Lq ⊂ Xcp × Lq by

d0i (x, y)=
{
(�1 · · · �p(x), �(x) · y), i = 1,
(�i · · · �p(x), ��0 · · · �i−2(x) · y), 1< i�p,
(x, d0i−p(y)), p < i�n,

d1i (x, y)=
{
(�i−1(x), y), 1� i�p,
(x, d1i−p(y)), p < i�n,

�i (x, y)= (�i (x), y), 1� i�p,
�i (x, y)= (x, �i−p(y)), p < i�n+ 1.

For any(x, y) ∈ X×�L the operators uniquely extend to form the cubical set(X×�L,

d0i , d
1
i , �i ).

The geometrical interpretation of� : X→ �X is the following: The standardn-simplex
(thebase) is converted into the(n−1)-cube (the fiber) by the canonical truncationprocedure;
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this truncation yields then-cube (the total space) as well, and the latter is thought of as the
“twisted Cartesian product” of the simplex and the cube (seeFig. 1); so that projection�
is a “healing” map. This justifies the name “truncating twisting function”.

Example 4.1. LetM = {ek}k�0 be the free graded monoid on a single generatore1 ∈ M1
with trivial cubical set structure and� : X→ M the sequence of constant maps�n : Xn →
Mn−1, n�1. Then the twisted Cartesian productX×�M can be thought of as a cubical
resolution of the 1-reduced simplicial setX.

The normalized cubical chain functorC�∗ applied to the cubical sets�X, PX, X×�L

produce dg modulesC�∗ (�X), C�∗ (PX), C�∗ (X×�L). It is straightforward to check that

(i) C�∗ (�X)= �C∗(X);
(ii ) C�∗ (PX)= �(C∗(X);C∗(X));
(iii ) C�∗ (X×�L)= C∗(X)⊗�∗C

�∗ (L). (4)

5. The cubical model of the path fibration

LetYbe a topological space. In[1], Adams constructed a morphism

�∗ : �C∗(Y )→ C�∗ (�Y ) (5)

of dg algebras that is a weak equivalence for simply connectedY. There are explicit com-
binatorial interpretations of Adams’ cobar construction, the above map�∗, and the acyclic
cobar construction�(C∗(Y );C∗(Y )) in terms of cubical sets. Indeed, we have the following
theorem (compare,[25,9,2,3,10]).

Theorem 5.1. Let�Y → PY
�−→Y be the Moore path fibration.

(i) There are natural morphisms�, p,� such that

SingI �Y −−−−−−→ SingI PY �∗−−−−−−→ SingI Y

�

� p

� �

�
�Sing1 Y −−−−−−→ PSing1 Y 
−−−−−−→ Sing1 Y

(6)

� : Sing1 Y → SingI Y is a map of graded sets induced by� : In → �n, while p is
a morphism of cubical sets, and� a morphism of monoidal cubical sets; moreover, the
cubical maps are homotopy equivalences whenever Y is simply connected.
(ii) The chain complexC�∗ (�Sing1 Y ) coincides with the cobar construction�C∗(Y ),

see2.3.Moreover, for a simply connected space, Y, the Adams weak equivalence(5)

�∗ : �C∗(Y )= C�∗ (�Sing1 Y )→ C�∗ (�Y )= C∗(SingI �Y )

is induced by the morphism of monoidal cubical sets� (and consequently it preserves all
structures which one has in the chain complex of a cubical set).
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(iii) The chain complexC�∗ (PSing1 Y ) coincides with the acyclic cobar construction
�(C∗(Y );C∗(Y )).

Proof. (i). Morphismsp and� are constructed simultaneously by induction on the dimen-
sion of singular simplices in Sing1 Y . For i = 0,1 and(�, e) ∈ PSing1 Y , � ∈ (Sing1 Y )i,
definep(�, e) as the constant mapI i → PY to the base pointy, whereedenotes the unit
of the monoid�Sing1 Y (and of the monoid SingI �Y as well). Put�(e)= e. Denote by
P Sing1 Y(i,j) the subset inPSing1 Y consisting of the elements(�,�′) with |�|� i, and
�′ ∈ �Sing1 Y(j), a submonoid in�Sing1 Y having (monoidal) generators̄� with |�̄|�j .

Suppose by induction that we have constructedp and� on PSing1 Y(n−1,n−2) and
�Sing1 Y(n−2) respectively such that

p(�,�′)= p(�, e) · �(�′) and �(�̄)= p(d01(�, e)),

where the· product is determined by the actionPY × �Y → �Y. Let Ī n ⊂ In be the
union of the(n− 1)-facesd	

i (I
n) of In except thed01(I

n)= (0, x2, . . . , xn) and then for a
singular simplex� : �n → Y define the map

p̄ : Ī n → PY

by

p̄|d	
i (I

n) = p(d	
i (�, e)), 	= 0,1, and i �= 1 for 	= 0.

Then the following diagram commutes:

Ī n
p̄−−−−−−→ P�Y

g�−−−−−−→ PY

i

� ��

� �

�
In

�−−−−−−→ �n �−−−−−−→ Y.

Clearly, i is a strong deformation retraction and we definep(�, e) : In → P�Y as a lift of
�. Define�(�̄) = p(d01(�, e)). The proof ofp and� being homotopy equivalences (after
the geometric realizations) immediately follows, for example, from the observation that

 induces a long exact homotopy sequence. The last statement is a consequence of the
following two facts: (1)|P Sing1X| is contractible, and (2) the projection
 induces an

isomorphism�∗(|PSing1 Y |, |�Sing1 Y |) 
∗−→�∗(|Sing1 Y |).
(ii)–(iii). This is straightforward. �

Thus, by passing to chain complexes in diagram (6) we obtain the following comulti-
plicative model of the path fibration� formed by dgc’s.

Corollary 5.1. For the path fibration�Y → PY
�−→Y there is a comultiplicative model

formed by coassociative dgc’s which is natural in Y
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C�∗ (�Y ) −−−−−−−−−→ C�∗ (PY )
�∗−−−−−−−−−→ C�∗ (Y )

�∗

� p∗

� �∗

�
�C∗(Y ) −−−−−−→ �(C∗(Y );C∗(Y )) 
∗−−−−−−→ C∗(Y )

(7)

6. Cubical models for fibrations

Here we prove the main result in this paper. LetGbe a topological group,F be aG-space

G× F → F ,G→ P
�−→Y be a principalG-bundle andF → E

�−→Y be the associated
fibration with the fiberF. Let X = Sing1 Y , Q = SingI G andL = SingI F. The group
operationG×G→ G induces the structure of a monoidal cubical set onQ and the action
G× F → F induces aQ-module structureQ× L→ L onL.

Theorem 6.1. The principal G-fibrationG → P
�−→Y determines a truncating twisting

function� : Sing1 Y → SingI G such that the twistedCartesian productSing1 Y×� SingI F

models the total space E of the associated fibrationF → E
�−→Y , that is there exists a

cubical map

Sing1 Y×� Sing
I F → SingI E

inducing homology isomorphism.

Proof. Let� : �X→ SingI �Y be themapofmonoidal cubical sets fromTheorem5.1.By

Proposition 4.1� corresponds to a truncating twisting function�′ : X=Sing1 Y
�U−→�X=

�Sing1 Y
�−→SingI �Y.Composing�′with themapofmonoidal cubical setsSingI �Y →

SingI G =Q induced by the canonical map�Y → G of monoids we obtain a truncating
twisting function� : X → Q. The resulting twisted Cartesian product Sing1 Y×�SingI F
is a cubical model ofE. Indeed, we have the canonical equality

X×�L= (X×�Q)× L/ ∼,
where(xg, y) ∼ (x, gy). Next the argument of the proof of Theorem 5.1 gives a cubical
mapf ′ : X×�U�X → SingI P preserving the actions of�X andQ. Hence, this map
extends to a cubical mapf : X×�Q→ SingI P by f (x, g)= f ′(x, e)g. The map

f × Id : (X×�Q)× L→ SingI P × L→ SingI (P × F)
induces the map

Sing1 Y×� Sing
I F → SingI E

as desired. �

For convenience, assume thatX,Q andL are as in the Definition 4.2. On the chain level
a truncating twisting function� induces the twisting cochains�∗ : C∗(X)→ C∗−1(Q) and
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�∗ : C∗(Q)→ C∗+1(X) in the standard sense ([8,7,14]). Recall the equality of dg modules
((iii) of 4)

C�∗ (X×�L)= C∗(X)⊗�∗C
�∗ (L) (8)

and, consequently, the obvious injection

C∗�(X×�L) ⊃ C∗(X)
⊗

�∗C
∗
�(L) (9)

of dg modules (which is an equality if the graded sets are of finite type).
The cubical structure ofX×�L induces a dgc structure onC�∗ (X×�L). Transporting this

structure (the Serre diagonal (3)) to the right-hand side of (8) we obtain acomultiplicative
modelC∗(X)

⊗
�∗C

�∗ (L) of our fibration. Dually,C∗�(X×�L) is a dga, so a dga structure
(a multiplication) arises on the right-hand side of (9) and we obtain amultiplicativemodel
C∗(X)

⊗
�∗C

∗
�(L) of our fibration.

Below we describe these structures (the comultiplication on theC∗(X)
⊗

�∗C
�∗ (L) and

the multiplication onC∗(X)
⊗

�∗C
∗
�(L)) in terms of certain (co)chain operations that form

ahomotopyG-(co)algebrastructure on the (co)chain complex ofX.

6.1. The canonical homotopy G-algebra structure onC∗(X)

To describe these structures in more detail, we focus on equality (i) of (4)

C�∗ (�X)= �C∗(X).

As before, the cubical structure of�X induces a comultiplication (Serre diagonal) on
C�∗ (�X), thus this structure also appears on the right-hand side of the above equality, so
that the cobar construction�C∗(X) becomes a dg Hopf algebra. Such a comultiplication
was defined on the cobar construction�CN∗ (X)of the normalized complexCN∗ (X)byBaues
in [2,3].
In the combinatorics of Proposition 3.1, this diagonal is expressed as

�[0,1, . . . , n+ 1] = �(−1)	 [0,1, . . . , j1][j1, . . . , j2]
[j2, . . . , j3] . . . [jp, . . . , n+ 1]
⊗ [0, j1, j2, . . . , jp, n+ 1].

Note that the summands[01. . . n+1]⊗[0, n+1]and[01][12][23] . . . [n, n+1]⊗[01. . . n+
1] form the primitive part of the diagonal.
Now regarding the blocks of natural numbers above as faces of the standard(n + 1)-

simplex, we obtain Baues’ formula for the coproduct� : �C∗(X)→ �C∗(X)⊗�C∗(X):
For a generator� ∈ Cn+1(X) ⊂ �C∗(X) define

�[�] = �(−1)	 [�(0,1, . . . , j1)|�(j1, . . . , j2)|
�(j2, . . . , j3)| . . . |�(jp, . . . , n+ 1)]⊗
[�(0, j1, j2, . . . , jp, n+ 1)], (10)

where�(i1, . . . , ik) denotes the suitable face of�. Note that sinceX is assumed to be
1-reduced, the image[ ¯�(k, k + 1)] of each 1-dimensional face�(k, k + 1) is the unit in
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�C∗(X) and hence can be omitted. Note also that the formula is highly asymmetric, the
left-hand factors of�[�] in �C∗(X)⊗�C∗(X) have length�1 and the right-hand factors
have length 1; this is a consequence of (3) and the structure ofd0i , d

1
i from Proposition 3.1.

Actually, this diagonal consists ofcomponents

Ek,1= pr ◦ � : C∗(X)→ �C∗(X)⊗ �C∗(X)→ C∗(X)⊗k ⊗ C∗(X), k�1,

wherepr is the obvious projection. The basic componentE1,1 looks like

E1,1(�)= �s,t (−1)	 (�(0,1)⊗ �(1,2)⊗ . . .⊗ �(s − 1, s)

⊗ �(s, s + 1, . . . , t)⊗ �(t, t + 1)

⊗ �(n, n+ 1))⊗ �(0,1, . . . , s − 1, s, t, t + 1, . . . , n+ 1)

=�s,t (−1)	 �(s, s + 1, . . . , t)

⊗ �(0,1, . . . , s − 1, s, t, t + 1, . . . , n+ 1)

which is a chain operation dual to Steenrod’s�1-product.
Dualizing the operationsEk,1, we obtain the sequence of cochain operations

{Ek,1 : C∗(X)⊗k ⊗ C∗(X)→ C∗(X)}k�1

which define amultiplication on the bar constructionBC∗(X)⊗B∗(X)→ BC∗(X). These
cochain operations form ahomotopy G-algebra structureonC∗(X) (see the next section).

6.2. The non simply-connected case

The operations
{
Ek,1

}
above are restrictions of more general cochain operations that

arise onC̃∗(X) for a based spaceY, which is not necessarily 1-connected. In this case, for
X = SingY we have the operations

{Ek,1 : C̃∗(X)⊗k ⊗ C̃∗(X)→ C̃∗(X)} k�0

given by the following explicit formulas: Forai ∈ C̃mi (X), mi�2, 1� i�k, let

Ek,1(a1, . . . , ak; a0)=
∑
j�k

Ẽj,1(	1, a1, 	1, . . . , 	1, ak, 	1; a0),

where	1 ∈ C̃1(X) is the generator representedby the constant singular 1-simplex at the base
point�1 → y ∈ Y and theoperations̃Ek,1 aredefined forcj ∈ C̃mj (X), mj �1, 1�j�k,
c0 ∈ C̃k(X), by

Ẽk,1(c1, c2, . . . , ck; c0)= c ∈ C̃n(X), n=m1+ · · · +mk,
c(�)= (−1)εc1(�i1+1 · · · �n�)c2(�0 · · · �i1−1�i2+1 · · · �n�) · · ·

ck(�0 · · · �ik−1−1�)c0(�̂0�1�̂i1 · · · �̂ik−1 · · · �n−1�̂n�)

ε =
k∑
j=1

(j − 1)(mj − 1),
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whereiq =m1+· · ·+mq, 1�q�k−1, � ∈ Xn, and whereẼk,1(c1, c2, . . . , ck; c0)=0
otherwise.

Remark 6.1. Thougheach̃Ek,1,and inparticular̃E1,1 hasonlyonecomponent, the formula
for k = 1 definesE1,1 as the Steenrod cochain�1-operation without any restriction onY.
This fact evidently indicates a difference between topological and algebraic interpretation
of the operations{Ek,1}k�1 in terms of 1-reduced algebras (see also Example 7.3).

6.3. Twisted multiplicative model for a fibration

Next we further explore the twisted Cartesian productX×�L. To describe the
corresponding coproduct and product on the right-hand sides of (8) and (9), respectively,
it is very convenient to express the Serre diagonal (3) using the combinatorics of
Proposition 3.2

01. . . n] �−→�(−1)	 0 . . . j1][j1 . . . j2[j2 . . . j3] . . . [jk . . . n]⊗
0̂, . . . , ĵ1− 1, j1, ĵ1+ 1, . . . , ĵ2− 1, j2, . . . , jk,

ĵk+1, . . . , n̂− 1, n], (11)

0�j1< · · ·<jk <n,where the summands 01. . . n]⊗n] and 0][01][12][23] . . . [n−1, n]⊗
01. . . n] form the primitive part of the diagonal.
Furthermore, the actionQ × L → L induces a comodule structure�L : C∗(L) →

C∗(Q) ⊗ C∗(L), and it is not hard to see that the cubical multiplication of (9) can be
expressed by this comodule structure, diagonal (11), the twisting cochain�∗, and the opera-
tions{Ek,1}k�1 by the following formula: Leta1⊗m1, a2⊗m2 ∈ C∗(X)⊗�∗C

∗
�(L) and

�kL : C
∗(L) → C∗(Q)⊗k ⊗ C∗(L) be the iterated�L with �0

L = Id : C∗(L) → C∗(L);
let�kL(m1)=∑

c1⊗ . . .⊗ ck ⊗mk+11 . Then

��∗((a1⊗m1)⊗ (a2⊗m2))

=
∑
k�0

(−1)|a2||mk+11 |a1Ek,1(�∗(c1), . . . , �∗(ck); a2)⊗mk+11 m2. (12)

Corollary 6.1. Under thecircumstancesofTheorem6.1,the twisteddifferentiald� andmul-
tiplication� turn the tensor productC∗(Y )⊗C∗�(F ) into a dga(C∗(Y )⊗C∗�(F ), d�,��∗)
weakly equivalent to the dgaC∗�(E).

Such a multiplicative model is constructed in[6] without explicit formulas for the mul-
tiplication.

Corollary 6.2. Thereexists on theacyclic bar constructionB(C∗(Y );C∗(Y )) the following
strictly associativemultiplication: fora=a0⊗[ā1| · · · |ān], b=b0⊗[b̄1| · · · |b̄m], ai, bj ∈
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C∗(Y ), 0� i�n, 0�j�m, let

ab =
n∑
k=0

(−1)|b0|(|āk+1|+···+|ān|)a0Ek,1(a1, . . . , ak; b0)

⊗ [āk+1| · · · |ān] ◦ [b̄1| · · · |b̄m]. (13)

Proof. TakeQ= L=�X. Then the multiplication (12) looks as (13).�

7. Twisted tensor products for homotopy G-algebras

The notion of homotopy G-(co)algebra naturally generalizes that of a (co)commutative
(co)algebra. For commutative dga’s there exists the theory ofmultiplicativetwisted tensor
products. Below we generalize this theory for homotopy G-algebras. Namely, we define a
twisted tensor product with both twisted differential andtwisted multiplicationinspired by
the formulas (12) and (13) established in the previous section.
The following definition of homotopy G-algebra (hga) differs from the definition in[12]

only by grading (see also[13]). LetA be a dga and consider the dg module(Hom(BA ⊗
BA,A),∇) with differential∇. The�-product induces a dga structure (the tensor product
BA⊗ BA is a dgc with the standard coalgebra structure).

Definition 7.1. A homotopy G-algebra is a 1-reduced dgaA equipped with multilinear
maps

Ep,q : A
⊗p ⊗ A⊗q → A, p, q�0, p + q >0,

satisfying the following properties:

(i) Ep,q is of degree 1− p − q;
(ii) Ep,q = 0 exceptE1,0 = id, E0,1= id andEk,1, k�1;
(iii) the homomorphismE : BA⊗ BA→ A defined by

E([ā1| · · · |āp] ⊗ [b̄1| · · · |b̄q ])= Ep,q(a1, . . . , ap; b1, . . . , bq)
is a twisting cochain in the dga(Hom(BA ⊗ BA,A),∇,�), i.e., satisfies∇E =
E � E;

(iv) the multiplication�E is associative, i.e.,BA is a dg Hopf algebra.

Condition (iii) implies that the comultiplicative extension�E : BA ⊗ BA → BA is a
chain map; conditions (iii) and (iv) can be rewritten in terms of the componentsEp,q (see
[12]). In particular the operationE1,1 satisfies conditions similar to Steenrod’s�1 product:
Condition (iii) gives

dE1,1(a1; a0)− E1,1(da1; a0)+ (−1)|a1|E1,1(a1; da0)
= (−1)|a1|a1a0 − (−1)|a1|(|a0|+1)a0a1, (14)
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so it measures the non-commutativity of the product ofA. Hence, a homotopy G-algebra
with E1,1 = 0 is a commutative dga. We denoteE1,1(a, b) by a�1b. This notation is also
justified by the other condition that follows from (iii), namely,

c�1(ab)= (c�1a)b + (−1)|a|(|c|−1)a(c�1b). (15)

Thusmapa�1− : A→ A is a derivation; whenA=C∗(X) formula 15 is called theHirsch
formula. On the other hand, the map−�1c : A→ A is a derivation onlyup to homotopy
with the operationE2,1 serving as a suitable homotopy: This time condition (iii) gives

dE2,1(a, b; c)− E2,1(da, b; c)− (−1)|a|E2,1(a, db; c)− (−1)|a|+|b|E2,1(a, b; dc)
= (−1)|a|+|b|(ab)�1c − (−1)|a|+|b||c|(a�1c)b − (−1)|a|+|b|a(b�1c). (16)

The main examples of hga’s are:C∗(X) (see[2,3,13] and previous section) and the
Hochschild cochain complex of an associative algebra, with the operationsE1,1 andE2,1
defined by Gerstenhaber in[11] and the higher operations given in[20,13,12]. Another
example is the cobar construction of a dg Hopf algebra[21]. Note also that certain algebras
(including polynomial algebras) that are realized as the cohomology of topological spaces
also admit a non-trivial hga structure[29] (see also Example 7.3 below).
Thedualnotion is thatof ahomotopyG-coalgebra (hgc).Foranhgc(C, d,�, {Ep,q : C →

C⊗p ⊗ C⊗q}) the cobar construction�C is a dg Hopf algebra with a comultiplication in-
duced by{Ep,q}.

Remark 7.1. For a hgaA, the operationE2,1, besides of (16), measures the lack of asso-
ciativity of E1,1=�1. In particular, condition (iv) yields

a�1(b�1c)− (a�1b)�1c = E2,1(a, b; c)+ (−1)(|a|+1)(|b|+1)E2,1(b, a; c) (17)

which implies that the commutator[a, b] = a�1b − (−1)(|a|+1)(|b|+1)b�1 a satisfies the
Jacobi identity. In view of (14), this commutator induces a Lie bracket of degree -1 on
H(A). Furthermore, (15) and (16) imply that[a,−] : H(A) → H(A) is a derivation, so
thatH(A) is a Gerstenhaber algebra[11] (this notion is not a particular case of hga). This
structure is generally nontrivial in the Hochschild cohomology of an associative algebra,
but the existence of a�2 product trivializes the induced Gerstenhaber algebra structure on
H(C∗(X))=H ∗(X).

7.1. Multiplicative twisted tensor products

LetCbe a dgc,Aa dga andM a dg comodule overC. Brown’s twisting cochain� : C →
A (see 2.2) determines a dga mapf� : �C → A (the multiplicative extension of�), a
dgc mapg� : C → BA (the comultiplicative extension of�) and the twisted differential
d�=d⊗Id+Id⊗d+�∩− : A⊗M → A⊗M. Suppose furthermore, thatC is a dg Hopf
algebra,M is a dga, andM → C ⊗M is a dga map. In generald� is not a derivation with
respect to the multiplication on the tensor productA ⊗M. But whenA is acommutative
dga (in this caseBA is a dg Hopf algebra with respect to the shuffle product�sh) and
g� : C → BA is a map of dg Hopf algebras, the twisted differentiald� is a derivation
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with respect to the standard multiplication of the tensor productA ⊗ C and the twisted
tensor productA

⊗
�C is a dga (see Proutè[27]). We shall generalize this phenomenon for

a homotopyG-algebraA, in which caseBA is again a dg Hopf algebra with respect to the
multiplication�E .

Definition 7.2. A twisting cochain� : C → A in Hom(C,A) is multiplicative if the
comultiplicative extensionC → BA is an algebra map.

It is clear that if� : C → A is a multiplicative twisting cochain and ifg : B → C is
a map of dg Hopf algebras then the composition�g : B → A is again a multiplicative
twisting cochain. The canonical projectionBA→ A provides an example of the universal
multiplicative cochain. For a commutative dgaA, the multiplication map�E equals�sh, so
Proutè’s twisting cochain is multiplicative (see, for example,[28]). The argument for the
proof of formula (12) immediately yields the following:

Theorem 7.1. Let� : C → A be amultiplicative twisting cochain. Then the tensor product
A ⊗ M with the twisting differentiald� = d ⊗ Id + Id ⊗ d + �∩− becomes a dga
(A⊗M,d�,��) with the twisted multiplication�� determined by formula(12).

Remark 7.2. As in 2.2, this construction is functorial in the following sense: Let� : A′ →
A be a strict morphism of hga’s (i.e.,� is a morphism of dga’s strictly compatible with all
Ep,q ’s), � : C′ → C be a dg Hopf algebra morphism,� : M ′ → M be simultaneously a
morphism of comodules and a dgamorphism, and�′ : C′ → A′ be amultiplicative twisting
cochain such that��′ = ��. Then

�⊗ � : (A′ ⊗M ′, d�′ ,��′)→ (A⊗M,d�,��)

is a morphism dga’s.

The above theorem includes the twisted tensor product theory for commutative algebras
[27].

Corollary 7.1. For a homotopy G-algebra A, the acyclic bar-constructionB(A;A), en-
dowed with the twisted multiplication determined by formula(13)acquires a dga structure.

7.2. Brown’s model as a dga

In conclusion, we replace the cubical cochainsC∗�(F ) andC
∗
�(G) by the normalized

simplicialcochainsC∗N(F ) andC∗N(G) in Corollary 6.1 to introduce an associativemultipli-
cation on Brown’s modelC∗(Y )

⊗
�C

∗
N(F ) for a specialtwisting cochain�. Specifically,

we have:

Corollary 7.2. Let F → E
�→Y be a fibration as in Corollary6.1.There exists a mul-

tiplicative twisting cochain� : C∗N(G) → C∗+1(Y ) such that the twisted tensor product
(C∗(Y ) ⊗ C∗N(F ), d�,��) with twisted differentiald� and twisted multiplication�� is a
dga with cohomology algebra isomorphic toH ∗(E).
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Proof. Let us first mention that there exists the following standard triangulation of the cub
In, see for example[10]. Each vertex ofIn is a sequence(	1, . . . , 	n), 	i = 0,1. The set
of all 2n vertexes is ordered:(	1, . . . , 	n)�(	′1, . . . , 	′n) if 	i�	′i . There aren! increasing
sequences of maximal lengthn+1 which start with minimal vertex(0, . . . ,0) and end with
maximal(1, . . . ,1). They formn! n-simplices which triangulateIn.
Let� : C∗N(G)→ C∗�(G) and� : C∗N(F )→ C∗�(F ) be the maps induced by triangula-

tion of cubes (see, for example,[10]), and� = �∗� : C∗N(G)→ C∗�(G)→ C∗(Y ). Then
the 4-tuple{�= Id, �, �, �} satisfies the conditions of Remark 7.2, thus

Id ⊗ � : (C∗(Y )⊗ C∗N(F ), d�,��)→ (C∗(Y )⊗ C∗�(F ), d�∗ ,��∗)

is a morphism of dga’s. A standard spectral sequence argument shows that this is a weak
equivalence. �

7.3. Examples

Here we assume that the ground ringR is a field, and all spaces are path connected. We
present examples based on the fact that for a space being a suspension the corresponding
homotopy G-algebra structure is extremely simple: it consists just ofE1,1 =�1 and all
other operationsEk>1,1 are trivial.
1. The classical Bott–Samelson theorem establishes that the inclusioni : X→ �SX in-

duces an algebra isomorphismi∗ : T H̃∗(X)
≈→H∗(�SX), whereSXdenotes a suspension

on a spaceX. The left-hand sideT H̃∗(X) is a Hopf algebra with respect to the comultipli-
cation which extends the one fromH∗(X)multiplicatively, and the Bott–Samelson mapi∗
is a Hopf algebra isomorphism too. There is the dual statement for the cohomology as well
(cf. Appendix in[16]).
First we recover the above facts in the following way. LetY be the suspension over a

polyhedronX; explicitly, regardYas the geometric realization of a quotient simplicial set
Y = SX/C−X whereSX=C+X ∪C−X, the union of two cones overXwith the standard
simplicial set structure. It is immediate to check by (10) that allEk,1 for k�2 are identically
zero, and,moreover, so is theAWdiagonal� : C∗(Y )→ C∗(Y )⊗C∗(Y ) in positive degrees
as well (cf.[29]). Consequently, since of (14) and (17)E1,1 : C∗(Y ) → C∗(Y ) ⊗ C∗(Y )
becomes coassociative chain map of degree 1 and thus it induces a binary cooperation of
degree 1 on the homology denoted bySq1,1 : H∗(Y )→ H∗(Y )⊗H∗(Y ). Notice that both
(C∗(Y ), d, �̄ = 0, E1,1) and(H∗(Y ), d = 0, �̄∗ = 0, Sq1,1) are homotopy G-coalgebras,
thus�C∗(Y ) and�H∗(Y ) both are dg Hopf algebras.
The cycle choosing homomorphism� : H∗(Y ) → C∗(Y ) is a dg coalgebra map in this

case. Thus there is a dg algebra map�� : �H∗(Y ) → �C∗(Y ) which induces the Bott-
Samelson isomorphism of graded algebras

T H̃∗(X)= �H∗(Y )=H(�H∗(Y )) (��)∗−→ H∗(�C∗(Y ))=H∗(�Y ). (18)
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To show that (18) is a Hopf algebra isomorphism, let first consider the diagram

C∗(Y ) E1,1−−−−−−−−−→ C∗(Y )⊗ C∗(Y )��
��⊗�

H̃∗(Y )
Sq1,1−−−−−−−−−→ H̃∗(Y )⊗ H̃∗(Y )

≈
�s ≈

�s⊗s
H̃∗−1(X) �∗−−−−−−→ H̃∗−1(X)⊗ H̃∗−1(X),

wheres is the suspension isomorphism; the upper square is commutative up to a chain
homotopy, while the bottom square is strict commutative. This implies that�� is also a
coalgebra map up to a chain homotopy, consequently (18) is a coalgebra map too.

2. Let�Y → PY
�→Y be theMoorepath fibrationwith thebaseYwhich is the suspension

over a polyhedronX. Let f : Y → Z be a map,�Y × �Z → �Z be the induced action
via the composition

�Y × �Z
�f×Id−−−−−−→�Z × �Z→ �Z,

and�Z→ Ef

→Y be the associated fibration; for simplicity assume thatZ is the suspen-

sionandsimply connectedCW-complexof finite type, aswell.Wepresent twomultiplicative
models for the fibration
 using the cubical modelY×��Z with the universal truncating
twisting function�= �U : Y → �Y .
Notice that the twisted differential of the cochain complex(C∗(Y×��Z), d)=(C∗(Y )⊗

C∗(�Z), d�#)= (C∗(Y )⊗ BC∗(Z), d�#) with universal�# : BC∗(Y )→ C∗(Y ) becomes
the form

d�#(a ⊗ [m̄1| . . . |m̄n])= da ⊗ [m̄1| . . . |m̄n] +
n∑
k=1

a ⊗ [m̄1| . . . |dm̄k| . . . |m̄n]

+ a ·m1⊗ [m̄2| . . . |m̄n].

Since the simplified structure of the homotopy G-algebra(C∗(Y ), d,�= 0, E1,1) formula
(12) becomes the following form:

��#((a1⊗m1)(a2⊗m2))

= a1a2⊗m1m2+ a1E1,1(f
#(m1

1), a2)⊗ [m̄2
1| . . . |m̄n1] ·m2, (19)

wheref # : C∗(Z)→ C∗(Y ), a1, a2 ∈ C∗(Y ), m1= [m̄1
1| . . . |m̄n1],m2 ∈ BC∗(Z), n�0.

Note that since the product onC>0(Y ) is zero, the twisted part of��# (the second summand)
may be non-zero only fora1 ∈ C0(Y ).

So that we get thatH(C∗(Y )⊗BC∗(Z), d�#,��#) andH
∗(Ef ) are isomorphic as alge-

bras.



T. Kadeishvili, S. Saneblidze / Journal of Pure and Applied Algebra 196 (2005) 203–228 227

On the other hand, let us consider the following multiplicative twisted tensor product
(H ∗(Y )⊗H ∗(�Z), d�∗)=(H ∗(Y )⊗BH ∗(Z), d�∗)withuniversal�∗ : BH ∗(Y )→ H ∗(Y ).
The differential here is of the form:

d�∗(a ⊗ [m̄1| . . . |m̄n])= a ·m1⊗ [m̄2| . . . |m̄n].
Againsince thesimplifiedstructureof thehomotopyG-algebra(H ∗(Y ), d=0,�∗=0, Sq1,1)
formula (12) becomes the following form:

��∗((a1⊗m1)(a2⊗m2))

= a1a2⊗m1m2+ a1Sq1,1(f ∗(m1
1), a2)⊗ [m̄2

1| . . . |m̄n1] ·m2, (20)

wheref ∗ : H ∗(Z)→ H ∗(Y ), a1, a2 ∈ H ∗(Y ), m1=[m̄1
1| . . . |m̄n1],m2 ∈ BH ∗(Z), n�0.

Note that since the product onH>0(Y ) is zero, the twisted part of��∗ (the second summand)
may be non-zero only fora1 ∈ H 0(Y ). Also we remark that for an elementa ∈ H ∗(Y ),
one getsSq1,1(a, a)= Sq1(a), the Steenrod square.
We claim that(H ∗(Y ) ⊗ BH ∗(Z), d�∗) is a “small” multiplicative model of the fibra-

tion 
, i.e H(H ∗(Y ) ⊗ BH ∗(Z), d�∗) andH ∗(Ef ) are isomorphic as algebras. Indeed,
it is straightforward to calculate (or using the standard spectral sequence argument) that
additively

H(C∗(Y )⊗ BC∗(Z), d�#)
≈ H(H ∗(Y )⊗ BH ∗(Z), d�∗)
≈ H 0(Y )⊗ Tf (H ∗(Z))⊕H ∗(Y )/Imf ∗ ⊗ BH ∗(Z),

whereTf (H ∗(Z)) = s−1(Kerf ∗) + s−1(Kerf ∗) ⊗ s−1H ∗(Z) + · · · + s−1(Kerf ∗) ⊗
(s−1H ∗(Z))⊗n+· · · , n�1. Since the explicit formulas (19) and (20) it is easy to calculate
that the twisted parts of��# and��∗ annihilate in homology, thus they induce the same
multiplication onH ∗(Ef ).As a byproduct we obtain that the multiplicative structure of the
total spaceEf does not depend on amapf in a sense that iff ∗=g∗ thenH ∗(Ef )=H ∗(Eg)
as algebras. Note also that this multiplicative structure is purely defined by the� and�1
operations.

References

[1] J.F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. USA 42 (1956) 409–412.
[2] H.-J. Baues, Geometry of loop spaces and the cobar construction, Mem.Amer. Math. Soc. 25 (1980) 1–170.
[3] H.-J. Baues, The double bar and cobar construction, Compositio Math. 43 (1981) 331–341.
[4] H.-J. Baues, The cobar construction as a Hopf algebra, Invent. Math. 132 (1998) 467–489.
[5] N. Berikashvili, An algebraic model of fibration with the fiberK(�, n)-space, Georgian Math. J. 3 (1) (1996)

27–48.
[6] N. Berikashvili, D. Makalatia, The multiplicative version of twisted tensor product theorem, Bull. Georgian

Acad. Sci. 154 (1996) 327–329.
[7] N. Berikashvili, On the differentials of spectral sequences (Russian), Proc. Tbilisi Mat. Inst. 51 (1976) 1–

105.
[8] E. Brown, Twisted tensor products, Ann. of Math. 69 (1959) 223–246.
[9] G. Carlsson, R.J. Milgram, Stable homotopy and iterated loop spaces, in: I.M. James (Ed.), Handbook of

Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 505–583.



228 T. Kadeishvili, S. Saneblidze / Journal of Pure and Applied Algebra 196 (2005) 203–228

[10] Y. Felix, S. Halperin, J.-C. Thomas, Adams’ cobar equivalence, Trans. Amer. Math. Soc. 329 (1992)
531–549.

[11] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963) 267–288.
[12] M. Gerstenhaber,A.A.Voronov, Higher operations on the Hochschild complex, Funct. Anal. Appl. 29 (1995)

1–5.
[13] E. Getzler, J. D. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces, preprint,

1995.
[14] V.K.A.M. Gugenheim, On the chain complex of a fibration, Ill. J. Math. 16 (1972) 398–414.
[15] J. Huebschmann, The homotopy typeF�q , the complex and sympletic cases, Contemp. Math. 55 (1986)

487–518.
[16] D. Husemoller, Fibre bundles, 3rd Edition, Graduate Texts in Mathematics, Vol. 20, Springer, New York,

1994.
[17] D.M. Kan, Abstract homotopy I, Proc. Nat. Acad. Sci. USA 41 (1955) 1092–1096.
[18] T. Kadeishvili, DG Hopf Algebras with Steenrodsith coproducts, Bull. Georgian Acad. Sci. 158 (1998)

203–206.
[19] T. Kadeishvili, Cochain operations defining Steenrod�i -products in the bar construction, Georgian Math.

J. 10 (2003) 115–125.
[20] T. Kadeishvili, TheA(∞)-algebra structure and cohomology of Hochschild and Harrison (Russian), Proc.

Tbilisi Math. Inst. 91 (1988) 19–27.
[21] T. Kadeishvili, Measuring the noncommutativty of DG algebras, Journal of Mathematical Sciences 119

(2004) 494–512.
[22] T. Kadeishvili, S. Saneblidze, The twisted Cartesian model for the double path space fibration, preprint,

AT/0210224.
[23] L. Lambe, J. Stasheff,Applications of perturbation theory to iterated fibrations, Manuscripta Math. 58 (1987)

363–376.
[24] W.S. Massey, A Basic Course in Algebraic Topology, Springer, NewYork, 1991.
[25] R.J. Milgram, Iterated loop spaces, Ann. of Math. 84 (1966) 386–403.
[26] J. Milnor, J.C. Moore, On the structure of Hopf Algebras, Ann. of Math. 81 (1965) 211–264.
[27] A. Proute,A∞-structures, modele minimal de Bauess–Lemaire des fibrations, preprint.
[28] S. Saneblidze, Perturbation and obstruction theories in the fibre spaces, Proc. A. Razmadze Math. Inst. 111

(1994) 1–106.
[29] S. Saneblidze, The Hochschild complex of a space is the complex of the Hochschild set, preprint.
[30] J.-P. Serre, Homologie singuliere des espaces fibres, applications, Ann. Math. 54 (1951) 429–505.
[31] R.H. Szczarba, The homology of twisted cartesian products, Trans. Amer. Math. Soc. 100 (1961) 197–216.


	A cubical model for a fibration62626262
	Introduction
	Notation and preliminaries
	Cobar and bar constructions
	Twisting cochains
	Adams' cobar construction
	Cubical sets

	The cubical loop and path functors
	The cubical loop functor
	The cubical path functor

	Truncating twisting functions and twisted Cartesian products
	The cubical model of the path fibration
	Cubical models for fibrations
	The canonical homotopy G-algebra structure on C*(X)
	The non simply-connected case
	Twisted multiplicative model for a fibration

	Twisted tensor products for homotopy G-algebras
	Multiplicative twisted tensor products
	Brown's model as a dga
	Examples

	References


