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Abstract

In the paper the notion dfuncating twisting functiofirom a simplicial set to a cubical set and the
corresponding notion of twisted Cartesian product of these sets are introduced. The latter becomes a
cubical set. Using this construction together with the theory of twisted tensor products for homotopy
G-algebras a strictly associative multiplicative model for a fibration is obtained.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we construct@ibical setwhich models the total space of a fibration. The
normalized cubical chain complex of this cubical motthcidegas a chain complex) with
the twisted tensor product of the singular simplicial complex of the base and the singular
cubical complex of the fiber with respect to a certain specific twisting cochain which we call
“truncating”. Hence the twisted tensor product may be endowed with all structures which
exist on the chain complex of a cubical set including the Serre diagonal, Steenrod chain
(co)operations and other (co)chain operations. In this paper we concentrate only on the
strictly coassociativ&serre diagonal (the cubical analog of the Alexander—Whitney (AW)
diagonal, se430]). The combinatorial analysis of the Serre diagonal allows us to give

* This research described in this publication was made possible in part by Award No. GM1-2083 of the U.S.
Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF)
and by Award No. 99-00817 of INTAS.

* Corresponding author.
E-mail addresseskade@rmi.acnet.g@. Kadeishvili),sane@rmi.acnet.d&. Saneblidze).

0022-4049/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/}.jpaa.2004.08.017


http://www.elsevier.com/locate/jpaa
mailto:kade@rmi.acnet.ge
mailto:sane@rmi.acnet.ge

204 T. Kadeishvili, S. Saneblidze / Journal of Pure and Applied Algebra 196 (2005) 203—-228

explicit formulas for a strictly associative multiplication on the twisted tensor product in
terms of the—1-product and other related cochain operations measuring the deviation of
—1 from being a derivation with respect to theproduct. Using the standard triangulation

of cubes we also obtain a strictly coassociative diagonal on Brown'’s twisted tensor product
of the singular simplicial complex of the base and the singular simplicial complex of the
fiber with respect to some specific twisting cochain.

For a fibrationF — E — Y, Brown [8] introduced awisteddifferential d, on the
tensor produc€*(Y) ® C*(F) such that the homology of the cochain compléX (Y) ®
C*(F), dy) is additively isomorphic to the cohomology*(E). There are several papers
(see, for example, Lambe and Stash2f] for references) where various multiplications
are introduced on the twisted tensor prodﬂé(Y)®¢C*(F) =(C*(Y)® C*(F),dy) to
describeH*(E) as an algebra as well. But these multiplications are either not associative
or the differentiald, is not a derivation except in special cases, for exampley fer S”

[31].

The difficulty of introducing of such a multiplication rely on the following fact. Consider
the standard simplicial model of a fibration: }ebe a 1-reducedp= X1 = pt) simplicial
set,G a simplicial groupN a simplicial G-module,t : X, — G._1 a twisting function,
and X x, N the corresponding twisted Cartesian product. Applying chain functomte
obtain a twisting cochain = C,(7) : C+(X) — C._1(G) such that there iseontractionof
Ci(Xx,N) to C*(X)®¢C*(N) where¢ = t,. The simplicial structure ok x; N induces
the AW diagonal orC..(X x,N). The standard procedure, which uses the basic perturbation
lemma, transports the AW diagonal to the twisted tensor prddud)®¢c*(N). But the
resulting (co)multiplication is (co)associative only up to higher homotdjiig23]

The situation changes radically if we replace a simplicial gréuyy amonoidal cubical
setand suitably modify the notion of a twisting function. This yieldsubical model of a
fibration which, as a by-product, induces a strictly associative multiplication on the above
tensor product.

Let us give some more details. Débe a 1-reduced simplicial s&€),amonoidal cubical
set andL a cubicalQ-module, i.e.Q andL are cubical sets with given associative cubical
mapsQ x Q — Q andQ x L — L.We introduce the notion afuncating twisting function
7: X, — Q.1 from a simplicial set to a monoidal cubical set (the térancatingcomes
from the universal exampley : 4" — "1 of such functions obtained by the standard
truncation procedure, see Section 4 below). Such a twisting functietermines thwisted
Cartesian produciX x ;L asa cubical setWe remark that the study of twisting functions
from cubical sets to permutahedral sets and the appropriate twisted Cartesian product is
continued in a forthcoming papg2].

We construct a functor which assigns to a simpliciabéatmonoidal cubical s€2X and
present a truncating twisting functiay : X — QX which is universal in the following
sense: Given an arbitrary truncating functionX, — Q._1, there is a monoidal cubical
map f;: QX — Q such that = f;7y. The twisted Cartesian produe = X x QX is a
cubical set that depends functorially ¥nNote thatQ X models the loop space|X| and
PX models the path fibration giX|.

The normalized cubical chain functaﬂ*D applied to the cubical se®2X produces
CE(QX), and this chain complexoincideswith Adams’ cobar constructio®C., (X)
(equality (i) of (4)); similarly CP(PX) coincideswith the acyclic cobar construction
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Q(Cy(X); Cx(X)) (equality (ii) of (4)); furthermorer, = C.(7): Cx(X) — CE_l(Q) is
a twisting cochain and?*D(XxTL) coincideswith the twisted tensor produCI*(X)(X)T*
cB(L) (equality (iii) of (4)).

The obtained cubical structures of the cobar construétién(X) and the twisted tensor
productC*(X)(X)T* C*D(L) have the following advantage.

The normalized chain complex of a cubical set admits Skeere diagonal(see[30]
and below (3)), which turns it into a dg coalgebra. Since the identificaﬂE(QX) =
QC,(X) the cubical structure of2X determines astrictly coassociative comultiplica-
tion on the cobar constructioQC,(X). Similarly, the cubical structure of x.L deter-
mines astrictly coassociative comultiplicatiaon the twisted tensor produCE(XxTL) =
C:(X)Q., C*D(L). Dually, we immediately obtain the desired strictly associative multipli-
cation onC*(X)Q«CH(L) C CH(XxL) (here we have equality when the graded sets
have finite type).

Also note that the chain operations dual to Steerrpaperations are defined for cubical
setsin18,19]and the equalitf,kD (QX)=0QC,(X) allows to define these operations on the
cobar constructio®C, (X); similarly sinceCE(X xX.L)= C*(X)®T* CE(L) it is possible
to introduce Steenrod operations on multiplicative twisted tensor products.

Next, we express the resulting comultiplication@n( X)), cJ(L) in terms of certain
chain operations of degrée

ERL CuX) - Cu(X)®F @ Cu(X), k=0,

which give C.(X) a homotopyG-coalgebra structurddual to ahomotopyG-algebrain

the sense of Gerstenhaber and Vorofi®]). This structure is a consequence of the Serre
diagonal onCE(QX) = QC,(X): The Serre diagonal OC*D(QX) induces the diago-

nal QC,(X) — QC.(X) ® QC.(X) being a multiplicative map, thus it extends a cer-
tain homomorphisnC, (X) — QC.(X) ® QC.(X), which itself consists of components
EX: Cu(X) = Co(X)®FQC.(X)®, k, £>0, with EX{=0for¢ > 2. The operatiorE -1

is dual to the Steenrod1-cochain operation; thus wheft-! =0 a homotopy G-coalgebra
specializes to a cocommutative dg coalgebra (and dually for homotopy G-algebras). We
note that Baues constructed a homotopy G-coalgebra structure on the normalized chain
complexCN(X) in [2,3].

Towards the end of the paper we develop the theory of multiplicative twisted tensor
products for homotopy G-algebras, which provides a general algebraic framework for our
multiplicative model of a fibration. First, we review the theory of multiplicative twisted
products due to Proute (sg&7]): SupposeC is a dg Hopf algebral is acommutativalg
algebrag : C — Aisacoprimitivetwisting cochain (referred to aswaultiplicativecochain
below), andM is simultaneously a dg algebra and a comodule @seiith multiplicative
M — C ® M. Then the twisted tensor produ¢®¢M is a dga with respect to the standard
multiplication on the tensor produdt® M of dga’s. Now replace Prouté’s commutative
by a homotopy G-algebr&. By definition, there is a strictly associative multiplication on
B A, which can be viewed as a perturbation of the shuffle product and is compatible with
the coproduct. ThuBA is a dg Hopf algebra. We say that a twisting cochAinC — A
is multiplicativeif the induced magC — BA is a dg Hopf algebra map. We introduce a
twisted associative multiplicatiqn, on A M in terms of¢ and the homotopy G-algebra
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structure ofA by the same formulas as in the case C*(X), C=C5(Q) andM =CH(L);
thent*: C4(Q) — C*(X) provides a basic example of a multiplicative twisting cochain.
Thus, the theory outlined above unifies the general commutative and homotopy commutative
theories; in particular, this unifies the singular and Sullivan—deRham cochain complexes of
topological spaces.

We remark that the idea of using ofibical cochains of a structure group and fiber is
found in recent results due to N. Berikashvili, who constructed a multiplicative model with
associative multiplication when the fibEitis thecubicalversion of an Eilenberg—MacLane
space (se¢5]) and a multiplicative moded?*(Y)®¢CE(F), ¢: CH(G) — c*tl(y),
whereC*(Y) is the singulasimplicialcochain complex of the base aag (G) andCF (F)
are the singulacubical cochain complexes of the structure group and the fiber[&ge
however, there is no notion of underlying truncating twisting functions in general setting
as a map form a simplicial set to a cubical one leading to the cubical model; also it lacks
the analysis of the Serre cubical diagonal generating the cooperatfohsand, conse-
guently, the general algebraic theory of twisted tensor products of homotopy commutative
dg (co)algebras.

Applying our machinery to a fibratior — E — Y on a 1-connected spadeand
an associated princip&-fibrationG — P — Y with actionG x F — F we obtain
the following cubical model (Theorem (5.1): L&t= Sing' Y c SingY be the Eilenberg
1-subcomplex generated by the singular simplices that send the 1-skeleton of the standard
simplex4" to the base point af. Let Q =Sing’ G andM =Sing F be the singular cubical
sets. Then Adams’ map, : QC,(Y) = C,(Q2X) — CE(QY) is realized by a monoidal
cubical mapw: QX — Sing’ QY. Composingy with the map of monoidal cubical sets
Sing QY — Qinduced by the canonical m&¥ — G of monoids we immediately obtain
a truncating twisting function: X — Q. The resulting twisted Cartesian produck ; M
provides the required cubical model &f and there exists a cubical weak equivalence
X x:M — Sing! E. Applying the cochain functor we obtain Berikashvili’s multiplicative
twisted tensor product if6].

At the end of the paper we use the theory of multiplicative twisted tensor products for
homotopy G-algebras outlined above to obtain the multiplicative twisted tensor product
C*(Y)®¢C,’§(F), where C{; denotes the normalized singulsimplicial cochains. The

twisting cochaing here is the composition : C{(G) 2 C5(G) = C*(Y), wheregp is
a map of dg Hopf algebras defined by the standard triangulation of cubes (see Proof 7.2).
In other words, we use a special twisting cochain to introduce an associative multiplication
on Brown’s model.

As an example we present fibrations with the base being a suspension (in this case the
homotopy G-algebra structure consists jusEgh = —1 and all other operationBy 1 are
trivial) and for which the formula for the multiplication in the twisted tensor product has a
very simple form. Moreover in this case we present small multiplicative model being the
twisted tensor product of cohomologies of base and fiber with the multiplicative structure
purely defined by the- and—4 operations.

Finally, we mention that the geometric realizat|®8ing' Y| of QSing' ¥ is homeomor-
phic to the cellular model for a loop space observed by Carlsson and Mi[§jaim [2,3],
Baues defined a geometric coassociative and homotopy cocommutative diagonal on the
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cobar constructio@C!Q‘(Y) of the normalized chain@j}‘(Y) by means of a certain cellular
model for the loop space (homotopically equivalenf@Sing Y|) whose cellular chains
coincide withQCN(Y); consequently, one obtains a homotopy G-coalgebra structure on
C,’F\‘(Y). Another modification of Adams’ cobar construction is considered by Felix et al.
[10].

We are indebted to the referee for a number of most helpful comments and for having
suggested many improvements of the exposition.

2. Notation and preliminaries

Let Rbe a commutative ring with unit 1. differential graded algebrédga) is a graded
R-moduleC = {C}, i e Z, with an associative multiplication: C' ® C/ — C'*/ and
a homomorphismd differentia) d: ¢! — C'*1 with d2 = 0 and satisfying the Leibniz
ruledu = u(d ® Id + Id ® d). We assume that a dga has a upitR — C such that
w(n ® Id) = u(Id ® n) = Id. A non-negatively graded ddg2iis connectedf €% = R. A
connected dg€& is n-reducedf C’ =0, 1<i <n. A dga iscommutativef u = uT, where
T(x®y)= (-1 I(y®x). In general, we use Koszul's sign commutation rule: Whenever
two symbolsu andv are interchanged, affix the sign-1)“/1*!.

A differential graded coalgebrédgc) is a gradedR-moduleC = {C;}, i € Z, with
an coassociative comultiplicatioh: C — C ® C and a homomorphisna(differentia)
d: C; — Ci_1withd®2=0and satisfyind\d = (d ® Id + I1d ® d)A. A dgc C is assumed
tohaveacounit: C - R, (e® Id)4d=(Id ® ¢)4 = 1d. A non-negatively graded dgc
Cis connectedf Cyp = R. A connected dg€ is n-reducedf C; =0, 1<i<n. A dgcis
cocommutativef 4 = AT.

A (connected)ifferential graded Hopf algebrédgha) (C, u, 4) is simultaneously a
connected dgéC, 1) and a connected ddg¢€, 4) such that1: C — C ® C is an algebra
map; note that a graded connected Hopf algebra has a canonical arjiiphd® that the
antipode is not an issue.

A dgaM is a (left) comoduleover a dghaC if v: M — C ® M is a dga map. Let
(M’,v') and(M, v) be comodules ovef’ andC, respectively, and lep: C’ — C be adgc
morphism. A map)y: M’ — M is amorphismof comodules ifvy = (¢ @ Y)V'.

2.1. Cobar and bar constructions

For anR-module M, let T (M) be the tensor algebra ®, i.e., T (M) = P M®".
An elements; ® ... ® a, € M®" is denoted byay, ..., a,]. We denote by 1M the
desuspension dfl, i.e., (s IM); = M; 1.

Let(C, dc, 4) be a1-reduced dgc. Denafe=s—1(C-¢). LetA=1d Q1+ 1®Id+ A'.
The (reduced) cobar constructiéC on C is the tensor algebra (C), with differential
d = d1 + d> defined for¢ € C-q by

di[c] = —[dc(c)]
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and
do[¢] = Z(_l)lc/l[g/|c7/] for A'(c) = ZC/ ®c"

extended as a derivation. The acyclic cobar construc?o@; C) is the twisted tensor
productC ® QC in which the tensor differential is twisted by the universal twisting cochain
C — QC being an inclusion of degreel (see below).

Let (A, d4, n) be a 1-reduced dga. The (reduced) bar constru&®an A is the tensor
coalgebrd (A), A=s"1(A-0), with differentiald =d;+d> givenfor{a| - - - |a,] € T"(A)
by

dilai| - --lan) = — Z (=D%[aal---|dalai)|- - - lan]
i=1

and

n

dolay| - lan) = — Z (=D[aal---lai—1ai| - - - |an],
i=2

wheresg; = Zj<i|a_j|. The acyclic bar constructioB(A; A) is the twisted tensor product
A® B A inwhich the tensor differential is twisted by the universal twisting coclBadn— A
being a projection of degree 1

2.2. Twisting cochains

Let(C,d, 4: C — C®C)beadgc(A,d, u: AQA — A)beadga,anM,d,v: M —
C ® M) be a dg comodule ovél. A twisting cochair{8] is a homomorphisngp: C — A
of degree 1 satisfying Brown’s condition

dp+¢d=—¢ - ¢, (1)

where¢ — ¢ = p, (¢ ® ¢')Ac. There are universal twisting cochaifls— QC and

BA — A being the obvious inclusion and projection, respectively. @t, A) be the set

of all twisting cochainsp: C — A. Three essential consequences of Brown’s condition
(1) are

(i) The multiplicative extensiorf,: QC — A is a dga mapso there is a bijection
T(C, A) <> Homgg,(QC, A);
(i) The comultiplicative extensiog,: C — BA is a dgc mapso there is a bijection
T(C, A) <> Homgg(C, BA);
(iii) The homomorphistiy =d ® Id + 1d ®d + ¢ N - AR M — A ® M, where
dpN(ma)=uId)(1d® p®I1d)(Id ®v)(a ®m),is a differential i.e., dydy =0.

The dgC-comodule(A ® M, dy) is called a twisted tensor product and is denoted by
A®¢M. The twisted tensor product is functorial in the following senseslet’ — A be
adgamorphismp: C’ — C beadgcmorphismy: M’ — M be amorphism of comodules
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and¢’: C" — A’ be a twisting cochain such thad’ = ¢¢. Theny @ y: A'QyM' —
A® M is a chain map.

2.3. Adams’ cobar construction

LetXbe a 1-reduced simplicial set, i.& = {Xo= X1 ={*}, X2, X3, -- -}, and letC, (X)
be its chain complex in the ordinary sense. Define the chain conihleX) as the quotient

Co(X) = Cu(X)/Coo().

ClearlyC,(X) is a 1-reduced dgc with respect to the AW diagonal.

Now let SingY be the singular simplicial set of a based topological spaaad X =
Sing' Y c SingY be the (Eilenberg) 1-subcomplex generated by those singular simplices
which send the 1-skeleton of the standard simpléx »n >0, to the base poiny € Y.
Define the dgaC,(Y) asC,(X). Then Adams’ cobar constructidaC, (Y) of a spacer is
the cobar construction of the dg&. (V).

2.4. Cubical sets

A cubical set is a graded sét = {Q,}, > o with face operatorg?: 0, — Q,-1, ¢ =
0,1,i =1,2,...,n, and degeneracy operatays: @, — QOn+1,i =1,2,...,n 4+ 1,
satisfying the following standard cubical identit{ds]:

didf =di'di,,, i<j

, Nj—ad; i<]j
dfnj =41 i=j
nidi_y >

My ="M I 2)

For an example, |t be a space and let Sihgf = {Sing Y}, > o, where Sing Y is the set
of all continuous map#” — Y. Then Sing Y is a cubical sef24].

Given acubical sép and arkR-moduleA, Iet(C’E(Q; A), d) denote its chain complex with
coefficients inA. The normalized chain compIQK‘E(Q; A), d) of Qis defined as the quo-
tientCL(Q; A) = CL(Q; A)/D.(Q), whereD,(Q) is the subcomplex ofC(Q; A), d)
generated by the degenerate elemenid.dfor a space’, we denoteCE(Sing’ Y; 7) by
cH(y). Both CP(Q) andCc(Q) are dg coalgebras with respect to tBerre diagonal
determined by the Cartesian product decompositibe= I x --- x I of then-cube[30]:
For an element € Q, theSerre diagonals given by

Ax) = Z(=1)d, - -dj.’p ) ®d -} (x), (3)

where the summation is over all shuffigs < - - - <i,, j1 <--- < j,} of the set{l, ..., n}
and(—1)¢ is the shuffle sign.
Let Q andQ’ be cubical sets. Thigensor) producbf Q and Q' is defined to be

0x 0 =((@x0)= ] Qyx0Q)}/~

ptg=n
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where(np+1(a), b) ~ (a,ny(b)), (a,b) € Q) x Q’q. This product is endowed with the
obvious face and degeneracy operafa@. Define amonoidal cubical seto be a cubical
setQ with an associative cubical multiplication Q x O — Q for which a distinguished
elemente € Qg is a unit. (Warning: since th@;’'s are not assumed to be monoi€}js
not a cubical monoid.) Clearly, the (normalized) chain comp]é%(Q; R) on a monoidal
cubical setQ and the dual cochain complex*,(Q; R) are dg Hopf algebras. Given a
graded monoidal cubical s, a Q-moduleis a cubical set. together with associative
actionQ x L — L with the unit ofQ acting as identity. In this cas€ (L; R) is a dga
comodule over the dg Hopf algebf@*,(Q; R), d).

3. The cubical loop and path functors
3.1. The cubical loop functor

In this section we construct a functor that assigns to a simpliciaXset{X,,, ¢;, s;} a
cubical monoidal se®X, which plays the role of thiwop space of XFirst we construct a
cubical monoidM X without degeneraciethen enlarge it t€2X with degeneracy operators.

Let X =s~1(X. ) and defineViX to be the free graded monoid (without unit) generated
by X. We denote elements MX by x1 - - - i for Xj € Xm;41, mj=0,1<j<k. The total
degree of an element - - - xy is the summ ) =mq + - - +my, m; =|x;|, and we write
X1 Xk € (MX)p, - The product of two elements; - - - x; and y1 - - - y, is defined by
concatenatiori1 - - - X y1 - - - yeand is subject only to the associativity relation; there are no
other relations whatsoever among these expressions. The gradiéd sabonically admits
the structure of a cubical set without degeneracies in the following fashion: Let

Vit Xy = Xi X Xy, vi(x)=0iqy1---0p(x) x o---0;—1(x), 0<i<n

denote the components of the AW diagonal. A supersar@t a simplexx” € X,, denotes
its dimensionThen for am-simplexx” € X,,, n >0, let

vi(x™) = (), ()" € Xi x X
First define the face operatQiS, dl.l: (MX),,_1 — (MX),_» on a (monoidal) generator
X" e (X),_1=X, by

oMy = () ()" i=1. 0 -1,

dr(x™) = 0; (x"), i=1...,n—1

Thereafter, for any element (word) - - - x; let

dio(fl'-'ik) zjl...(xc/[)jq . (x(’l’)mﬁl_fq e Xk

d}Fy- - F) =X 0, (xg) - K,

WhETEM(q_l) <i<m(q), jq =i — mg—1y, l<q <k, 1<i<n—-1.

Itis straightforward to check that the defining identities of a cubical set holallotodil.
In particular, the simplicial relations between tfiés imply the cubical relations between
the dil’s; the associativity relations between thés imply the cubical relations between
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thedl.o’s, and the commuting relations between @as andv;’s imply the cubical relations
between theil’'s and @%s. We now enlargeMX by enlarging its generating sét and
introduce the desired degeneracy operators.

Foranelement € X,,, we consider formal expressiom;% C i Mg (D) WIth 1<i; <n+
J—=1, 1< j<k, k=0, n;, = Id. We call such an expressioormalif i1 < - - - <ix. Note
that any such expression can be reduced to this normal form by applying the defining
identities for a cubical set with degeneracy operagpriet X¢ be the graded set of formal
expressions with normal form

Xz+k = {nik T -”ilylio('xﬂx € Xn}n}o,kZOa
where
i< <ip 1<ij<n+ j — 1, 1< <k, = 1d

and letXc = s*l(Xgo). DefineQ” X to be the free graded monoid (without unit) generated
by X¢. Itis clear thatX C X° sincer;,(x) =x. ThusMX C Q"X.

LetQ' X be the monoid obtained frof” X by quotienting with respect to the equivalence
relation generated by, 1(x) - y ~ X - ny(y) for x| = p+ 1, x,y € X C X°. We have
the inclusion of graded monoidg X c ©'X. We claim tha€2’' X admits the structure of a
cubical set. Face operators on the suldget  Q'X were already defined. Now define a
degeneracy operatgf : ('X),_1 — (2'X),, on a (monoidal) generatare (X¢),_, by

1n;(x) =n; (x),

(assumingy; (x) is normalized). For any elemefi - - - x; of Q'X extend the degeneracy
operators by

’71‘()21' . ')Ek) :)El' . 'njq(x_‘l) .. .)Ek,
UM ()El t ')Ek) = )El c 'imkfl : ’1mk+1(ﬁ),
wherem 1y <i<m), jo=i—my-1, 1<q <k, 1<i<n—1.Inductively extend the
face operators on degenerate elements in such a way that the defining identities for a cubical
set are satisfied. Then the cubical #tX, dl.o, d[.l, n;} depends functorially oiX.
Now suppose thatis a based simplicial setwith base point Xo, and denote=so(x) €
(X)o. Let QX be the monoid obtained fro' X via

QX = Q'X/ ~,

whereea ~ ae ~ a, fora € Q'X, andn,(x) ~ s,(x) for x € X,, n> 0. Obviously
(QX, d,.o, dl.l, n;) is a (unital) monoidal cubical set. Note that although the underlying
monoidal structure of2X is not free; all relations involve degenerate elements.

Remark 3.1. In the definition of the face operatoai@, dl.1 of QX for ann-simplex of X,
the first and last face operataig andd,, of X are not used directly. If, in particulax is a
1-reduced simplicial set (i.eXo = X1 = {*}), we have the following identities:

d?(x_”) — (x/)l . (x//)n—l —e- (x//)n—l — (x//)n—l — 60(x”),

dp () =) = ()T e = ()" T =0,0m), X" € X
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Thus, all face operatoi of X participate in the definition dX in this case.

Remark 3.2. The degeneracies 62X are formal; we do not use degeneracieXekcept

for the last ones,. This is justified by the geometrical fact that in the path fibration, a
degenerate singularsimplex in the base lifts to a singulér — 1)-cube of the fiber which
need not be degenerate (cf. the proof of Theorem 5.1).

It is convenient to verify the cubical relations by the following combinatorics of the
standard cube (compard)]). Motivated by the combinatorial description of the standard
(n+ 1)-simp|exA"+1, we denote the sg¢0, 1,...,n+ 1} by [0, 1, ..., n + 1] and assign
this to the whole/”.

Proposition 3.1. Let

dl.0<—>x1,...,x,~_1,0,x,~+1,...,xn, i=1...,n,

di0<—>x1,...,x,-_1, 1L xit1,...,x,, i=1...,n

denote the face operators of the standard ciibi# Euclidean coordinates. Then the action
of the face operators of9, 1, ..., n + 1] by

d9
[0,1,....,n+1]—-5[0,1,....,il[i,....,n+1], i=1,...,n,
dt A
[0,1,...,n+1]—[0,1,...,i,...,n+1], i=1...,n
agrees with the cubical identities.

Proof. Itis straightforward. [

In general, ang-dimensional face of 1" is expressed as

a=1[0,i1, ..., 01k, ik Mlikgs - - oy k) Lk gy oo i, 1,
O<iy<--<ip—p<n+1, qg=k,—p+1

in the above combinatorics; while a cubical degeneracy operator
Ny <> X1, ..., Xi—1, Xit1, -, Xp
is thought of as adding a formal elemerib the sef0, 1, ..., n + 1] at the(i + 1)*’ place
n10,1,...,n+1]=[0,1,...,i =1, %,4,...,n+1]
with the conventionthd®, 1, ...,i — 1, %][*,i,...,n+1]=[0, 1, ..., n+ 1] guarantees
the equalityd®n; = Id = dly;.
3.2. The cubical path functor

Here we assign to a simplicial sEta cubical sePX which plays the role of thpath
space of XIn some sens&X will be atwisted Cartesian produdf a simplicial seX and
the monoidal cubical s€2X.
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First we define the cubical s& X as follows. Ignoring underlying structure for the
moment, consider the Cartesian product

X x QX=X xQX), = U X4 x (X),
ptq=n

of the graded set¥“ andQ'X. Let
XXX =X x QX/ ~,

where(,,1(x), y) ~ (x, 1), (x,y) € X{x(Q'X),. Introduce operatord’, d andy;
Ic;r;X“QQ’X asfollows. Foranelement, y) € X, x(Q'X), C X, x(Q'X),, p+q=n,
e

(7Y Py, 1<i<p,

4P (x, ):{ .
Y (x,d,-o_p(y)), p<i<n,

0i_ 1<i<
dl x’ — (Ol 1(x)7 )’), ~ .\p’
P ) {(x,d}p(y», p<i<n,

n;(x, y) = (1;(x), y), 1<i<p,
ni(x,y) =, n_,»), p<isn+1
Itis easy to check that these face operators satisfy the canonical cubical identities. The data
uniquely extends to the structure of a cubical set on the wi6leQ'X. The resulting
cubical set is denoted ¥ X ; the cubical sePX is obtained by replacin@®’X by QX in
the definition ofP’X. There is the canonical inclusion of graded % — PX defined
byy — (x,y), x € X, and the canonical projectiagit PX — X defined by(x, y) — x.
The cubical relations if?’X can be verified by means of the following combinatorics
of the standard cube (compare with Proposition 3.1). The top dimensional délt bis
identified with the set 01, ..., n + 1] while any proper-facea of 1"t1 is expressed as

a=ji, ..., JsylUsys - Jspllsps - o5 Jsgl oo Usias - -5 s+ 11,
O<ji<--<jys<n+1l g=s—t+1

The dimension of the first block, . .., jy1isdim([j1. ..., js,1) + 1.

Proposition 3.2. Letthe face operatoe#, ¢=0, 1, actonaface a of**1 asin Proposition
3.1, but for its first block as
0

di . . . . .
Ji e sl — g o Jillldis - os Jsd, 10 <81,
di -~ . .
jlv~~-7.]'S1]—).]lv-~-9]i7-~'s]51]7 1<Z<Sl.

Then the relations amondf’s again agree with the cubical identities.
Proof. Itis straightforward. [

The canonical cellular map: 1"t1 — A"*1[30] is combinatorially defined by

Jls - e jsl][jsls ceey jsz][jsg’ ceey jsg] cee [js,,l’ ceey js,] —> J1, ..., jsl
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0 0 3
0
0 1 0123]
[0123]
0 0 2
0 0 1
T
¥
3
0 2
0123
1
Fig. 1. The universal truncating twisting function
seeFig. 1). In particular the facel0, 1, ..., n + 1] of I"*1 i.e.,d?, goes to the minimal
1

vertex (the base point) & A"+
The mapy)s can be thought of as a combinatorial model of the projedﬁﬁni X.

4. Truncating twisting functions and twisted Cartesian products

There is the classical notion oftaisting functiont: X — G from a simplicial set to
a simplicial group. Such defines awisted Cartesian produdor a simplicial G-module
M as a simplicial seX x ;M. In this section we introduce the notion of a twisting function
between graded sets in which the domain and the target have face and degeneracy operators
of different types; moreover, the group structure on each homogeneous component of the
target is replaced by a graded monoidal structure reflecting the standard Cartesian product
of cubes. Namely, we defineteuncating twisting functiorr: X — Q from a simplicial
setX to a monoidal cubical s€). For a cubicalQ-module with actionQ x L — L, such
7 defines @wisted Cartesian product x ;L as acubical set

These notions are motivated by the cubicalR&t which can be viewed as a twisted
Cartesian product determined by the canonical inclusiok — QX, x +— i of degree
—1, referred to as thaniversal truncating twisting function.

Definition 4.1. Let X be a 1-reduced simplicial set a@be a monoidal cubical set. A
sequence of functions = {7, : X, — Q,-1},>1 of degree—1 is called a truncating
twisting function if it satisfies:
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T(x) =e, x € X1,

d%t(x) = 1041 0p(x) - 100+ 0j—1(x), i=1...,n—=1 xe€X,n>1
dl.lr(x):‘z,'ﬁ,-(x), i=1....n—-1 xeX,, n=1
N,T(x) = T8, (x), x e X,, n=1

Remark 4.1. Note that by definition, a truncating twisting function commutes only with
the last degeneracy operators (comg&f), since this is so for the universal truncating
function.

The next proposition is an analog of the property (ii) of a twisting cochain from 2.2.

Proposition 4.1. Let X be a 1-reduced simplicial set and Q be a monoidal cubical set. A
sequence of functions={z, : X, — 0,1}, >1 of degree-1is a truncating twisting func-
tion if and only if the monoidal map : QX — Q defined byf (x1...xx) =1t(x1) ... 7(x})

is a map of cubical sets.

Proof. Sincef is completely determined by its restriction to monoidal generators, use the
argument of verification of cubical identities for a given single generator QX being
equivalent to that of identities of the universal truncating functigne — o. O

The following construction is an analog of the property (iii) of a twisting cochain from
2.2. Given a truncating twisting function: X — Q and a cubical set., which is aQ-
module viaQ x L — L, define the corresponding twisted Cartesian proddet, L by
replacingQ X with L in the definition ofPX. This gives the following:

Definition 4.2. Let X be a 1-reduced simplicial sef) be a monoidal cubical set, ahd
be aQ-module viaQ x L — L. Lett={1,: X, — Qu-1},>1 be atruncating twisting
function. The twisted Cartesian produck . L is the graded set

XxL=X"xL/~,

where(n,,,1(x). y) ~ (x.n1(). (x.y) € X x Ly, and is endowed with the fac&, d}
and degeneracy; operators defined fatx, y) € X, x Ly C X}, x Lq by

(01---0p(x), T(x) - ), i=1,
d20x,y) =1 (i - 0p(x), 100 0—2(x) - y), 1<i<p,
(x, dY (), p<i<n,

1 _ @i, y), 1<i<p,
dtn )= { (v d} (), p<i<n,
i (x, y) = (;(x), y), 1<i<p,
n[(x’y)z(xvni—p(y))s p<l<7’l+1
For any(x, y) € Xx.L the operators uniquely extend to form the cubical (Sék . L,
4P, dt, n,).

The geometrical interpretation of X — QX is the following: The standana-simplex
(the base) is converted into the—1)-cube (the fiber) by the canonical truncation procedure;
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this truncation yields tha-cube (the total space) as well, and the latter is thought of as the
“twisted Cartesian product” of the simplex and the cube {&gel); so that projection/
is a “healing” map. This justifies the name “truncating twisting function”.

Example 4.1. Let M = {ex}; > o be the free graded monoid on a single generater M
with trivial cubical set structure and X — M the sequence of constant maps X,, —
M, _1, n>1. Then the twisted Cartesian produtix .M can be thought of as a cubical
resolution of the 1-reduced simplicial St

The normalized cubical chain funct(fﬂ,ﬂj applied to the cubical se@X, PX, Xx.L
produce dg modules) (QX), C(PX), CD(Xx.L). Itis straightforward to check that

(i) CHQX)=QC.(X);
(i) CE(PX)=Q(Cu(X); C.(X));
(i) CH(Xx:L)=Cu(X)®,, C(L). (4)

5. The cubical model of the path fibration

LetY be a topological space. [i], Adams constructed a morphism
Wy QC(Y) — CP@Qy) (5)

of dg algebras that is a weak equivalence for simply connecttétiere are explicit com-
binatorial interpretations of Adams’ cobar construction, the aboveanagnd the acyclic
cobar constructiof(C,(Y); C«(Y)) interms of cubical sets. Indeed, we have the following
theorem (comparg25,9,2,3,10J.

Theorem 5.1. LetQY — PY — Y be the Moore path fibration.
(i) There are natural morphisms, p, Y such that

SingQy — . SindpPY —™ , Sindvy

A

Qsingly — PSingdy —° . Singdr
Y:SingtY — Sing Y is a map of graded sets induced by, 1" — A", while p is
a morphism of cubical setand «» a morphism of monoidal cubical setsioreover the
cubical maps are homotopy equivalences whenever Y is simply connected.
(ii) The chain compIeEE (QSing' Y) coincides with the cobar constructid®C,(Y),
see2.3.Moreover for a simply connected spack, the Adams weak equivalen®

w1 QC,.(Y) = CH(QSing' Y) — cH(Qy) = C.(Sind Qv)

is induced by the morphism of monoidal cubical set&nd consequently it preserves all
structures which one has in the chain complex of a cubical set
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(iii) The chain complex™ (P Sing' Y) coincides with the acyclic cobar construction
Q(Ci(Y); Ci(Y)).

Proof. (i). Morphismsp andw are constructed simultaneously by induction on the dimen-

sion of singular simplices in SiRg’. Fori =0, 1 and(a, ¢) € PSing' Y, ¢ € (Sing* Y);,

definep(a, ¢) as the constant maly — PY to the base poing, wheree denotes the unit

of the monoidQ Sing! ¥ (and of the monoid SirgRY as well). Putw(e) = e. Denote by

P Sing Y jy the subset irP Sing' Y consisting of the elements, ¢’) with |¢| <i, and

o’ € QSing! Y;), a submonoid i Sing* ¥ having (monoidal) generatoéswith |5| < ;.
Suppose by induction that we have construgtednd o on P Sing Y(n—1,n—2) and

Q Sing' Y(,_2 respectively such that

p(o,d)=p(o,e)-w(@) and (G)=pdi (o, e)),
where the: product is determined by the actidty x QY — QY. Let I" c I" be the
union of the(n — 1)-facesd;(1") of I" except theif(l") = (0, x2, ..., x,) and then for a
singular simplexs : 4" — Y define the map

p:I" - PY
by

Plasany = pdi(o,e)), e=0,1, andi#1 for e=0.

Then the following diagram commutes:

m_—r . py % . py
ll EGJ TEJ
1" —i—» A % Y.

Clearly,i is a strong deformation retraction and we defir{e, ¢): I" — P;Y as a lift of

Y. Definew(a) = p(d](_)(G, e)). The proof ofp andw being homotopy equivalences (after

the geometric realizations) immediately follows, for example, from the observation that

¢ induces a long exact homotopy sequence. The last statement is a consequence of the
following two facts: (1)| P Sing* X| is contractible, and (2) the projectighinduces an

isomorphismn,.(|P Sing' Y|, |Q Sing' Y |) S m.(|Singt Y ).
(ii)—(iii). This is straightforward. [

Thus, by passing to chain complexes in diagram (6) we obtain the following comulti-
plicative model of the path fibratiomformed by dgc'’s.

Corollary 5.1. For the path fibrationQY — PY — Y there is a comultiplicative model
formed by coassociative dgc’s which is natural in Y
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cdovy — ey — = D)

w% p*] !4\ (7)

QC,(Y) —— QC.(V);CuY)) — s Cu(Y)

6. Cubical models for fibrations

Here we prove the main result in this paper. Gdie a topological groug; be aG-space

G x F —> F,G — P -5 Y be a principa-bundle andF — E —5 Y be the associated
fibration with the fiberF. Let X = Sing' Y, 0 = Sind G and L = Sing F. The group

operationG x G — G induces the structure of a monoidal cubical seQoand the action

G x F — F induces &-module structurg? x L — L onL.

Theorem 6.1. The principal G-fibrationG — P —> Y determines a truncating twisting
functiont : Sing' Y — Sing G such that the twisted Cartesian prod&ing' Y x ; Sing F

models the total space E of the associated fibrattor> E —> Y, that is there exists a
cubical map

Sing' Y . Sing F — Sing E
inducing homology isomorphism.
Proof. Letw: QX — Sing’ QY be the map of monoidal cubical sets from Theorem 5.1. By

Proposition 4.1» corresponds to a truncating twisting functidn X = Sing* ¥ ox=

QSingt Y -2 Sing’ QY. Composing’ with the map of monoidal cubical sets SIngY —
Sing G = @ induced by the canonical mapy — G of monoids we obtain a truncating
twisting functionz: X — Q. The resulting twisted Cartesian product Sifig<.Sing’ F
is a cubical model of. Indeed, we have the canonical equality

Xx:L=(Xx:0Q)xL/~,

where(xg, y) ~ (x, gy). Next the argument of the proof of Theorem 5.1 gives a cubical
map f': X x, QX — Sing P preserving the actions €2X and Q. Hence, this map
extends to a cubical map: X x.Q — Sing P by f(x, g) = f'(x, e)g. The map

fxId: (XXTQ)XL—)Sing[PxL—>SingI(PxF)
induces the map
Sing' Y x; Sind F — Sindg E

as desired. [

For convenience, assume tlatQ andL are as in the Definition 4.2. On the chain level
a truncating twisting function induces the twisting cochaing : C,(X) — C,_1(Q) and
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™ C*(Q) — C*T1(X) in the standard sensf8(7,14). Recall the equality of dg modules
((iii) of 4)

CY(Xx:L) = C.(N)®, CI(L) ®)
and, consequently, the obvious injection
CH(Xx:L) D C*(X)QCH(L) 9)

of dg modules (which is an equality if the graded sets are of finite type).

The cubical structure of x . L induces a dgc structure mTE(XxTL). Transporting this
structure (the Serre diagonal (3)) to the right-hand side of (8) we obtamaltiplicative
modeIC*(X)®T* CE(L) of our fibration. Dually,C* (X x.L) is a dga, so a dga structure
(a multiplication) arises on the right-hand side of (9) and we obtamukiplicativemodel
C*(X)Q.+Cf(L) of our fibration.

Below we describe these structures (the comultiplication orCt.l{a)@T* CE(L) and
the multiplication onC* (X)), C (L)) in terms of certain (co)chain operations that form
ahomotopyG-(co)algebrastructure on the (co)chain complexf

6.1. The canonical homotopy G-algebra structure(@iX)

To describe these structures in more detail, we focus on equality (i) of (4)
cH@x) = QC,(X).

As before, the cubical structure 62X induces a comultiplication (Serre diagonal) on
CE (QX), thus this structure also appears on the right-hand side of the above equality, so
that the cobar constructia2C..(X) becomes a dg Hopf algebra. Such a comultiplication
was defined on the cobar construct@ﬁi‘ (X) ofthe normalized comple&’;‘ (X) by Baues
in [2,3].

In the combinatorics of Proposition 3.1, this diagonal is expressed as

A[0,1,...,n+ 11 =2(-D?[0,1,..., j1llj1, .- -, joI
L2 oijaleeLipeeeon+1]
®[07j1’j29""jp’n+1]'

Note thatthe summangBl. .. n+1]®[0, n+1] and[01][12][23].. . [n, n+1]®[01...n+
1] form the primitive part of the diagonal.

Now regarding the blocks of natural numbers above as faces of the standard)-
simplex, we obtain Baues’ formula for the coproddct QC, (X) — QC,(X) ® QC.(X):
For a generatos € C,+1(X) C QC,(X) define

Alo] =2(=D° [0(0,1,..., jO)lo(j1, ..., j2)I
a(jo, ..., j3l...16(jp,....,n +D]®
[0(0, j1, j2, - -s jp-n+ D], (10)

wherea(iy, ..., ix) denotes the suitable face of Note that sinceX is assumed to be
1-reduced, the imager(k, k + 1)] of each 1-dimensional facek, k + 1) is the unit in
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QC,(X) and hence can be omitted. Note also that the formula is highly asymmetric, the

left-hand factors off[a] in QC,(X) ® QC,(X) have length>1 and the right-hand factors

have length 1; this is a consequence of (3) and the structull.% df from Proposition 3.1.
Actually, this diagonal consists abmponents

EFL=prod: Cu(X) = QC.(X) @ QCL(X) = CL(X)®* @ C(X), k>1,
wherepr is the obvious projection. The basic compongat! looks like

EY0)=2,,(-1)% (0(0,1) ® (1,2 ®...® a(s — 1, 5)
Ka(s,s+1,....0) a(t,t +1)
®cn,n+1)®ac0,1,...,s —Ls,t,t+1,...,n+1)

=X, (=D a(s,s+1,...,1)
®c0,1,...,s —L1s,t,t+1,...,n+1)

which is a chain operation dual to Steenrod’s-product.
Dualizing the operationg*1, we obtain the sequence of cochain operations

{Ex1: C* O @ C*(X) = C*(Xh>1

which define a multiplication on the bar construct®@*(X) ® B*(X) — BC*(X). These
cochain operations forml@omotopy G-algebra structu@n C*(X) (see the next section).

6.2. The non simply-connected case

The operations{Ek,l} above are restrictions of more general cochain operations that

arise onC*(X) for a based spacé which is not necessarily 1-connected. In this case, for
X = SingY we have the operations

{Er1: C*0O®F @ C*(X) > C*(X)} x>0
given by the following explicit formulas: Far; CMi(X), m;>2, 1<i<k, let

: (el 1 1 1.
Exa(ay.....ai;a0) =Y Eja(tar et ... e a, €% ao),
jzk

wheres! e C1(X) isthe generator represented by the constant singular 1-simplex at the base
pointA* — y € Y andthe operations; i are definedfor; e C™i(X), mj=1, 1< j<k,

co € CK(X), by
Exalcr, ca, ... cisc0)=ce€ C"(X), n=my+-- +my,

c(o)= (—1)8c1<61-1+1 - 040)c2(00 - iy-10iy41 -+ 0n0) -+
ck(0o- -+ Ojy_1— 16)60(5031511 -+ Oiy_q *+ On—10,0)

k
e=y (j—Dm;—1),

j=1
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whereiy =m1+---+my, 1<qg<k—1, o€ X,, and whereﬁk,l(cl, c2,...,¢k;c0) =0
otherwise.

Remark 6.1. Though each}?k,l, andin particuIaE],l has only one component, the formula

for k = 1 definesE 1 as the Steenrod cochaini-operation without any restriction on

This fact evidently indicates a difference between topological and algebraic interpretation
of the operation$Ey 1}, ~ 1 in terms of 1-reduced algebras (see also Example 7.3).

6.3. Twisted multiplicative model for a fibration

Next we further explore the twisted Cartesian produck.L. To describe the
corresponding coproduct and product on the right-hand sides of (8) and (9), respectively,
it is very convenient to express the Serre diagonal (3) using the combinatorics of
Proposition 3.2

01...n] -5 (=1 0... jullj1... joljo- .- jal .- Ljk-..nl®

N —

O,....Ja—Ljr.ja+1 ....j2—=1 jo, ..o, Jks

—_

]k+17 e, — 17 n]a (11)

0<j1<--- < jr <n,wherethe summandsOL n]®n]and Q[01][12][23]...[n—1, n]®
01...n] form the primitive part of the diagonal.

Furthermore, the actio® x L — L induces a comodule structurk, : C*(L) —
C*(Q) ® C*(L), and it is not hard to see that the cubical multiplication of (9) can be
expressed by this comodule structure, diagonal (11), the twisting cochand the opera-
tions{Ex. 1}; > 1 by the following formula: Letiy ® m1, az @ mz € C*(X)Q) - CE(L) and
Ak e (L) — Cc*(0)®F @ C*(L) be the iterated!;, with 49 = Id: C*(L) — C*(L);
let Ali(ml) =Y. 9t m]i+l. Then

U ((a1 @ m1) @ (a2 @ m2))

=Y kel gy By (4D, - 7 (); a2) © mbHma, (12)
k>0

Corollary 6.1. Underthe circumstances of Theoréri,the twisted differential; and mul-
tiplication p turn the tensor produaf™(Y) ® CE (F) into a dga(C*(Y) ® CE(F), dx, piy+)
weakly equivalent to the dgg* (E).

Such a multiplicative model is constructed[&} without explicit formulas for the mul-
tiplication.

Corollary 6.2. There exists onthe acyclic bar construct®C*(Y); C*(Y)) the following
strictly associative multiplicatiorfor a=ao®l[ax| - - - |a,], b=bo®[b1|---|bm], ai,b; €
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C*(Y), 0<i<n, 0<j<m, let

n
ab = Z (—1)|b0|(|ék+l‘+"'+|é”DaOEk,l(al, .. ag; bo)
k=0
® [dk+l| <-lap] o [b1| ce |bm]- (13)

Proof. TakeQ = L = QX. Then the multiplication (12) looks as (13)]

7. Twisted tensor products for homotopy G-algebras

The notion of homotopy G-(co)algebra naturally generalizes that of a (co)commutative
(co)algebra. For commutative dga’s there exists the theonyultiplicativetwisted tensor
products. Below we generalize this theory for homotopy G-algebras. Namely, we define a
twisted tensor product with both twisted differential @ndsted multiplicatiorinspired by
the formulas (12) and (13) established in the previous section.

The following definition of homotopy G-algebra (hga) differs from the definitiofi2]
only by grading (see algd 3]). Let A be a dga and consider the dg mod@eom (BA ®
BA, A), V) with differential V. The—-product induces a dga structure (the tensor product
BA ® BA is a dgc with the standard coalgebra structure).

Definition 7.1. A homotopy G-algebra is a 1-reduced d§aquipped with multilinear
maps

Epy: A®P @ A®1 — A, p,q=0, p+q>0,
satisfying the following properties:

() Ep 4 isofdegree - p —q;
(i) E,q=0exceptEyo=id, Eo1=id andEy 1, k>1;
(iii) the homomorphisnE: BA ® BA — A defined by

E([a---1ap]l @ [bal---1bgl) = Epg(an, ..., ap; bi, ..., by)

is a twisting cochain in the dgéHom(BA ® BA, A), V,—), i.e., satisfiesVE =
E - E;
(iv) the multiplicationyu is associative, i.eBAis a dg Hopf algebra.

Condition (iii) implies that the comultiplicative extensign,: BA ® BA — BAis a
chain map; conditions (jii) and (iv) can be rewritten in terms of the compongpts(see
[12]). In particular the operatiof 1 satisfies conditions similar to Steenroe’g product:
Condition (iii) gives

dE1.1(a1; ao) — E11(day; ag) + (—1)1 Eq 1(a1; dag)

— (_1)|u1|alao _ (—1)‘“1|(|“°|+1)a0a1, (14)
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so it measures the non-commutativity of the producfofience, a homotopy G-algebra
with E11 = 0 is a commutative dga. We dendtg 1(a, b) by a—1b. This notation is also
justified by the other condition that follows from (iii), namely,

c—1(ab) = (c—1a)b + (—=1)llel=D g c_1p). (15)

Thus mapi—1—: A — Aisaderivation; whem = C*(X) formula 15 is called thélirsch
formula On the other hand, the map—1c: A — A is a derivation onlyup to homotopy
with the operatiorE, 1 serving as a suitable homotopy: This time condition (iii) gives

dEz1(a, b; c) — Ez1(da, b; ¢) — (=11 Ep 1(a, db; ¢) — (=1 E 1 (a, b; do)
— (—1)|“|+‘b|(ab)v1c _ (—1)|“|+‘b””|(avlc)b _ (—1)‘“‘+|b‘a(bvlc). (16)

The main examples of hga's ar€*(X) (see[2,3,13] and previous section) and the
Hochschild cochain complex of an associative algebra, with the operdfipnand £ 1
defined by Gerstenhaber [fi1] and the higher operations given [[20,13,12] Another
example is the cobar construction of a dg Hopf algg¢Btd Note also that certain algebras
(including polynomial algebras) that are realized as the cohomology of topological spaces
also admit a non-trivial hga structuf29] (see also Example 7.3 below).

The dual notionis that of ahomotopy G-coalgebra (hgc). For aitige, A4, {EP4: C —

C®P @ C®1}) the cobar constructio2C is a dg Hopf algebra with a comultiplication in-
duced by{E?-1}.

Remark 7.1. For a hgad, the operatiorEs 1, besides of (16), measures the lack of asso-
ciativity of E1 1 = —1. In particular, condition (iv) yields

a—1(b—1¢) — (a—1b)—1c = Ez1(a, b; ¢) + ()1 VEHY ) 1 (b, a;¢)  (17)

which implies that the commutatéa, b] = a—1b — (—1)@FDUH+DL_ ) 4 satisfies the
Jacobi identity. In view of (14), this commutator induces a Lie bracket of degree -1 on
H(A). Furthermore, (15) and (16) imply that, —]: H(A) — H(A) is a derivation, so

that H(A) is a Gerstenhaber algedttl] (this notion is not a particular case of hga). This
structure is generally nontrivial in the Hochschild cohomology of an associative algebra,
but the existence of &, product trivializes the induced Gerstenhaber algebra structure on
H(C*(X)) = H*(X).

7.1. Multiplicative twisted tensor products

LetCbe a dgcAa dga andvl a dg comodule oveC. Brown’s twisting cochaim : C —
A (see 2.2) determines a dga m#p: QC — A (the multiplicative extension o), a
dgc mapgy: C — BA (the comultiplicative extension af) and the twisted differential
dpy=d®Ild+1d®d+¢N-: A®M — A® M. Suppose furthermore, thatis a dg Hopf
algebraMis a dga, andd — C ® M is a dga map. In general, is not a derivation with
respect to the multiplication on the tensor prodac® M. But whenA is acommutative
dga (in this casdBA is a dg Hopf algebra with respect to the shuffle produgh and
g4 C — BAis a map of dg Hopf algebras, the twisted differentiglis a derivation
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with respect to the standard multiplication of the tensor produgt C and the twisted
tensor producﬂ@d)c is a dga (see Prouf@7]). We shall generalize this phenomenon for
a homotopyG-algebraA, in which caseBAis again a dg Hopf algebra with respect to the
multiplication zi.

Definition 7.2. A twisting cochain¢: C — A in Hom(C, A) is multiplicative if the
comultiplicative extensio® — BA is an algebra map.

Itis clear that if¢p: C — A is a multiplicative twisting cochain and §: B — C is
a map of dg Hopf algebras then the composition: B — A is again a multiplicative
twisting cochain. The canonical projecti® — A provides an example of the universal
multiplicative cochain. For a commutative dgathe multiplication map:; equalsy,;,, So
Prouté’s twisting cochain is multiplicative (see, for exam|jk8]). The argument for the
proof of formula (12) immediately yields the following:

Theorem 7.1. Let¢: C — A be amultiplicative twisting cochain. Then the tensor product
A ® M with the twisting differentialy = d ® Id + Id ® d + ¢N_ becomes a dga
(A® M, dgy, ug) with the twisted multiplicatiop, determined by formulél2).

Remark 7.2. As in 2.2, this construction is functorial in the following sense:#.etd” —

A be a strict morphism of hga's (i.ep,is a morphism of dga’s strictly compatible with all
E,4’s), ¢: C' — C be adg Hopf algebra morphism,: M’ — M be simultaneously a
morphism of comodules and a dga morphism, ahdC’ — A’ be a multiplicative twisting
cochain such that¢’ = ¢¢. Then

V]®lp (A/®M/,d(/)/,ﬂ(/)/) - (A®M7d¢’:u</))

is a morphism dga’s.

The above theorem includes the twisted tensor product theory for commutative algebras
[27].

Corollary 7.1. For a homotopy G-algebra Ahe acyclic bar-constructioB(A; A), en-
dowed with the twisted multiplication determined by form(@l3) acquires a dga structure.

7.2. Brown's model as a dga

In conclusion, we replace the cubical cochalif§(#) and C(G) by the normalized
simplicialcochaingCy, (F) andC{(G) in Corollary 6.1 to introduce an associative multipli-
cation on Brown's modet™*(Y)&),, Cy (F) for aspecialtwisting cochaing. Specifically,
we have:

Corollary 7.2. Let F — E =Y be a fibration as in Corollary6.1. There exists a mul-
tiplicative twisting cochainp: C{(G) — C**t1(Y) such that the twisted tensor product
(C*(Y) ® C\(F), dy, Kep) with twisted differentiatl, and twisted multiplicatiom¢, is a
dga with cohomology algebra isomorphic &5 (E).
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Proof. Let us first mention that there exists the following standard triangulation of the cub
1", see for exampl§l0]. Each vertex off” is a sequencéy, ..., &,), ¢ = 0, 1. The set
of all 2" vertexes is orderedzy, ..., &)< (¢, ..., &,) if & <e&. There aren! increasing
sequences of maximal length+ 1 which start with minimal vertet@, . . . , 0) and end with
maximal(l, ..., 1). They formn! n-simplices which triangulaté”.

Leto: C{ (G) — C5(G) andy . C\(F) — CH(F) be the maps induced by triangula-
tion of cubes (see, for exampla0]), and¢ = t*¢: C{(G) — CH(G) — C*(Y). Then
the 4-tuple{n = Id, ¢, ¥, ¢} satisfies the conditions of Remark 7.2, thus

1dy: (C*(Y)® C,*\](F),d(l,,ugb) — (C*(Y) ® CE(F), drx, piyr)

is a morphism of dga’s. A standard spectral sequence argument shows that this is a weak
equivalence. O

7.3. Examples

Here we assume that the ground riRgs a field, and all spaces are path connected. We
present examples based on the fact that for a space being a suspension the corresponding
homotopy G-algebra structure is extremely simple: it consists jushaf= —1 and all
other operation&y-1 1 are trivial.

1. The classical Bott—Samelson theorem establishes that the inclusibr> QSX in-
duces an algebra isomorphism 7 H,(X) — H,(2S5X), whereSXdenotes a suspension
on a spac&. The left-hand sidg A, (X) is a Hopf algebra with respect to the comultipli-
cation which extends the one frofh, (X) multiplicatively, and the Bott—Samelson map
is a Hopf algebra isomorphism too. There is the dual statement for the cohomology as well
(cf. Appendix in[16]).

First we recover the above facts in the following way. Ydie the suspension over a
polyhedronX; explicitly, regardY as the geometric realization of a quotient simplicial set
Y=SX/C_X whereSX = C.X UC_X, the union of two cones ovefwith the standard
simplicial set structure. It isimmediate to check by (10) thaEAll for k > 2 are identically
zero, and, moreover, so is the AW diagodal C.(Y) — C.(Y)®C,(Y) in positive degrees
as well (cf.[29]). Consequently, since of (14) and (1Z¥1: C.(Y) — C.(Y) ® C(Y)
becomes coassociative chain map of degree 1 and thus it induces a binary cooperation of
degree 1 on the homology denoted$iy!: H.(Y) — H,(Y) ® H.(Y). Notice that both
(Cx(Y),d, A=0, EXYy and(H,(Y),d = 0, 4, = 0, S¢>1) are homotopy G-coalgebras,
thusQC,(Y) andQH, (Y) both are dg Hopf algebras.

The cycle choosing homomorphism H,(Y) — C,(Y) is a dg coalgebra map in this
case. Thus there is a dg algebra nfap QH,.(Y) — QC,(Y) which induces the Bott-
Samelson isomorphism of graded algebras

TH.(X) = QH, (V) = H(QH,(V)) 2% H,(QC.(Y)) = H.(QY). (18)
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To show that (18) is a Hopf algebra isomorphism, let first consider the diagram

C.¥) —ET V)@ CuY)

w -

Ay S () ® Bl

%)]; %A[AS®S

~ A* ~ ~
Hi1(X) ——  He1(X) ® He-1(X),
wheres is the suspension isomorphism; the upper square is commutative up to a chain
homotopy, while the bottom square is strict commutative. This implies@®has also a
coalgebra map up to a chain homotopy, consequently (18) is a coalgebra map too.
2.LetQY — PY 5 Y bethe Moore path fibration with the bagehich is the suspension

over a polyhedrorX. Let f: Y — Z be amapQY x QZ — QZ be the induced action
via the composition

Qv x @z N 07«07z - 0z,

andQZ — Ey 5 Y be the associated fibration; for simplicity assume thiatthe suspen-
sion and simply connect&\W-complex of finite type, as well. We present two multiplicative
models for the fibratiord using the cubical modél x ;QZ with the universal truncating
twisting functiont =1y : Y — QY.

Notice that the twisted differential of the cochain compl€X (Y x . QZ), d)=(C*(Y)®
C*(QZ),dx)=(C*(Y)® BC*(Z), d+) with universak®: BC*(Y) — C*(Y) becomes
the form

n
da#(a @ [mY]...|m"]) =da ® [m}]...|m"] + Z a®[ml...|dm" ... |m"
k=1
+a-m1@[m?...|m".

Since the simplified structure of the homotopy G-algeltr&(Y), d, u =0, E1,1) formula
(12) becomes the following form:

Ut (a1 ® ma) (a2 ® m2))
= aga; ® mima + a1E11(f*(m}), ag) ® [m2] ... )] - mo, (19)

wheref#: C*(Z) — C*(Y), a1, a2 € C*(Y), my=[m}|...|m}],mz € BC*(Z), n>0.
Note that since the product @i °(Y) is zero, the twisted part gf » (the second summand)
may be non-zero only far; € CO(Y).

So that we get thatl (C*(Y) ® BC*(Z), d#, u#) andH*(E y) are isomorphic as alge-
bras.
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On the other hand, let us consider the following multiplicative twisted tensor product
(H*(Y)®H*(Q2Z), dp)=(H*(Y)QBH*(Z), dw) withuniversak* : BH*(Y) — H*(Y).
The differential here is of the form:

de(a @ [mY ... |m"]) =a-m1 @ [m?...|m").

Againsince the simplified structure of the homotopy G-algebraY ), d=0, u*=0, Sq4 1)
formula (12) becomes the following form:

U (a1 @ m1) (a2 @ mp))
= araz ® mimy + a18q1 1 (f*(m}), az) ® [l ... |if] - ma, (20)

wheref*: H*(Z) - H*(Y), a1,a2 € H*(Y), m1=[n_1%| ...|mfil,mz € BH*(Z), n>0.
Note that since the product @h=°(Y) is zero, the twisted part f... (the second summand)
may be non-zero only fat; € HO(Y). Also we remark that for an elemeate H*(Y),
one getsSq; ;(a, a) = Sq1(a), the Steenrod square.
We claim that(H*(Y) ® BH*(Z), d.+) is a “small” multiplicative model of the fibra-
tion ¢, i.e H(H*(Y) ® BH*(Z),d+) and H*(Ey) are isomorphic as algebras. Indeed,
it is straightforward to calculate (or using the standard spectral sequence argument) that
additively

H(C*(Y) ® BC*(Z). dy)
~ H(H*(Y) ® BH*(Z), d+)
~ HOY) ® Tf(H*(Z)) ® H*(Y)/Imf* ® BH*(Z),

whereTy(H*(Z)) = s Y (Kerf*) + s X (Kerf*) ® s TH*(Z) + --- + s H(Kerf*) ®
(s7YH*(Z))®" +---, n>1. Since the explicit formulas (19) and (20) it is easy to calculate
that the twisted parts qf,» and p.- annihilate in homology, thus they induce the same
multiplication onH*(E r). As a byproduct we obtain that the multiplicative structure of the
total spaceE r does not depend on a méip a sense thatif * =g* thenH*(E ;) = H*(E,)

as algebras. Note also that this multiplicative structure is purely defined by ted— 1
operations.
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